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Start of
lecture 1 0. Introduction

This course will consist of 3 main sections:

� Groups – Continuation from IA, focussing on:

– Simple groups, p-groups, p-subgroups.

– Main result in this part of the course will be the Sylow theorems.

� Rings – Sets where you can add, subtract and multiply. For example

– Z or C[X].

– Rings of integers Z[i], Z[
√
2] (more in part II number fields)

– Polynomial rings (Part II Algebraic Geometry)

A ring where you can divide is a field, for example Q, R, C or Z/pZ (prime p).

� Modules – Analogue of vector spaces where the scalars belong to a ring instead of
a field. We will classify modules over certain nice rings

– Allows us to prove Jordan Normal form and classify finite abelian groups.
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1. Revision and Basic Theory

Definition (Group). A group is a pair (G, ·) where G is a set and · : G×G→ G is
a binary operator satisfying:

� Associativity: a · (b · c) = (a · b) · c ∀a, b, c ∈ G.

� Identity: ∃e ∈ G such that e · g = g · e = g ∀g ∈ G.

� Inverses: ∀g ∈ G ∃g−1G such that g · g−1 = g−1 · g = e.

Remarks

(i) In checking · is well-defined, need to check closure, i.e. a, b ∈ G =⇒ a · b ∈ G.
(This is implicit in the notation · : G×G→ G).

(ii) If using additive (multiplicative) notation, then often write 0 (or 1) for identity.

Definition (Subgroup). A subset H ⊂ G is a subgroup (written H ≤ G) if h · h′ ∈
H ∀h, h′ ∈ H and (H, ·) is a group.

Remark. A subset H of G is a subgroup if H is non-empty and a, b ∈ H =⇒
a · b−1 ∈ H.

Examples

(i) Additive groups (Z,+) ≤ (Q,+) ≤ (R,+).

(ii) Cyclic and dihedral groups. Cn = cyclic group of order n,D2n = symmetric of a regular n-gon.

(iii) Abelian groups: those (G, ·) such that

a · b = b · a ∀a, b ∈ G

(iv) Symmetric and alternating groups

Sn = all permutations of {1, . . . , n}

An ≤ Snsubgroup of even permutations

(v) Quaternion group Q8 = {±1,±i,±j,±k} with

ij = k, ji = −k, i2 = −1, . . .
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(vi) General and special linear groups.

� GLn(R) = {n× n matrices over R with det ̸= 0, and · is matrix multiplication.}
� SLn(R) ⊂ GLn(R) subgroup of matrices with determinant 1.

Definition. The (direct) product of groups G andH is the set G×H with operation

(g1, h1) · (g2, h2) = (g1g2, h1h2)

Let H ≤ G, the left cosets of H in G are the sets gH := {gh : h ∈ H} for g ∈ G. These
partition G, and each has the same cardinality as H. Deduce

Theorem 1.1 (Lagrange’s Theorem). Let G be a finite group and H ≤ G. Then
|G| = |H| · [G : H] where [G : H] is the number of left cosets of H in G. [G : H] is
the index of H in G.

Remark. Can also carry this out with right cosets. Lagrange =⇒ number of left cosets =
number of right cosets.

Definition. Let g ∈ G. If ∃n ≥ 1 such that gn = 1, then the least such n is the
order of g. Otherwise g has infinite order.

Remark. If g has order d, then

(i) gn = 1 =⇒ d | n.

(ii) {1, g, . . . , gd−1} ≤ G and so if G is finite then d | |G| (Lagrange).

A subgroup H ≤ G is normal if g−1Hg = H ∀g ∈ G. We write H ⊴ G.

Proposition 1.2. If H ⊴ G, then the set G/J of left cosets of H in G is a group
(called the quotient) with operation g1H · g2H = g1g2H.

Proof. Check · well defined. Suppose g1H = g′1H and g2H = g′2H. Then g′1 = g1h1 and
g′2 = g2h2 for some h1, h2 ∈ H. Then

=⇒ g′1g
′
2 = g1h1g2h2 = g1g2 (g

−1
2 h1g2)︸ ︷︷ ︸
∈H

h2︸︷︷︸
∈H
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=⇒ g′1g
′
2H = g1g2H

Associativity is inherited from G, the identity is H = eH and the inverse of gH is
g−1H.

Definition. If G, H are groups, a function ϕ : G→ H is a group homomorphism if

ϕ(g1g2) = ϕ(g1)ϕ(g2) ∀g1, g2 ∈ G

It has kernel ker(ϕ) := {g ∈ G | ϕ(g) = 1} ≤ G, and image Im(ϕ) := {ϕ(g) | g ∈ G} ≤ H.

