% vim: tw=50 % 23/02/2023 12AM \begin{example*} \begin{enumerate}[(i)] \item Theorem 11.1 implies $\ZZ[X]$ is a UFD. \item Let $R[X_1, \ldots, X_n]$ be the polynomial ring in $X_1, \ldots, X_n$ with coefficients in $R$. (Define inductively $R[X_1, \ldots, X_n] = R[X_1, \ldots, X_{n - 1}][X_n]$). Applying Theorem 11.1 inductively implies $R[X_1, \ldots, X_n]$ is a UFD if $R$ is as UFD. \end{enumerate} \end{example*} \begin{flashcard}[eisenstein-criterion] \begin{theorem*}[Eisenstein's Criterion] Let $R$ be a UFD and $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ \cloze{\fcemph{primitive}}. Suppose $\exists p \in R$ \cloze{\fcemph{irreducible}}\fcscrap{ ($=$ prime)} such that \begin{itemize} \item \cloze{$p \nmid a_n$} \item \cloze{$p \mid a_i$ $\forall 0 \le i \le n - 1$} \item \cloze{$p^2 \nmid a_0$} \end{itemize} Then $f$ is irreducible in $R[X]$. \end{theorem*} \end{flashcard} \begin{flashcard}[eisenstein-proof] \prompt{Proof of Eisenstein's Criterion? \\} \begin{proof} \cloze{ Suppose $f = gh$, $g, h \in R[X]$ not units. $f$ primitive implies $\deg(g), \deg(h) > 0$. Let $g = r_k X^k + \cdots + r_1 X + r_0$, $h = s_l X^l + \cdots + s_1 X + s_0$ with $k + l = m$. Then $p \nmid a_n = r_k s_l$ so $p \nmid r_k$ and $p \nmid s_l$, and $p \mid a_0 = r_0 s_0$ so $p \mid r_0$ or $p \mid s_0$. WLOG $p \mid r_0$. Then there exists $j \le k$ such that $p \mid r_0$, $p \mid r_1$, \ldots, $p \mid r_{j - 1}$, $p \nmid r_j$. Then \[ a_j = \ub{r_0 s_j + r_1 s_{j - 1} + \cdots + r_{j - 1} s_1}_{\text{divisible by $p$}} + r_j s_o \] but $p$ divides $a_j$ since $j < n$, thus $p \mid r_j s_0$, hence $p \mid s_0$. Then $p^2 \mid r_0 s_0 = a_0$, contradicting the third assumption. } \end{proof} \end{flashcard} \begin{example*} \begin{enumerate}[(i)] \item $f(X) = X^3 + 2X + 5 \in \ZZ[X]$. If $f$ irreducible in $\ZZ[X]$, then \[ f(X) = (x + a) (X^2 + bX + c) \] for some $a, b, c \in \ZZ$. Thus $ac = 5$. But $\pm 1$, $\pm 5$ are not roots of $f$, contradiction. By Gauss's Lemma, $f$ irreducible in $\QQ[X]$. Thus $\QQ[X] / (f)$ is a field (Lemma 10.4). \item Let $p \in \ZZ$ be a prime. Eisenstein's criterion implies $x^n - p$ is irreducible in $\ZZ[X]$, have irreducible in $\QQ[X]$ by Gauss's Lemma. \item Let $f(X) = X^{p - 1} + X^{p - 2} + \cdots + X + 1 \in \ZZ[X]$ where $p$ is prime. Eisenstein does not apply directly to $f$. But note that $f(X) = \frac{X^p - 1}{X - 1}$. Substituting $Y = X - 1$ gives \[ f(Y + 1) = \frac{(Y + 1)^p - 1}{(Y + 1) - 1} = Y^{p - 1} + {p \choose 1} Y^{p - 2} + \cdots + {p \choose p - 2} Y + {p \choose p - 1} \] Now $p \mid {p \choose i}$ for all $1 \le i \le p - 1$ and $p^2 \nmid {p \choose p - 1} = p$. Thus $f(Y + 1)$ is irreducible in $\ZZ[Y]$, so $f(X)$ is irreducible in $\ZZ[X]$ (because if it did have a factorisation then we could construct a factorisation of $f(Y + 1)$). \end{enumerate} \end{example*} \newpage \section{Algebraic Integers} Recall $\ZZ[i] = \{a + bi : a, b \in \ZZ\} \le \CC$ -- ring of Gaussian