% vim: tw=50 % 16/02/2023 12AM \noindent Let $R$ be an integral domain. \begin{flashcard}[PID-irreducible-iff-maximal] \begin{lemma} Let $R$ \cloze{be a PID and $0 \neq r \in R$}. Then $r$ is irreducible $\iff$ $(r)$ is \cloze{a maximal ideal.} \end{lemma} \begin{proof} \begin{itemize} \item[$\Rightarrow$] \cloze{$r \not\in R^\times$ so $(r) \neq R$. Suppose $(r) \subseteq J \subseteq R$. $R$ a PID implies $J = (a)$ for some $a \in R$. Hence $r = ab$ for some $b \in R$. Since $r$ is irreducible, either $a \in R^\times$ in which case $J = R$ or $b \in R^\times$ in which case $(r) = J$. Thus $(r)$ is maximal. } \item[$\Leftarrow$] \cloze{$(r) \neq R$ so $r \not\in R^\times$. Suppose $r = ab$. Then $(r) \subseteq (a) \subseteq R$. Since $(r)$ is maximal, either $(a) = (r)$ in which case $b$ is a unit, or $(a) = R$ in which case $a$ is a unit. Thus $r$ is irreducible. } \end{itemize} \end{proof} \end{flashcard} \begin{remark*} \begin{enumerate}[(i)] \item Backwards direction holds without assuming $R$ a PID. \item Let $R$ a PID, $0 \neq rR$. Then \begin{align*} (r) \text{ maximal} &\iff r \text{ irreducible} \\ &\iff r \text{ prime} \\ &\iff (r) \text{ prime} \end{align*} Thus there exists a bijection \[ \{\text{non-zero prime ideals}\} \leftrightarrow \{\text{non-zero maximal ideals}\} \] \end{enumerate} \end{remark*} \begin{flashcard}[euclidean-domain-defn] \begin{definition*}[Euclidean domain] \cloze{ An \fcemph{integral domain} is a \emph{Euclidean domain} (ED) if there is a function $\phi : R \setminus \{0\} \to \ZZ_{\ge 0}$ (a \fcemph{Euclidean function}) such that: \begin{enumerate}[(i)] \item If $a \mid b$ then $\phi(a) \le \phi(b)$. \item If $a, b \in R$ with $b \neq 0$, $\exists q, r \in R$ with $a = bq + r$ and either $r = 0$ or $\phi(r) < \phi(b)$. \end{enumerate} } \end{definition*} \end{flashcard} \begin{example*} $\ZZ$ is an ED with Euclidean function $\phi(n) = |n|$. \end{example*} \begin{flashcard}[ED-implies-PID] \begin{proposition} If $R$ is a Euclidean domain, then it is a principal ideal doman (ie ED implies PID). \end{proposition} \begin{proof} \cloze{Let $R$ have Euclidean function $\phi : R \setminus \{0\} \to \ZZ_{\ge 0}$. Let $I \normalsub R$ non-zero. Choose $b \in I \setminus \{0\}$ with $\phi(b)$ minimal, then $(b) \subseteq I$. For $a \in I$, write $a = bq +r$ with $q, r \in R$ and either $r = 0$ or $\phi(r) < \phi(b)$. Since $r = a - bq \in I$, cannot have $\phi(r) < \phi(b)$ by choice of $b$. Thus $a = bq \in (b)$, and hence $(b) = I$. } \end{proof} \end{flashcard} \begin{remark*} Only used (ii) here. Property (i) allows us to describe the units in $R$ as \[ R^\times = \{u \in R \setminus \{0\} \mid \phi(u) = \phi(1)\} \] \end{remark*} \begin{example*} \begin{enumerate}[(i)] \item $F$ a field, $F[X]$ is an ED with Euclidean function $\phi(f) = \deg f$, $f \in F[X]$. (Proposition 7.1) \item $R = \ZZ[i]$ is an ED with Euclidean function \[ \phi(a + ib) = N(a + ib) = |a + ib|^2 = a^2 + b^2 \] Since $N(z_1 z_2) = N(z_1)N(z_2)$, property (i) holds. For property (ii), let $z_1, z_2 \in \ZZ[i]$ with $z_2 \neq 0$. Consider $\frac{z_1}{z_2} \in \CC$. This has distance less than 1 from the nearest element of $\ZZ[i]$, i.e. there exists $q \in \ZZ[i]$ such that $\left| \frac{z_1}{z_2} - q \right| < 1$ ($*$). \begin{center} \includegraphics[width=0.6\linewidth] {images/7796fe9aadf711ed.png} \end{center} Set $r = z_1 - z_2 q \in \ZZ[i]$. Then $z_1 = z_2 q + r$ and \[ \phi(r) = |r|^2 = |z_1 - z_2q|^2 < |z_2|^2 = \phi(z_2) \] \end{enumerate} Thus Proposition 10.5 implies that $\ZZ[i]$ and $F[X]$ for $F$ a field are PIDs. \end{example*} \begin{example*} Let $A$ be an $n \times n$ matrix over a field $F$. Let $I = \{f \in F[X] : f(A) = 0\}$. If $f, g \in I$, then $(f - g)(A) = f(A) - g(A) = 0 \implies f - g \in I$. If $f \in F[X]$ and $g \in I$, then $(f \cdot g)(A) = f(A) \cdot g(A) = 0 \implies fg \in I$. Thus $I \subseteq F[X]$ is an ideal, and hence $I = (f)$ for some $f \in F[X]$ since $F[X]$ is a PID. May assume $f$ is monic upon mlutiplying by a unit in $F$. Then for $g \in F[X]$, $g(A) = 0 \iff g \in I \iff g \in (f)$, i.e. $f \mid g$. Thus $f$ is minimal polynomial of $A$. \end{example*} \begin{example*}[Field of order 8] Let $\FF_2 = \ZZ / 2\ZZ$. Let $f(X) = X^3 + X + 1 \in \FF_2[X]$. If $f(X) = g(X) h(X)$ with $g, h \in \FF_2[X]$ and $\deg(g), \deg(h) > 0$, then either $\deg(g) = 1$ or $\deg(h) = 1$, and so $f$ has a root. But $f(0) \neq 0$ and $f(1) \neq 0$ (in $\FF_2$). Thus $f$ is irreducible. Since $\FF_2[X]$ a PID, Lemma 10.4 implies $(f) \normalsub \FF_2[X]$ is maximal, henec \[ \FF_2[X] / (f) = \{aX^2 + bX + c + (f) \mid a, b, c \in \FF_2\} \] is a field of order 8. \end{example*}