If a ∈ ker(ϕ) and g ∈ G, then

ϕ(g−1ag) = ϕ(g−1)ϕ(a)︸︷︷︸
=1

ϕ(g) = 1

so g−1ag ∈ ker(ϕ). So ker(ϕ) ⊴ G.
Start of
lecture 2 Definition. An isomorphism of groups is a group homomorphism that is also a

bijection. We say G and H are isomorphic (written G ∼= H) if ∃ isomorphism
ϕ : G→ H. (Exercise: Check ϕ−1 : H → G is a group homomorphism).

Theorem (First Isomorphism Theorem). Let ϕ : G → H be a group homomor-
phism. Then ker(ϕ) ⊴ G and G/ ker(ϕ) ∼= Im(ϕ).

Proof. Let K = ker(ϕ). Already checked K is normal. Define Φ: G/K → Im(ϕ),
gK 7→ ϕ(g). Check Φ is well-defined and injective:

g1K = g2K ⇐⇒ g−1
2 g1 ∈ K

⇐⇒ ϕ(g−1
2 g1) = 1

⇐⇒ ϕ(g2) = ϕ(g1)

Check Φ is a group homomorphism:

Φ(g1Kg2K) = Φ(g1g2K)

= ϕ(g1g2)

= ϕ(g1)ϕ(g2)

= Φ(g1K)Φ(g2K)

Φ is surjective: Let x ∈ Im(ϕ), say ϕ(g) = x for some g ∈ G. Then x = Φ(gK) ∈
Im(Φ).

8
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Example. ϕ : C → C× = {x ∈ C | x ̸= 0}, z 7→ ez. Since ez+w = ezew, this is a
group homomorphism from (C,+) to (C×, x).

ker(ϕ) = {z ∈ C | ez = 1} = 2πiZ

Im(ϕ) = C× (by existence of log)

therefore C/2πiZ ∼= C×.

Theorem (Second Isomorphism Theorem). Let H ≤ G, and K ⊴ G. Then HK =
{hk : h ∈ H, k ∈ K} ≤ G and H ∩K ⊴ H. Moreover

HK/K ∼= H/H ∩K

Proof. Let h1k1, h2k2 ∈ HK (so h1, h2 ∈ H, k1, k2 ∈ K). Then

h1k1(h2k2)
−1 = h1h

−1
2︸ ︷︷ ︸

∈H

h2k1k
−1
2 h−1

2︸ ︷︷ ︸
∈K

∈ HK

Thus HK ≤ G (by Remark from last lecture).

Let ϕ : H → G/K, h 7→ h → hK. This is the composite of H ↪→ G and the quotient
map G→ G/K, hence ϕ is a group homomorphism.

ker(ϕ) = {h ∈ H | hK = k} = H ∩K ⊴ H

Im(ϕ) = {hK | h ∈ H} = HK/K

First isomophism theorem implies H/H ∩K ∼= HK/K.

Remark. Suppose K ⊴ G. There is a bijection

{subgroups of G/K} ↔ {subgroups of G containing H}

defined by X 7→ {g ∈ G : gK ∈ X} and H/K ←[ H. This restricts to a bijection

{normal subgroups of G/K} ↔ {normal subgroups of G containing K}

Theorem 1.3 (Third Isomorphism Theorem). Let K ⊴ H ⊴ G be normal sub-
groups of G. Then

G/K

H/K
∼= G/H
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Proof. Let ϕ : G/K → G/H, gK 7→ gH. If g1K = g2K, then g−1
2 g1 ∈ K ≤ H =⇒

g1H = g2H. Thus ϕ well-defined. ϕ is surjective group homomorphism with kernel
H/K.

If K ⊴ G then studying the groups K and G/K gives some information about G. This
is not always available.

Definition. A group G is simple if 1 and G are its only normal subgroups, except
if G is the trivial group (convention).

Lemma 1.4. Let G be an abelian group. G is simple if and only if G ∼= Cp for
some prime p.

Proof. ⇐ Let H ≤ Cp. By Lagrange’s Theorem, |H|
∣∣ |Cp| = p. So |H| is 1 or p, i.e.

H = {1} or H = Cp. Thus Cp is simple.

⇒ Let 1 ̸= g ∈ G. G contains the subgroup ⟨g⟩ = ⟨. . . , g−2, g−1, 1, g, g2, . . .⟩ - normal
in G since G is abelian. Since G is simple, ⟨g⟩ = G. If G is infinite, G ∼= (Z,+)
and 2Z ≤ Z, contradiction. Otherwise G ∼= Cn for some n, so gn = 1. If m | n,
then gn/m generates a subgroup of order m inside G. So G is simple =⇒ only
factors of n are 1 and n, so n is prime.

