% vim: tw=50 % 18/02/2023 12AM \begin{example*} $\ZZ[X]$ is not a PID. Consider $I = (2, X) \normalsub \ZZ[X]$. Then \begin{align*} I &= \{2f_1(X) + Xf_2(X) : f_1, f_2 \in \ZZ[X]\} \\ &= \{f \in \ZZ[X] : f(0) \text{ if even}\} \end{align*} Suppose $I = (f)$ for some $f \in \ZZ[X]$. Then $2 = fg$ for some $g \in \ZZ[X]$. Thus $\deg(f) = \deg(g) = 0$ and $f \in \ZZ$. Hence $f = \pm 1$ or $\pm 2$. Thus $I = \ZZ[X]$ or $2\ZZ[X]$. The first case is a contradiction since $1 \not\in I$, and the second is a contradiction since $X \in I$. \end{example*} \begin{flashcard}[UFD-defn] \begin{definition*} An integral domain is a unique factorisation domain (UFD) if \begin{enumerate}[(i)] \item \cloze{Every non-zero, non-unit is a product of irreducibles.} \item \cloze{If $p_1 \cdots p_m = q_1 \cdots q_n$ where $p_i$, $q_i$ are irreducibles, then $m = n$ and we can reorder so that $p_i$ is an associate of $q_i$ for all $i = 1, \ldots, n$.} \end{enumerate} \end{definition*} \end{flashcard} \noindent Goal: PID $\implies$ UFD. \begin{flashcard}[UFD-iff-every-irreducible-is-prime] \begin{proposition} Let $R$ be an integral domain satisfying (i) in definition of UFD. Then $R$ is a UFD if and only if \cloze{every irreducible is prime.} \end{proposition} \begin{proof} \begin{itemize} \item[$\Rightarrow$] \cloze{Suppose $p \in R$ is irreducible and $p \mid ab$. Then $ab = pc$ for some $c \in R$. Writing $a, b, c$ as products of irreducibles, it follows from (ii) that $p \mid a$ or $p \mid b$. Thus $p$ is prime. } \item[$\Leftarrow$] \cloze{Suppose $p_1 \cdots p_m = q_1 \cdots q_n$ with each $p_i$ and $q_i$ irreducible. Since $p_1$ is prime and $p_1 \mid q_1 \cdots q_n$, we have $p_1 \mid q_i$ for some $i$. Upon reordering, we may assume $p_1 \mid q_1$, i.e. $q_1 = up_1$ for some $u \in R$. But $q_1$ is irreducible and $p_1$ not a unit, so $u$ is a unit. Thus $p_1$ and $q_1$ are associates. Cancelling $p_1$ gives $p_2 \cdots p_mm = (uq_2) \cdots q_n$. Result then follows by induction. \qedhere } \end{itemize} \end{proof} \end{flashcard} \begin{lemma} Let $R$ be a PID and $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ a nested sequence of ideals. Then $\exists N \in \NN$ such that $I_n = I_{n + 1}$ for all $n \ge N$. (Rings satisfying the ``ascending chain condition'' are called Noetherian -- more later). \end{lemma} \begin{proof} Let $I = \bigcup_{i = 1}^\infty I_i$. This is an ideal in $R$. (See Example Sheet 2). Since $R$ is a PID, we have $I = (a)$ for some $a \in R$. Then $(a) = \bigcup_{i = 1}^\infty I_i$, so $a \in I_N$ for some $N$. Then for any $n \ge N$ we have \[ (a) \subseteq I_N \subseteq I_n \subseteq I = (a) \] and so $I_n = I$. \end{proof} \begin{flashcard}[PID-implies-UFD] \begin{theorem} If $R$ is a principal ideal domain, then it is a unique factorisation domain. (i.e. PID implies UFD). \end{theorem} \begin{proof} \begin{enumerate}[(i)] \item \cloze{Let $0 \neq x \neq R$, not a unit. Suppose $x$ is not a product of irreducibles. Then $x$ not irreducible, so can write $x = x_1 y_1$ where $x_1$, $y_1$ are not units. Then either $x_1$ or $y_1$ is not a product of irreducibles, say $x_1$. We have $(x) \subseteq (x_1)$ and inclusion is strict since $y_1$ not a unit. Now write $x_1 = x_2 y_2$ where $x_2$, $y_2$ are not units. Repeat this procedure to get \[ (x) \subsetneq (x_1) \subsetneq (x_2) \subsetneq \cdots \] contradicting Lemma 10.7.} \item \cloze{By proposition 10.6, suffices to show irreducibles are prime. Conclude by Proposition 10.3. \qedhere} \end{enumerate} \end{proof} \end{flashcard} \subsubsection*{Examples} \begin{flashcard}[ring-examples-and-counterexamples] \begin{center} \prompt{Examples of rings in each of these categories?} \begin{tabular}{cccccccc} & ED & $\implies$ & PID & $\implies$ & UFD & $\implies$ & Integral Domain \\ \hline \cloze{$\ZZ / 4\ZZ$} & \xmark & & \xmark & & \xmark & & \xmark \\ \cloze{$\ZZ[\sqrt{-5}]$} & \xmark & & \xmark & & \xmark & & \cmark \\ \cloze{$\ZZ[X]$} & \xmark & & \xmark & & \cmark & & \cmark \\ \cloze{$\ZZ \left[ \frac{1 + \sqrt{-19}}{2} \right]$} & \xmark & & \cmark & & \cmark & & \cmark \\ \cloze{$\ZZ[i]$} & \cmark & & \cmark & & \cmark & & \cmark \end{tabular} \end{center} \end{flashcard} \begin{definition*} $R$ an integral domain. \begin{enumerate}[(i)] \item \begin{flashcard}[gcd-definition] $d \in R$ is a greatest common divisor of $a_1, \ldots a_n \in R$ (written $d = \gcd(a_1, \ldots, a_n)$) if \cloze{$d \mid a_i$ for all $i$ and if $d' \mid a_i$ for all $i$, then $d' \mid d$.} \end{flashcard} \item \begin{flashcard}[lcm-definition] $m \in R$ is a least common multiple of $a_1, \ldots, a_n \in R$ (written $m = \lcm(a_1, \ldots, a_n)$) if \cloze{$a_i \mid m$ for all $i$ and if $a_i \mid m'$ for all $i$, then $m \mid m'$.} \end{flashcard} \end{enumerate} Both gcd's and lcm's (when they exist) are unique up to associates. \end{definition*} \begin{proposition} In a UFD, both lcm's and gcd's exist. \end{proposition} \begin{proof} Write $a_i = u_i \prod_j p_j^{n_{ij}}$ for all $1 \le i \le n$, where $u_i$ is a unit, the $p_i$ are irreducible which are \emph{not} associates of each other, and $n_{ij} \in \ZZ_{\ge 0}$. \myskip We claim that $d = \prod_j p_j^{m_j}$ where $m_f = \min_{1 \le i \le n} n_{ij}$ is the gcd of $a_1, \ldots, a_n$. Certainly $d \mid a_i$ for all $i$. If $d' \mid a_i$ for all $i$, then $d' = u \prod_j p_j^{t_j}$, we find $t_j \le n_{ij}$ for all $j$ so $t_j \le m_j$. Therefore $d' \mid d$. The argument for lcm's is similar. \end{proof}