% vim: tw=50 % 11/02/2023 12AM \begin{definition*} A polynomial \[ f(X) = a_n X^n + a_{n - 1} X^{n - 1} + \cdots + a_0 \in R[X] \] if \emph{monic} if $a_n = 1_R$. \end{definition*} \begin{lemma} Let $R$ be an integral domain and $0 \neq f \in R[X]$. Let \[ \Roots(f) = \{a \in R \mid f(a) = 0\} \] Then $|\Roots(f)| \le \deg(f)$. \end{lemma} \begin{proof} Example Sheet 2. \end{proof} \begin{flashcard}[finite-subgroup-of-field-is-cyclic] \begin{theorem} Let $F$ be a field. Then any finite subgroup $G \le (F^\times, \bullet)$ is \cloze{cyclic.} \end{theorem} \begin{proof} \cloze{ $G$ is a finite abelian group. If $G$ not cyclic, then by Theorem 6.4 (structure theorem for finite abelian groups) there exists $H \le G$ such that $H \cong C_{d_1} \times C_{d_1}$ for some $d_1 \ge 2$. But then the polynomial $f(X) = X^{d_1} - 1 \in F[X]$ has degree $d_1$ and $\ge d_1^2$ roots, which contradicts Lemma 9.2. } \end{proof} \end{flashcard} \begin{example*} $(\ZZ / p\ZZ)^\times$ is cyclic. \end{example*} \begin{flashcard}[finite-integral-domain-is-field] \begin{proposition} Any finite integral domain is a \cloze{field.} \end{proposition} \begin{proof} \cloze{ Let $R$ be a finite integral domain. Let $0 \neq a \in R$. Consider map $\phi : R \to R$, $x \mapsto ax$. If $\phi(x) = \phi(y)$, then $a(x - y) = 0$ therefore $x - y = 0$ (since $R$ is an integral domain and $a \neq 0$), hence $x = y$. \myskip Thus $\phi$ is injective, and hence surjective since $R$ is finite. Hence there exists $b \in R$ such that $ab = 1$, i.e. $a$ is a unit. Thus $R$ is a field. } \end{proof} \end{flashcard} \begin{flashcard}[field-of-fractions-existence] \begin{theorem}[Field of Fractions Existence] \cloze{ Let $R$ be an integral domain. There exists a field $F$ such that \begin{enumerate}[(i)] \item $R \le F$. \item Every element of $F$ can be written in the form $ab^{-1}$ where $a, b \in R$ with $b \neq 0$. \end{enumerate} $F$ is called the \emph{field of fractions} of $R$. } \end{theorem} \begin{proof} \cloze{ Consider the set $S = \{(a, b) \mid a, b \in R, b \neq 0\}$ and the equivalence relation on $S$ given by \[ (a, b) \sim (c, d) \iff ad - bc = 0 \] Clearly reflexive and symmetric. For transitivity, if $(a, b) \sim (c, d) \sim (e, f)$, then \[ (ad)f = (bc)f = b(cf) = b(de) \implies d(af - be) = 0 \] Since $R$ an integral domain and $d \neq 0$, this gives $af - be = 0$, i.e. $(a, b) \sim (e, f)$. Let $F = S / \sim$ and write $\frac{a}{b}$ for $[(a, b)]$. Define \[ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \] and \[ \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \] Can be checked that these operations are well defined and maps $F$ into a ring with $0_F = \frac{0_R}{1_R}$ and $1_F = \frac{1_R}{1_R}$. \myskip If $\frac{a}{b} \neq 0_F$, then $a \neq 0_R$ and $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = \frac{1_R}{1_R} = 1_F$. So $F$ is a field and \begin{enumerate}[(i)] \item Identify $R$ with subring $\left\{ \frac{r}{1_R} : r \in R \right\} \le F$. \item $\frac{a}{b} = a \cdot b^{-1}$. \end{enumerate} } \end{proof} \end{flashcard} \begin{example*} \begin{enumerate}[(i)] \item $\ZZ$ is an integral domain with field of fractions $\QQ$. \item $\CC[X]$ has field of fractions $\CC(X) = \text{field of rational functions in $X$}$. \end{enumerate} \end{example*} \begin{flashcard}[ideal-defn] \begin{definition*} An ideal $I \normalsub R$ is maximal if \cloze{$I \neq R$ and if $I \subseteq J \normalsub R$ then $J = I$ or $R$.} \end{definition*} \end{flashcard} \begin{flashcard}[field-iff-ideals] \begin{lemma} A (non-zero) ring $R$ is a field if and only if \cloze{its only ideals are $\{0\}$ and $R$.} \end{lemma} \begin{proof} \cloze{ \begin{itemize} \item[($\Rightarrow$)] If $0 \neq I \normalsub R$, then $I$ contains a unit and hence $I = R$. \item[($\Leftarrow$)] If $0 \neq x \in R$, then the $(x)$ is non-zero hence $(x) = R$ and there exists $y \in R$ such that $xy = 1$, i.e. $x$ is a unit. \qedhere \end{itemize} } \end{proof} \end{flashcard} \begin{flashcard}[maximal-iff-quotient-is-field] \begin{proposition} Let $I \normalsub R$ be an ideal. $I$ is maximised if and only if \cloze{$R / I$ is a field.} \end{proposition} \begin{proof} \cloze{ \begin{align*} \text{$R / I$ is a field} &\iff \text{$I / I$ and $R / I$ are the only ideals in $R / I$} \\ &\iff \text{$I$ and $R$ are the only ideals in $R$ containing $I$} \\ &\iff \text{$I \normalsub R$ is maximal} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[prime-ideal-defn] \begin{definition*} An ideal $I \normalsub R$ is prime if \cloze{$I \neq R$ and whenever $a, b \in R$ with $a, b \in I$, we have $a \in I$ or $b \in I$.} \end{definition*} \end{flashcard} \begin{example*} The ideal $n\ZZ \normalsub \ZZ$ is a prime ideal if and only if $n = 0$ or $n = p$ is a prime number. If $ab \in p\ZZ$, then $p \mid ab$ so $p \mid a$ or $p \mid b$, so $a \in p\ZZ$ or $b \in p\ZZ$. Conversely, if $n = uv$ with $u, v > 1$, then $uv \in n\ZZ$, but $u \not\in n\ZZ$, $v \not\in n\ZZ$. \end{example*} \begin{flashcard}[prime-iff-quotient-is-integral-domain] \begin{proposition} Let $I \normalsub R$ be an ideal. Then $I$ is prime if and only if \cloze{$R / I$ is an integral domain.} \end{proposition} \begin{proof} \cloze{ \begin{align*} \text{$I$ is prime} &\iff \text{whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in I$} \\ &\iff \text{whenever $a + I, b + I \in R / I$ with $(a + I)(b + I) = 0 + I$} \\ &\phantom{\iff{}}~\text{we have $a + I = 0 + I$ or $b = 0 + I$} \\ &\iff \text{$R / I$ is an integral domain.} \end{align*} } \end{proof} \end{flashcard} \begin{remark*} Proposition 9.7 and 9.8 show that $I$ maximal implies $I$ is prime. \begin{hiddenflashcard}[maximal-implies-prime] Maximal \cloze{$\implies$} prime. \\ Proof: \cloze{If $I$ is maximal, then $R / I$ is a field, hence an integral domain, so $I$ is a field.} \end{hiddenflashcard} \end{remark*}