% vim: tw=50 % 09/02/2023 12AM \begin{flashcard}[rings-first-iso-thm] \begin{theorem*}[First Isomorphism Theorem for Rings] \cloze{ Let $\phi : R \to S$ be a ring homomorphism. Then $\Ker(\phi) \normalsub R$, $\Im(\phi) \le S$ and there exists isomorphism \[ R / \Ker(\phi) \cong \Im(\phi) \] } \end{theorem*} \begin{proof} \cloze{ Already saw that $\Ker(\phi) \normalsub R$ (Lemma 8.2), and $\Im(\phi)$ is a subgroup of $(S, +)$. Now \begin{align*} \phi(r_1) \phi(r_2) &= \phi(r_1 r_2) \in \Im(\phi) \\ 1_S &= \phi(1_R) \in \Im(\phi) \end{align*} Thus $\Im(\phi)$ is a subring of $S$. Let $K = \Ker(\phi)$. Define \begin{align*} \Phi : R / K &\to \Im(\phi) \\ r + K &\mapsto \phi(r) \end{align*} By the first isomorphism theorem for groups, this is well-defined, a bijection and a group homomorphism under $+$. Also $\Phi(1_R + K) = \phi(1_R) = 1_S$ and \begin{align*} \Phi((r_1 + K)(r_2 + K)) &= \Phi(r_1 r_2 + K) \\ &= \phi(r_1 r_2) \\ &= \phi(r_1)\Phi(r_2) \\ &= \Phi(r_1 + K) \Phi(r_2 + K) \end{align*} Thus $\Phi$ is a ring isomorphism. } \end{proof} \end{flashcard} \begin{flashcard}[second-iso-thm-for-rings] \begin{theorem*}[Second Isomorphism Theorem for Rings] \cloze{ Let $R \le S$ and $J \normalsub S$. Then $R \cap J \normalsub R$, $R + J = \{r + a \mid r \in R, a \in J\} \le S$, and \[ \frac{R}{R \cap J} \cong \frac{R + J}{J} \le \frac{S}{J} \] } \end{theorem*} \begin{proof} \cloze{ By second isomorphism theorem for groups, $R + S$ is a subgroup of $(S, +)$, and we have \[ 1_S = \ub{1_S}_{ \in R} + \ub{0_S}_{\in J} \in R + J \] If $r_1, r_2 \in R$ and $a_1, a_2 \in J$ then \[ (r_1 + a_1)(r_2 + a_2) = \ub{r_1 r_2}_{\in J} + \ub{r_1 a_2}_{\in J} + \ub{r_2 a_1}_{\in J} + \ub{a_1 a_2}_{\in J} \in R + J \] Thus $R + J \le J$. Let $\phi : R \to S / J$, $r \mapsto r + J$. This is the composite of inclusion $R \subset S$ and the quotient map $S \to S / J$ hence $\phi$ is a ring homomorphism. \begin{align*} \Ker(\phi) &= \{r \in R \mid r + J = J\} = R \cap J \normalsub R \\ \Im(\phi) &= \{r + J \mid r \in R\} = \frac{R + J}{J} \le \frac{S}{J} \end{align*} Apply first isomorphism theorem. } \end{proof} \end{flashcard} \begin{note*} Let $I \normalsub R$. There exists bijection \begin{align*} \{\text{ideals in $R / I$}\} &\leftrightarrow \{\text{ideals in $R$ containing $I$}\} \\ K &\mapsto \{r \in R \mid r + I \in K\} \\ J / I &\mapsfrom J \end{align*} \end{note*} \begin{flashcard}[third-iso-thm-for-rings] \begin{theorem*}[Third Isomorphism Theorem for Rings] \cloze{ Let $I \normalsub R$, $J \normalsub R$ with $I \le J$. Then $J / I \normalsub R / I$ and \[ \frac{R / I}{J / I} \cong \frac{R}{J} \] } \end{theorem*} \begin{proof} \cloze{ Consider \begin{align*} \phi : R / I &\to R / J \\ r + I &\mapsto r + J \end{align*} This