Lemma 1.5. If G is a finite group, then G has a composition series

1 = G0 ⊴ G1 ⊴ · · · ⊴ Gm−1 ⊴ Gm = G

with each quotient Gi/Gi−1 simple.

Warning. Gi need not be normal in G; we only necessarily know that Gi is normal
in Gi+1.

Proof. Induct on |G|. Case |G| = 1. If |G| > 1, let Gm−1 be a normal subgroup of largest
possible order ̸= |G|. By earlier Remark, G/Gm−1 must be simple. Apply induction to
Gm−1.

Start of
lecture 3
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2. Group Actions

Definition. For X a set, let Sym(X) be the group of all bijections X → X under
composition (identity id = idX).

Definition. A group G is a permutation group of degree n if G ≤ Sym(X) with
|X| = n.

Example. Sn = Sym({1, 2, . . . , n}) is a permutation group of degree n, as is
An ≤ Sn. D2n = {symmetries of a regular n-gon} so is a subgroup of Sn ∼=
Sym({vertices of n-gon}).

Definition. An action of a group G on a set X is a function ∗ : G × X → X
satisfying

(i) e ∗ x = x for all x ∈ X

(ii) (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G and for all x ∈ X.

Proposition 2.1. An action of a group G on a set X is equivalent to specifying a
group homomorphism ϕ : G→ Sym(X).

Proof. For each g ∈ G, let ϕg : X → X, x 7→ g ∗ x. We have

ϕg1g2(x) = (g1g2) ∗ x
= g1 ∗ (g2 ∗ x)
= ϕg1(g2 ∗ x)
= ϕg1 ◦ ϕg2(x)

Then ϕg1g2 = ϕg1 ◦ ϕg2 (�).

In particular, ϕg ◦ ϕg−1 = ϕg−1 ◦ ϕg = ϕe = id. Thus ϕy ∈ Sym(X).

Define ϕ : G→ Sym(X), g 7→ ϕg (a group homomorphism by (�)). Conversely let ϕ : G→
Sym(X) be a group homomorphism. Define ∗ : G×X → X, (g, x) 7→ ϕ(g)(x). Then

(i) e ∗ x = ϕ(e)(x) = id(x) = x.

11



(ii)

(g1g2) ∗ x = ϕ(g1g2)(x)

= ϕ(g1) ◦ ϕ(g2)(x)
= g1 ∗ (g2 ∗ x)

Definition. We say ϕ : G→ Sym(X) is a permutation representation of G.

Definition. Let G act on a set X.

(i) The orbit of x ∈ X is

orbG(x) = {g ∈ x | g ∈ G} ⊆ X.

(ii) The stabiliser x ∈ X is

Gx = {g ∈ G | g ∗ x = x} ≤ G.

Recall Groups IA: Orbit-Stabiliser theorem. There is a bijection

orbG(x)↔ G/Gx

(where G/Gx is the set of left cosets of Gx in G). In particular if G is finite,

|G| = | orbG(x)||Gx|

Example. Let G be the group of all symmetries of a cube. X = set of vertices,
x ∈ X, | orbG(x)| = 8, |Gx| = 6.

Hence |G| = 48.
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Remark. (i) kerϕ =
⋂

x∈X Gx is called the kernel of the group action.

(ii) The orbits partition X. We say the action is transitive if there is only one
orbit.

(iii) Gg∗x = gGxg
−1, so if x, y ∈ X belong to the same orbit, then their stabilizers

are conjugate.

Examples

Example. Let G act on itself by left multiplication, i.e. g ∗x = g ·x. The kernel of
this action is

{g ∈ G | g · x = x ∀x ∈ G} = {e}

Thus G ↪→ Sym(G). This proves:

Theorem 2.2 (Cayley’s Theorem). Any finite group G is isomorphic to a
subgroup of Sn for some n. (Take n = |G|).

Example. Let H ≤ G. G acts on G/H (left cosets) by left multiplication, i.e.
g ∗ xH = gxH. This action is transitive (since (x2x

−1
1 )x1H = x2H) with

GxH = {g ∈ G | gxH = xH} = {g ∈ G | x−1gx ∈ H} = x−1Hx

Thus ker(ϕ) =
⋂

x∈G xHx
−1. This is largest normal subgroup of G that is contained

in H.

Theorem 2.3. let G be a non-abelian simple group, and H ≤ G a subgroup of
index n > 1. Then n ≥ 5 and G is isomorphic to a subgroup of An.

