% vim: tw=50 % 28/02/2023 11AM \begin{flashcard}[Hilbert-basis-theorem] \begin{theorem*}[Hilbert's Basis Theorem] If $R$ is \cloze{a Noetherian ring, then $R[X]$ is also Noetherian.} \end{theorem*} \end{flashcard} \begin{flashcard}[Hilbert-basis-theorem-proof] \prompt{Proof of Hilbert's Basis Theorem? \\} \begin{proof} \cloze{ Assume $J \normalsub R[X]$ is not finitely generated. Choose $f_1 \in J$ of minimal degree. Then $(f_1) \subsetneq J$. Choose $f_2 \in J \setminus (f_1)$ of minimal degree. Then $(f_1, f_2) \subsetneq J$. Choose $f_3 \in J \setminus (f_1, f_2)$ of minimal degree and so on. We obtain a sequence $f_1, f_2, \ldots$ with $\deg f_i \le \deg f_{i + 1}$. Set $a_i \defeq \text{leading coefficient of $f_i$}$. We obtain $(a_1) \subseteq (a_1, a_2) \subseteq \cdots$, a chain of ideals in $R$. Since $R$ is Noetherian, there exists $m \in \NN$ such that $a_{m + 1} \in (a_1, \ldots, a_m)$. Let $a_{m + 1} = \sum_{i = 1}^m \lambda_i a_i$, $\lambda_i \in R$ and set \[ g = \sum_{i = 1}^m \lambda_i f_i X^{\deg f_{m - 1} - \deg f_i} \in (f_1, \ldots, f_m) \] Then $\deg f_{m + 1} = \deg g$ and they have the same leading coefficient $a_{m + 1}$. Then $f_{m + 1} - g \in J$ and $\deg (f_{m + 1} - g) < \deg f_{m + 1}$. Hence by minimality of degree of $f_{m + 1}$, we must have $f_{m + 1} - g \in (f_1, \ldots, f_m)$. But $g \in (f_1, \ldots, f_m)$, hence $f_{m + 1} \in (f_1, \ldots, f_m)$, contradiction. Thus $J$ is finitely generated, so $R[X]$ is Noetherian by Lemma 13.1. } \end{proof} \end{flashcard} \begin{corollary*} \begin{itemize} \item $\ZZ[X_1, \ldots, X_n]$ is Noetherian. \item $F[X_1, \ldots, X_n]$ Noetherian, $F$ a field. \end{itemize} \end{corollary*} \subsubsection*{Examples} Let $R = \CC[X_1, \ldots, X_n]$. Let $V \subseteq \CC^n$ be a subset of the form \[ \{(a_1, \ldots, a_n) \mid f(a_1, \ldots, a_n) = 0, \forall f \in \mathcal{F}\} \] where $\mathcal{F} \subset R$ is a possibly infinite set of polynomials. Let \[ I = \left\{ \sum_{i = 1}^m \lambda_i f_i \mid m \in \NN, \lambda_i \in R, f_i \in \mathcal{F} \right\} \] Then $I \normalsub R$, so $I = (g_1, \ldots, g_r)$, $g_i \in I$ (since $R$ Noetherian). Thus \[ V = \{(a_1, \ldots, a_n) \mid g_i(a_1, \ldots, a_n) = 0, i = 1, \ldots, n\} \] i.e. $V$ is defined by finitely many polymonials. \begin{flashcard}[Noetherian-quotient] \begin{lemma} Let $R$ be a Noetherian ring and $I \normalsub R$. Then \cloze{$R / I$ is Noetherian.} \end{lemma} \end{flashcard} \begin{flashcard}[Noetherian-quotient-proof] \prompt{Proof that quotients of Noetherian rings are Noetherian? \\} \begin{proof} \cloze{ Let $J_1' \subseteq J_2' \subseteq \cdots$ a chain of ideals in $R / I$. By the ideal correspondence we have $J_i' = J_i / I$ for some $J_1 \subseteq J_2 \subseteq \cdots$ a chain of ideals in $R$ (containing $I$). $R$ Noetherian implies there exists $N \in \NN$ such that $J_n = J_{n + 1}$ for all $n \ge N$, hence $J_n' = J_{n + 1}$ for all $n \ge N$. Thus $R / I$ is Noetherian.