% vim: tw=50 % 14/02/2023 12AM \begin{remark*} If $\characteristic(R) = n$, then $\ZZ / n\ZZ \le R$. So if $R$ is an integral domain, then $\ZZ / n\ZZ$ is an integral domain. Therefore $n\ZZ \normalsub \ZZ$ a prime ideal, therefore $n = 0$ or $p$ a prime. In particular, a field has characteristic $0$ (and contains $\QQ$) or has characteristic $p$ (and contains $\FF_p \cong \ZZ / p\ZZ$). \end{remark*} \newpage \section{Factorisation in integral domains} This section: $R$ is an integral romain. \begin{definition*} \begin{enumerate}[(i)] \item $a \in R$ is a unit if there exists $b \in R$ with $ab = 1$ (equivalently $(a) = R$). $R^\times \defeq \text{units in $R$}$. \item \begin{flashcard}[a-divides-b-defn] $a \in R$ divides $b \in R$ (written $a \mid b$) if \cloze{there exists $c \in R$ such that $b = ac$ (equivalently $(b) \subseteq (a)$).} \end{flashcard} \item \begin{flashcard}[associate-defn] $a, b \in R$ are associate if \cloze{$a = bc$ for some unit $c \in R^\times$ (equivalently $(a) = (b)$, or $a \mid b$ and $b \mid a$).} \end{flashcard} \item \begin{flashcard}[irreducible-defn] $r \in R$ is irreducible if \cloze{$r \neq 0$, $r$ is not a unit and \[ r = ab \implies \text{$a$ or $b$ is a unit} \]} \end{flashcard} \item \begin{flashcard}[prime-defn] $r \in R$ is prime if \cloze{$r \neq 0$, $r$ is not a unit and \[ r \mid ab \implies r \mid a \text{ or } r \mid b \]} \end{flashcard} \end{enumerate} \end{definition*} \begin{note*} These properties depend on ambient ring $R$. For example: \begin{itemize} \item 2 is prime and irreducible in $\ZZ$, but not in $\QQ$. \item $2X$ is irreducible in $\QQ[X]$, but not in $\ZZ[X]$. \end{itemize} \end{note*} \begin{hiddenflashcard}[prime-ideal-iff-prime] For which rings is the following true? \[ (r) \normalsub R \text{ is a prime ideal} \iff r = 0 \text{ or } r \text{ is prime} \] \cloze{Integral domains.} \end{hiddenflashcard} \begin{flashcard}[prime-ideal-iff-prime-proof] \begin{lemma} $(r) \normalsub R$ is a prime ideal if and only if \cloze{$r = 0$ or is a prime.} \prompt{($R$ an \cloze{\fcemph{integral domain}}).} \end{lemma} \begin{proof} \begin{itemize} \item[$\Rightarrow$] \cloze{Suppose $(r)$ is prime and $r \neq 0$. Since prime ideals are proper, $(r) \neq R$, so $r \not\in R^\times$. If $r \mid ab$, then $ab \in (r)$ so $a \in (r)$ or $b \in (r)$ hence $r \mid a$ or $r \mid b$, i.e. $r$ is prime.} \item[$\Leftarrow$] \cloze{$\{0\} \normalsub R$ is a prime ideal since $R$ an integral domain. Let $r \in R$ be a prime. If $ab \in (r)$, then $r \mid ab$ hence $r \mid a$ or $r \mid b$. Hence $a \in (r)$ or $b \in (r)$, i.e. $(r)$ is a prime ideal.} \end{itemize} \end{proof} \end{flashcard} \begin{flashcard}[prime-implies-irreducible] \begin{lemma} If $r \in R$ is prime, then it is irreducible. \prompt{($R$ an \cloze{\fcemph{integral domain}}).} \end{lemma} \begin{proof} \cloze{ Since $r$ is prime, $r \neq 0$ and $r \not\in \RR^\times$. Suppose $r = ab$. Then $r \mid ab$ so $r \mid a$ or $r \mid b$. WLOG assume $r \mid a$, so $r = rc$ for some $c \in R$. Then $r = ab = rcb$, therefore $r(1 - bc) = 0$. Then since $R$ is an integral domain and $r \neq 0$, $bc = 1$, i.e. $b$ is a unit. } \end{proof} \end{flashcard} \begin{example*} Let $R = \ZZ[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \ZZ\} \le \CC$ (note $R \cong \ZZ[X] / (X^2 + 5)$). $R$ a subring of $\CC$, so an integral domain. Define a function $N : R \to \ZZ_{\ge 0}$, $a + b\sqrt{-5} \mapsto a^2 + 5b^2$ ``the norm''. Note that $N(z_1 z_2) = N(z_1) N(z_2)$. \end{example*} \begin{claim*} $R^\times = \{\pm 1\}$. \end{claim*} \begin{proof} If $r \in R^\times$, i.e. $rs = 1$ for some $s \in R$. Then $N(r)N(s) = N(1) = 1$ so $N(r) = 1$. But only integer solutions to $a^2 + 5b^2 = 1$ are $(a, b) = (0, 1), (-1, 0)$. \end{proof} \begin{claim*} $2 \in R$ is irreducible. \end{claim*} \begin{proof} Suppose $2 = rs$, $r, s \in R$. Then $4 = N(2) = N(r) N(s)$. Since $a^2 + 5b^2 = 2$ has no integer solutions $R$ has no elements of norm $2$. Thus $N(r) = 1$ and $N(2) = 4$ (or vice versa). But $N(r) = 1$ implies $r$ is a unit (for example $r \ol{r} = 1$). \end{proof} \myskip By similar reasoning, $3$, $1 + \sqrt{-5}$, $1 - \sqrt{-5}$ are irreducible (as there are no elements of norm 3). \myskip Now $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 = 2 \cdot 3$. Thus $2 \mid (1 + \sqrt{-5})(1 - \sqrt{-5})$, but $2 \nmid 1 +\sqrt{-5}$ and $2 \nmid 1 - \sqrt{-5}$ (check by taking norms, $4 \nmid 6$). Thus $2$ is \emph{not} prime in $R$. \subsubsection*{Takeaways} \begin{enumerate}[(i)] \item Irreducible does not imply prime! \item $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ gives two different factorisations into irreducibles. \end{enumerate} \begin{remark*} Since $R^\times = \{\pm 1\}$, the irreducibles in (ii) are not associates. \end{remark*} \begin{flashcard}[PID-defn] \begin{definition*}[Principal Ideal Domain] \cloze{ An \fcemph{integral domain} $R$ is a principal ideal domain (PID) if every ideal $I \normalsub R$ is principal, i.e. $I = (r)$ for some $r \in R$. } \end{definition*} \end{flashcard} \noindent For example, $\ZZ$ is a PID by Lemma 8.3. \begin{flashcard}[PID-irreducible-implies-prime] \begin{proposition} Let $R$ be a PID. Then every irreducible element of $R$ \cloze{is prime.} \end{proposition} \begin{proof} \cloze{ Let $r \in R$ be irreducible and $r \mid ab$, and assume $r \nmid a$. $R$ a PID implies $(a, r) = (d)$ for some $d \in R$. In particular $r = cd$ for some $c \in R$. Since $r$ is irreducible, either $c$ or $d$ is a unit. If $c$ a unit, then $(a, r) = (r)$ so $r \mid a$, contradiction. If $d$ a unit, then $(a, r) = R$. So there exists $s, t \in R$ such that $sa + tr = 1$. Then $b = sab + trb$, and since $r \mid ab$ we have $r \mid b$. Then $r$ is prime. } \end{proof} \end{flashcard}