integers. Norm $N : \ZZ[i] \to \ZZ_{\ge 0}$, $a + ib \mapsto a^2 + b^2$ with $N(z_1) = N(z_1)N(z_2)$ is a Euclidean function. Thus $\ZZ[i]$ is a Euclidean Domain, hence PID and UFD, and so \fbox{primes $=$ irreducibles} in $\ZZ[i]$. The units in $\ZZ[i]$ are $\pm 1$, $\pm i$. \begin{example*} \begin{enumerate}[(i)] \item $2 = (1 + i)(1 - i)$ and $5 = (2 + i)(2 - i)$ are not primes in $\ZZ[i]$. \item $N(3) = 9$ so if $3 = ab$ in $\ZZ[i]$ then $N(a)N(b) = 9$. But $\ZZ[i]$ has no elements of norm $3$. Thus $a$ or $b$ is a unit, hence $3$ is a prime in $\ZZ[i]$. Similarly $7$ is prime. \end{enumerate} \end{example*} \begin{flashcard}[fermats-christmas-theorem] \begin{proposition} Let $p \in \ZZ$ be a prime number. Then the following are equivalent: \begin{enumerate}[(i)] \item \cloze{$p$ is not prime in $\ZZ[i]$.} \item \cloze{$p = a^2 + b^2$ for some $a, b \in \ZZ$.} \item \cloze{$p = 2$ or $p \equiv 1 \pmod{4}$.} \end{enumerate} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(i) $\implies$ (i)] \item[(i) $\implies$ (ii)] \cloze{Let $p = xy$, $x, y \in \ZZ[i]$ not units. Then $p^2 = N(p) = N(x) N(y)$, $N(x), N(y) > 1$. Thus $N(x) = N(y) = p$. Writing $x = a + ib$ gives $p = N(x) = a^2 + b^2$.} \item[(ii) $\implies$ (iii)] \cloze{The squares modulo 4 are 0 and 1. Thus if $p = a^2 + b^2$, then $p \not \equiv 3 \pmod{4}$.} \item[(iii) $\implies$ (i)] \cloze{Already saw $2$ not prime in $\ZZ[i]$. Assume $p \equiv 1 \pmod{4}$. By Theorem 9.3, $(\ZZ / p\ZZ)^\times$ is cyclic of order $p - 1$. Then $(\ZZ / p\ZZ)^\times$ contains an element of order 4, i.e. there exists $x \in \ZZ$ with $x^a \equiv 1 \pmod{p}$ but $x^2 \not\equiv 1 \pmod{p}$. Thus $x^2 \equiv -1 \pmod{p}$. Now $p \mid x^2 + 1 = (x + i)(x - i)$ but $p \nmid x + i$ and $p \nmid x - i$. Thus $p$ not prime. \qedhere} \end{enumerate} \end{proof} \end{flashcard} \begin{theorem} The primes in $\ZZ[i]$ (up to associates) are \begin{enumerate}[(i)] \item $a + ib$, where $a, b \in \ZZ$ and $a^2 + b^2 = p$ a prime number with $p = 2$ or $p \equiv 1 \pmod{4}$. \item Prime numbers $p \in \ZZ$ with $p \equiv 3 \pmod{4}$. \end{enumerate} \end{theorem} \begin{proof} First we check these are primes. \begin{enumerate}[(i)] \item $N(a + ib) = p$. If $a + ib = uv$ then either $N(u) = 1$ or $N(v) = 1$. Thus $a + ib$ is irreducible, hence prime. \item Proposition 12.1, now let $z \in \ZZ[i]$ prime ($=$ irreducible). Then $\ol{z} \in \ZZ[i]$ is also irreducible and $N(z) = z\ol{z}$ is a factorisation into irreducibles. Let $p \in \ZZ$ be a prime number dividing $N(z)$. If $p \equiv 3 \pmod{4}$, then $p$ is prime in $\ZZ[i]$. Thus $p \mid z$ or $p \mid \ol{z}$, so $p$ is an associate of $z$ or $\ol{z}$. Hence $p$ is an associate of $z$. Otherwise, $p = 2$ or $p \equiv 1 \pmod{4}$ and $P = a^2 + b^2 = (a + ib)(a - ib)$, $a, b \in \ZZ$. Then $(a + ib)(a - ib) \mid z \ol{z}$. Thus $z$ is an associate of $a + ib$ or $a - ib$ by uniqueness of factorisation.\qedhere \end{enumerate} \end{proof}