is a surjective ring homomorphism (well-defined since $I \le S$). \[ \Ker(\phi) = \{r + I : r \in J\} = J / I \normalsub R / I \] Apply first isomorphism theorem. } \end{proof} \end{flashcard} \begin{example*} There is a surjective ring homomorphism $\phi : \RR[X] \to \CC$ \[ f(X) = \sum_{n = 1}^m a_n X^n \mapsto f(i) = \sum_{n = 1}^m a_n i^m \] Proposition 7.1 implies $\Ker(\phi) = (X^2 + 1)$. First isomorphism theorem implies $\RR[X] / (X^2 + 1) \cong \CC$. \end{example*} \begin{example*} $R$ a ring. Then there exists a unique ring homomorphism $i : \ZZ \to R$ given by \begin{align*} 0 &\mapsto 0_R \\ 1 &\mapsto 1_R \\ n &\mapsto (\ub{1_R + \cdots + 1_R}_{\text{$n$ times}}) \\ -n &\mapsto -(1_r + \cdots + 1_R) \end{align*} Since $\Ker(i) \normalsub \ZZ$, have $\Ker(i) = n\ZZ$ for $n \in \{0, 1, 2, \ldots\}$. By first isomorphism theorem, $\ZZ / n\ZZ \cong \Im(i) \le R$. \begin{definition*} We call $n$ the characteristic of $R$. For example $\ZZ, \QQ, \RR$ and $\CC$ have characteristic $0$, and $\ZZ / p\ZZ$ or $\ZZ / p\ZZ [X]$ have characteristic $p$. \end{definition*} \begin{hiddenflashcard}[characteristic-of-ring] \begin{definition*}[Characteristic of a Ring] \cloze{ The \emph{characteristic} of a ring $R$ is the smallest $n \in \ZZ_{\ge 0}$ such that \[ \ub{1_R + 1_R + \cdots + 1_R}_{\text{$n$ times}} = 0_R \] } \end{definition*} \end{hiddenflashcard} \end{example*} \newpage \section{Integral domains, maximal ideals and prime ideals} \begin{flashcard}[integral-domain-defn] \begin{definition*}[Integral Domain and Zero-Divisor] \cloze{ An integral domain is a ring with $0 \neq 1$ such that for $a, b \in R$, $ab = 0 \implies a = 0$ or $b = 0$. A \emph{zero-divisor} in a ring $R$ is a non-zero element $a$ such that $ab = 0$ for some $0 \neq b \in R$. So an integral domain is a ring with no zero-divisors. } \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item All fields are integral domains (if $ab = 0$ with $b \neq 0$, multiply by $b^{-1}$ to get $a = 0$) \item Any subring of an integral domain is an integral domain, for example $\ZZ \le \QQ, \ZZ[i] \le \CC$. \item $\ZZ \times \ZZ$ is not an integral domain since $(1, 0)(0, 1) = (0, 0)$. \end{enumerate} \begin{lemma} $R$ an integral domain $\implies$ $R[X]$ an integral domain. \end{lemma} \begin{hiddenflashcard}[when-do-degrees-add] When can we say that $\deg(fg) = \deg(f) + \deg(g)$? \\ \cloze{When $R$ is an integral domain.} \end{hiddenflashcard} \begin{proof} Write $f(X) = a_m x^m + \cdots + a_1 X + a_0$, $a_m \neq 0$, $g(X) = b_n X^n + \cdots + b_1 X + b_0$, $b_n \neq 0$. Then \[ f(X) g(X) = a_m b_n X^n + \cdots \] where $a_m b_n \neq 0$ since $R$ is an integral domain. Thus $\deg(fg) = m + n = \deg(f) + \deg(g)$ and $fg \neq 0$. \end{proof}