Proof. Let G act on X = G/H by left multiplication and let ϕ : G → Sym(X) = Sn be
the associated permutation representation. As G is simple, ker(ϕ) = 1 or ker(ϕ) = G. If
ker(ϕ) = G, then Im(ϕ) = 1, contradiction since G acts transitively on X and |X| > 1.
Thus ker(ϕ) = 1 and G ∼= Im(ϕ) ≤ Sn. Since G ≤ Sn and An ⊴ Sn, second isomorphism
theorem gives:

G ∩An ⊴ G

and
G/G ∩An

∼= GAn/An ≤ Sn/An
∼= C2

13



G simple implies that G ∩ An = 1 or G. If it equals 1 then G ↪→ C2 contradicts G
non-abelian. If it equals G then G ≤ An. Finally, if n ≤ 4, then An has no non-abelian
simple subgroup (just list them!).

Start of
lecture 4 Example. Let G act on itself by conjugation, i.e. g ∗ x = gxg−1.

Definition. orbG(x) = {gxg−1 | g ∈ G} = cclG(x) – the conjugacy class of x in G.

Definition. Gx = {g ∈ G | gx = xg} = CG(x) ≤ G – the centraliser of x in G.

Definition. ker(ϕ) = {g ∈ G | gx = xg,∀x ∈ G} = Z(G) – center of G.

Note. The map ϕ(g) : G→ G, h 7→ ghg−1 satisfies

ϕ(g)(h1h2) = gh1h2g
−1

= gh1g
−1gh2g

−1

= ϕ(g)(h1)ϕ(g)(h2)

so ϕ(g) is a group homomorphism, and also a bijection, so ϕ(g) is an isomorphism.

Definition.
Aut(G) = {group isomorphism f : G→ G}

Then Aut(G) ≤ Sym(X) and ϕ : G→ Sym(X) has image in Aut(G).

Example. LetX be the set of all subgroups ofG. ThenG acts onX by conjugation,
i.e. g ∗H = gHg−1. The stabiliser of H is

{g ∈ G | gHg−1 = H} = NG(H)

the normaliser of H in G. This is the largest subgroup of G containing H as a
normal subgroup.

14
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3. Alternating Groups

Part IA: elements in Sn are conjugate if and only if they have the same cycle type.

Example. In S5, we have

cycle type # elements

id 1
(∗ ∗) 10

(∗ ∗)(∗ ∗) 15
(∗ ∗ ∗) 20

(∗ ∗ ∗)(∗ ∗) 20
(∗ ∗ ∗ ∗) 30

(∗ ∗ ∗ ∗ ∗) 24

total 120

Let g ∈ An. Then CAn(g) = CSn(g)∩An if there exists odd permutation commuting with
g. Then |CAn(g)| = 1

2 |CSn(g)| and | cclAn(g)| = | cclSn(g)| otherwise |CAn(g)| = |CSn(g)|
and | cclAn(g)| = 1

2 | cclSn(g)|.

Example. Taking n = 5, (1 2)(3 4) commutes with (1 2) and (1 2 3) commutes with
(4 5) (and (1 2) and (4 5) are both odd). But if h ∈ CS5(g) where g = (1 2 3 4 5),
then (1 2 3 4 5) = h(1 2 3 4 5)h−1 = (h(1) h(2) h(3) h(4) h(5)). So h ∈ ⟨g⟩ ≤ A5.
| cclA5(g)| = 1

2 | cclA5(g)| = 12. Thus A5 has conjugacy classes of sizes 1, 15, 20, 12, 12.

If H ⊴ A5, then H is a union of conjugacy classes. So |H| = 1+15a+20b+12c for
some integers a, b ∈ {0, 1}, c ∈ {0, 1, 2} and by Lagrange’s Theorem |H|

∣∣60. One
can check that the only way that this can happen is if |H| = 1 or |H| = 60. So A5

is simple.

Lemma 3.1. An is generated by 3-cycles.

Proof. Each σ ∈ An is product of an even number of transpositions. Thus suffices to
write the product of any two transpositions as a product of 3-cycles.

For a, b, c, d distinct, the possible distinct cases are (a b)(a b), (a b)(b c) and (a b)(c d).
We can check these are all a product of 3-cycles:

(a b)(a b) = id

(a b)(b c) = (a b c)

(a b)(c d) = (a c b)(a c d)

15



Lemma 3.2. If n ≥ 5 then all 3-cycles in An are conjugate.

Proof. We claim that any 3-cycle is conjugate to (1 2 3). Indeed if (a b c) is a 3-cycle
then (a b c) = σ(1 2 3)σ−1 for some σ ∈ Sn. If σ ̸∈ An then replace by σ̃ = σ(4 5).

