% vim: tw=50 % 19/01/2023 12PM \setcounter{section}{-1} \section{Introduction} This course will consist of 3 main sections: \begin{itemize} \item Groups -- Continuation from IA, focussing on: \begin{itemize} \item Simple groups, $p$-groups, $p$-subgroups. \item Main result in this part of the course will be the Sylow theorems. \end{itemize} \item Rings -- Sets where you can add, subtract and multiply. For example \begin{itemize} \item $\ZZ$ or $\CC[X]$. \item Rings of integers $\ZZ[i]$, $\ZZ[\sqrt{2}]$ (more in part II number fields) \item Polynomial rings (Part II Algebraic Geometry) \end{itemize} A ring where you can divide is a field, for example $\QQ$, $\RR$, $\CC$ or $\ZZ/p\ZZ$ (prime $p$). \item Modules -- Analogue of vector spaces where the scalars belong to a ring instead of a field. We will classify modules over certain nice rings \begin{itemize} \item Allows us to prove Jordan Normal form and classify finite abelian groups. \end{itemize} \end{itemize} \newpage \mychapter{Groups} \newpage \section{Revision and Basic Theory} \begin{definition*}[Group] A group is a pair $(G, \cdot)$ where $G$ is a set and $\cdot \colon G \times G \to G$ is a binary operator satisfying: \begin{itemize} \item Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c ~~ \forall a, b, c \in G$. \item Identity: $\exists e \in G$ such that $e \cdot g = g \cdot e = g ~~ \forall g \in G$. \item Inverses: $\forall g \in G ~ \exists g^{-1} G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$. \end{itemize} \end{definition*} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item In checking $\cdot$ is well-defined, need to check \emph{closure}, i.e. $a, b \in G \implies a \cdot b \in G$. (This is implicit in the notation $\cdot \colon G \times G \to G$). \item If using additive (multiplicative) notation, then often write 0 (or 1) for identity. \end{enumerate} \begin{definition*}[Subgroup] A subset $H \subset G$ is a subgroup (written $H \le G$) if $h \cdot h' \in H ~ \forall h, h' \in H$ and $(H, \cdot)$ is a group. \end{definition*} \begin{flashcard}[subgroup-trick] \begin{remark*} A subset $H$ of $G$ is a subgroup if \cloze{$H$ is \fcemph{non-empty} and $a, b \in H \implies a \cdot b^{-1} \in H$.} \end{remark*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item Additive groups $(\ZZ, +) \le (\QQ, +) \le (\RR, +)$. \item Cyclic and dihedral groups. $C_n = \text{cyclic group of order $n$}$, $D_{2n} = \text{symmetric of a regular $n$-gon}$. \item Abelian groups: those $(G, \cdot)$ such that \[ a \cdot b = b \cdot a ~~ \forall a, b \in G \] \item Symmetric and alternating groups \[ S_n = \text{all permutations of $\{1, \dots, n\}$} \] \[ A_n \le S_n \text{subgroup of even permutations} \] \item \begin{flashcard}[quaternion-group] Quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ with \[ \cloze{ij = k, \quad ji = -k, \quad i^2 = -1, \ldots} \] \end{flashcard} \item General and special linear groups. \begin{itemize} \item $\GL_n(\RR) = \{\text{$n \times n$ matrices over $\RR$ with $\det \neq 0$, and $\cdot$ is matrix multiplication.}\}$ \item $\SL_n(\RR) \subset \GL_n(\RR)$ subgroup of matrices with determinant $1$. \end{itemize} \end{enumerate} \begin{definition*} The (direct) product of groups $G$ and $H$ is the set $G \times H$ with operation \[ (g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2) \] \end{definition*} \noindent Let $H \le G$, the left cosets of $H$ in $G$ are the sets $gH := \{gh \colon h \in H\}$ for $g \in G$. These partition $G$, and each has the same cardinality as $H$. Deduce \begin{theorem}[Lagrange's Theorem] Let $G$ be a finite group and $H \le G$. Then $|G| = |H| \cdot [G : H]$ where $[G : H]$ is the number of left cosets of $H$ in $G$. $[G : H]$ is the index of $H$ in $G$. \end{theorem} \begin{remark*} Can also carry this out with right cosets. Lagrange $\implies$ $\text{number of left cosets} = \text{number of right cosets}$. \end{remark*} \begin{definition*} Let $g \in G$. If $\exists n \ge 1$ such that $g^n = 1$, then the least such $n$ is the order of $g$. Otherwise $g$ has infinite order. \end{definition*} \begin{remark*} If $g$ has order $d$, then \begin{enumerate}[(i)] \item $g^n = 1 \implies d \mid n$. \item $\{1, g, \dots, g^{d - 1}\} \le G$ and so if $G$ is finite then $d \mid |G|$ (Lagrange). \end{enumerate} \end{remark*} \noindent A subgroup $H \le G$ is normal if $g^{-1}Hg = H ~\forall g \in G$. We write $H \normalsub G$. \begin{proposition} If $H \normalsub G$, then the set $G / J$ of left cosets of $H$ in $G$ is a group (called the quotient) with operation $g_1 H \cdot g_2 H = g_1 g_2 H$. \end{proposition} \begin{proof} Check $\cdot$ well defined. Suppose $g_1 H = g_1' H$ and $g_2H = g_2'H$. Then $g_1' = g_1 h_1$ and $g_2' = g_2h_2$ for some $h_1, h_2 \in H$. Then \[ \implies g_1'g_2' = g_1h_1g_2h_2 = g_1 g_2 \ub{(g_2^{-1} h_1 g_2)}_{\in H} \ub{h_2}_{\in H} \] \[ \implies g_1'g_2' H = g_1g_2 H \] Associativity is inherited from $G$, the identity is $H = eH$ and the inverse of $gH$ is $g^{-1}H$. \end{proof} \begin{definition*} If $G$, $H$ are groups, a function $\phi : G \to H$ is a group homomorphism if \[ \phi(g_1 g_2) = \phi(g_1) \phi(g_2) ~ \forall g_1, g_2 \in G \] \end{definition*} \noindent It has kernel $\Ker(\phi) := \{g \in G \mid \phi(g) = 1\} \le G$, and image $\Im(\phi) := \{\phi(g) \mid g \in G\} \le H$. \myskip If $a \in \Ker(\phi)$ and $g \in G$, then \[ \phi(g^{-1}ag) = \phi(g^{-1}) \ub{\phi(a)}_{=1} \phi(g) = 1 \] so $g^{-1}ag \in \Ker(\phi)$. So $\Ker(\phi) \normalsub G$.