% vim: tw=50 % 21/02/2023 12AM \newpage \section{Factorisation in Polynomial Rings} Goal of this lecture: \begin{flashcard}[R-UFD-implies-RX-UFD] \begin{theorem} If $R$ is a \cloze{UFD} then $R[X]$ is a \cloze{UFD}. \end{theorem} \end{flashcard} \noindent In this section: $R$ is a UFD with field of fractions $F$. We have $R[X] \le F[X]$. \myskip Moreover $F[X]$ is an ED hence a PID and a UFD. \begin{flashcard}[content-defn] \begin{definition*} The \emph{content} of $f = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ is \cloze{ \[ c(f) = \gcd(a_0, a_1, \ldots, a_n) \] (well-defined up to multiplication by a unit). We say $f$ is \emph{primitive} if $c(f)$ is a unit.} \end{definition*} \end{flashcard} \begin{flashcard}[content-lemma] \begin{lemma} \begin{enumerate}[(i)] \item If $f, g \in R[X]$ are primitive, then $fg$ is also primitive. \item If $f, g \in R[X]$, then $c(fg) = c(f) c(g)$ (equality is up to units). \end{enumerate} \end{lemma} \begin{proof} \begin{enumerate}[(i)] \item \cloze{Let $f = a_n X^n + \cdots + a_1 X + a_0$, $g = b_m X^m + \cdots + b_1 X + b_0$. If $fg$ is not primitive, $c(fg)$ is not a unit, so there is some prime $p$ such that $p \mid c(fg)$. Since $f, g$ primitive, $p \nmid c(f)$ and $p \nmid c(g)$. Suppose $p \mid a_0$, $p \mid a_1$, \ldots, $p \nmid a_k$, $p \mid b_0$, $p \mid b_1$, \ldots, $p \nmid b_l$. Then the coefficient of $X^{k_l}$ in $fg$ is \[ \sum_{i + j = k + 1} a_i b_j = \ub{\cdots + a_{k - 1} b_{l - 1}}_{ \text{divisible by } p} + a_k b_l + \ub{a_{k - 1} b_{l - 1} + \cdots}_{\text{divisible by } p} \] Note that the LHS is divisible by $p$, hence $p \mid a_k b_l$ so $p \mid a_k$ or $p \mid b_l$, contradiction.} \item \cloze{Write $f = c(f) f_0$ and $c(g) g_0$ where $f_0, g_0 \in R[X]$ primitive. Then \[ fg = c(f) c(g) f_0 g_0 \] where $f_0 g_0$ is primitive by (i). Hence $c(fg) = c(f) c(g)$ (up to a unit).} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[p-prime-in-R-implies-prime-in-RX] \begin{corollary} Let $p \in R$ be prime. Then $p$ is prime in $R[X]$. \end{corollary} \begin{proof} \cloze{ $R[X]^\times = R^\times$, so $p$ is not a unit in $R[X]$. Let $f \in R[X]$. Then $p \mid f$ in $R[X]$ if and only if $p \mid c(f)$ in $R$. Thus if $p \mid gh$ in $R[X]$, we have \begin{align*} p \mid c(gh) = c(g) c(h) &\implies p \mid c(g) \text{ or } c(h) \text{ in $R$} \\ &\implies p \mid g \text{ or } p \mid h \text{ in $R[X]$, i.e. $p$ prime in $R[X]$.} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[f-divides-g-in-FX-implies-f-divides-g-in-RX] \begin{lemma} Let $f, g \in R[X]$ \cloze{with $g$ primitive}. If $g \mid f$ in $F[X]$, then $g \mid f$ in $R[X]$. \end{lemma} \begin{proof} \cloze{ Let $f = gh$, $h \in F[X]$. Let $a \in R$ such that $ah \in R[X]$ (``clear denominators''), and write $ah = c(ah) h_0$, $af = c(ah) h_0 g$ with $h_0$ primitive, and hence $h_0 g$ primitive. Taking contents, we find that $a \mid c(ah)$. Thus $h \in R[X]$ and $g \mid f$ in $R[X]$. } \end{proof} \end{flashcard} \begin{flashcard}[gauss-lemma] \begin{lemma*}[Gauss's Lemma] \cloze{ Let $f \in R[X]$ be \fcemph{primitive}. Then $f$ \fcemph{irreducible} in $R[X]$ implies $f$ \cloze{irreducible} in $F[X]$.