} \end{proof} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $\ZZ[i] = \ZZ[X] / (X^2 + 1)$ is Noetherian. \item $R[X]$ Noetherian implies $R[X] / X$ is Noetherian. \end{enumerate} \subsubsection*{Examples of non-Noetherian Rings} \begin{flashcard}[non-Noetherian-examples] \prompt{Examples of non-Noetherian rings? \\} \begin{enumerate}[(i)] \item \cloze{$R = \ZZ[X_1, X_2, \ldots] = \bigcup_{n \ge 1} \ZZ[X_1, \ldots, X_n]$. i.e. polynomials in countably many variables. But $(X_1) \subseteq (X_1, X_2) \subsetneq (X_1, X_2, X_3) \subsetneq \cdots$ is an infinite ascending chain, so $R$ is not Noetherian.} \item \cloze{$R = \{f \in \QQ[X] : f(0) \in \ZZ\} \le \QQ[X]$. But: \[ (X) \subsetneq \left( \half X \right) \subsetneq \left( \frac{1}{4} X \right) \subsetneq \left( \frac{1}{8} X \right) \subsetneq \cdots \] (each inclusion is strict because $2 \in R$ is not a unit).} \end{enumerate} \end{flashcard} \newpage \mychapter{Modules} \newpage \section{Modules} \begin{flashcard}[module-defn] \begin{definition*}[Module] Let $R$ be a ring. A module over $R$ is a triple $(M, +, \cdot)$ consisting of a set $M$ and two operations \[ + : M \times M \to M, \qquad \cdot : R \times M \to M \] such that \begin{enumerate}[(i)] \item \cloze{$(M, +)$ is an abelian group, say with identity $0$ (=$0_M$).} \item \cloze{The operation $\cdot$ satisfies: \begin{align*} (r_1 + r_2) \cdot m &= r_1 \cdot m + r_2 \cdot m &&\forall r_1, r_2 \in R, m \in M \\ r \cdot (m_1 + m_2) &= r \cdot m_1 + r \cdot m_2 &&\forall r \in R, m_1, m_2 \in M \\ r_1 \cdot (r_2 \cdot m) &= (r_1 \cdot r_2) \cdot m &&\forall r_1, r_2 \in R, m \in M \\ 1_R \cdot m &= m &&\forall m \in M \end{align*} } \end{enumerate} \end{definition*} \end{flashcard} \begin{remark*} Don't forget closure when checking $+$, $\cdot$ well-defined. \end{remark*} \begin{example*} \begin{enumerate}[(i)] \item Let $R = F$ be a field. Then an $F$-module is \emph{precisely the same} as a vector space over $F$. \item $R = \ZZ$, a $\ZZ$-module is \emph{precisely the same} as an abelian group, where $\cdot : \ZZ \times A \to A$ maps \[ (n, a) \mapsto \begin{cases} \overbrace{a + a + \cdots + a}^{n \text{ copies}} & n > 0 \\ 0 & n = 0 \\ -(\ub{a + a + \cdots + a}_{n \text{ copies}}) & n < 0 \end{cases} \] \item $F$ a field, $V$ a vector space over $F$ and $\alpha : U \to V$ a linear map. We can make $V$ an $F[X]$-module via \[ \cdot : F[X] \times V \to V \qquad (f v) \mapsto (f(\alpha)(v)) \] for example $(X^2 + !) \cdot v = (\alpha^2 + 1_V)(v)$. \begin{note*} Different choices of $\alpha$ make $V$ into different $F[X]$-modules. Sometimes we'll write $V = V_\alpha$ to make this clear. \end{note*} \end{enumerate} \end{example*} \subsubsection*{Examples} General construction. \begin{enumerate}[(i)] \item For any ring $R$, $R^n$ is an $R$-module via $r \cdot (r_1, \ldots, r_n) = (r_1, \ldots, rr_n)$. In particular, taking $n = 1$, $R$ is an $R$-module. \item If $I \normalsub R$, then $I$ is an $R$-module (restrict the usual multiplication on $R$) and $R / I$ is an $R$-module via \[ r \cdot (s + I) = rs + I \] \item $\phi : R \to S$ a ring homomorphism, then any $S$-module $M$ may be regarded as an $R$-module: \[ R\times M \to M \qquad (r, m) \mapsto \phi(r) \cdot m \] In particular, if $R \le S$ then any $S$-module may be viewed as an $R$-module. \end{enumerate}