} \end{lemma*} \begin{proof} \cloze{ Since $f \in R[X]$ is irreducible and primitive, we have $\deg(f) > 0$, and so $f$ not a unit in $F[X]$. Suppose that $f$ is \emph{not} irreducible in $F[X]$, say $f = gh$, where $g, h \in F[X]$ with $\deg(g), \deg(h) > 0$. Let $\lambda \in F^\times$ such that $\lambda^{-1} g \in R[X]$ is primitive. (For example, let $0 \neq b \in R$ such that $bg \in R[X]$. Then $bg = c(bg) g_0$ with $g_0$ primitive. So can take $\lambda = \frac{c(bg)}{b} \in F^\times$). \myskip Upon replacing $g$ by $\lambda^{-1} g$ and $h$ by $\lambda h$, may assume $g \in R[X]$ primitive. Then Lemma 11.4 implies $h(X) \in R[X]$ and so $f = gh$ in $R[X]$, $\deg(g), \deg(h) > 0$, contradiction. } \end{proof} \end{flashcard} \begin{remark*} We'll see ``$\Leftarrow$'' also holds. \end{remark*} \begin{flashcard}[g-prime-in-FX-implies-g-prime-in-RX] \begin{lemma} Let $g \in R[X]$ be \cloze{\fcemph{primitive}}. Then $g$ is prime in $F[X]$ implies $g$ prime in $R[X]$. \end{lemma} \begin{proof} \cloze{ Suppose $f_1, f_2 \in R[X]$ and $g \mid f_1 f_2$ in $R[X]$. $g$ prime in $F[X]$ implies $g \mid f_1$ or $g \mid f_2$ in $F[X]$ hence by Lemma 11.4, $g \mid f_1$ or $g \mid f_2$ in $R[X]$, i.e. $g$ prime in $R[X]$. } \end{proof} \end{flashcard} \myskip Now we can finally prove Theorem 11.1: \begin{proof}[Proof of Theorem 11.1] Let $f \in R[X]$. Write $f = c(f) f_0$ with $f_0 \in R[X]$ primitive. $R$ a UFD implies $c(f)$ a product of irreducibles in $R$ (which are irreducible in $R[X]$). If $f_0$ not irreducible, say $f_0 = gh$, then $\deg(g), \deg(h) > 0$ since $f_0$ primitive, and $g, h$ primitive. \myskip By induction on degree, $f_0$ a product of irreducibles in $R[X]$ -- establishes (i) in definition of UFD. By Proposition 10.6, suffices to show that if $f \in R[X]$ is irreducible, then $f$ is prime. Write $f = c(f) f_0$, $f_0 \in R[X]$ primitive. Then $f$ irreducible implies $f$ constant or primitive. \begin{itemize} \item Case $f$ constant: $f$ irreducible in $R[X]$ implies $f$ irreducible in $R$, hence prime in $R$ (since UFD), hence $f$ prime in $R[X]$ by Corollary 11.3. \item Case $f$ primitive: $f$ irreducible in $R[X]$ implies $f$ irreducible in $F[X]$ (Gauss's Lemma), hence $f$ prime in $F[X]$ ($F[X]$ an ED hence UFD), hence $f$ prime in $R[X]$ by Lemma 11.5. \qedhere \end{itemize} \end{proof} \begin{remark*} By Lemma 10.2, the three implications in the $f$ primitive case are actually equivalences. \end{remark*}