Theorem 3.3. An is simple for all n ≥ 5.

Proof. Let 1 ̸= N ⊴ An. Suffices to show that N contains a 3-cycle, since by Lemma
3.1 and Lemma 3.2 we have N = An.

Take 1 ̸= σ ∈ N and write σ as a product of disjoint cycles.

� Case 1: σ contains a cycle of length r ≥ 4. Without loss of generality σ =
(1 2 · · · r)τ . Let δ = (1 2 3). Then

σ−1︸︷︷︸
∈N

δ−1σδ︸ ︷︷ ︸
∈N

= (r · · · 2 1)(1 3 2)(1 2 3 · · · r)(1 2 3)

= (2 3 r)

So N contains a 3-cycle.

� Case 2: σ contains two 3-cycles. Without loss of generality σ = (1 2 3)(4 5 6)τ .
Let δ = (1 2 4). Then

σ−1︸︷︷︸
∈N

δ−1σδ︸ ︷︷ ︸
∈N

= (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4)

= (1 2 4 3 6)

So now done by case 1.

� Case 3: σ contains two 2-cycles. Without loss of generality σ = (1 2)(3 4)τ . Let
δ = (1 2 3). Then

σ−1︸︷︷︸
∈N

δ−1σδ︸ ︷︷ ︸
∈N

= (1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3)

= (1 4)(2 4)

Let ε = (2 3 5) (n ≥ 5). Then

π−1ε−1πε︸ ︷︷ ︸
∈N

= (1 4)(2 3)(2 5 3)(1 4)(2 3)(2 3 5)

= (2 5 3)

So N contains a 3-cycle.

16



Conclusion of proof: Remains to consider σ with one of these cycle types:

� Case (∗ ∗) or (∗ ∗)(∗ ∗ ∗) but then σ ̸∈ An, contradiction.

� Case (∗ ∗ ∗) but then σ is a 3-cycle so we’re already done.

Start of
lecture 5
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4. p-groups and p-subgroups

Definition. Let p be a prime. A finite group G is a p-group if |G| = pn, n ≥ 1.

Theorem 4.1. If G is a p-group, then Z(G) ̸= 1.

Proof. For g ∈ G, we have | cclG(g)||CG(g)| = |G| = pn, so each conjugacy class has size
a power of p. Since G is a union of conjugacy classes:

|G| = #(conjugacy classes of size 1) (mod p)

Note that

g ∈ Z(G) ⇐⇒ gxg−1 = x ∀x ∈ G
⇐⇒ x−1gx = g ∀x ∈ G
⇐⇒ cclG(g) = {g}

So |Z(G)| = #(conjugacy classes of size 1). So 0 ≡ |Z(G)| (mod p). We know |Z(G)| ≥
1 since e ∈ Z(G), so therefore |Z(G)| ≥ p > 1.

Corollary 4.2. The only simple p-group is Cp.

Proof. Let G be a simple p-group. Since Z(G) ⊴ G we have Z(G) = 1 or G. But by
the previous theorem, Z(G) ̸= 1, so Z(G) = G, so G is abelian. Conclude by Lemma
1.3.

Corollary. Let G be a p-group of order pn. Then G has a subgroup of order pn for
all 0 ≤ r ≤ n.

Proof. By Lemma 1.4, G has a composition series

1 = G0 ⊴ G1 ⊴ · · · ⊴ Gm−1 ⊴ Gm = G,

with each Gi/Gi−1 being simple, and also since G is a p-group, Gi/Gi−1 is a p-group, so
Gi/Gi=1

∼= Cp by Corollary 4.2.

Thus |Gi| = pi for 0 ≤ i ≤ m and m = n.

18



Lemma 4.3. For G a group, if G/Z(G) is cyclic, then G is abelian (and so G/Z(G)
is trivial).

Proof. Let gZ(G) be a generator for G/Z(G). Then each coset is of the form grZ(G)
for some r ∈ Z. Thus G = {grz : r ∈ Z, z ∈ G(Z)}. Then

(gr1z1) · (gr2z2) = gr1+r2z1z2

= gr1+r2z2z1

= (gr2z2) · (gr1z1)

So G is abelian.

Corollary 4.4. If |G| = p2, then G is abelian.

Proof. We consider the 3 possible cases for |Z(G)| (|Z(G)|
∣∣ p2 by Lagrange’s theorem)

� If |Z(G)| = 1, then this contradicts Theorem 4.1.

� If |Z(G)| = p, then |G/Z(G)| = p. Apply Lemma 4.1, contradiction.

� |Z(G)| = p2, then Z(G) = G so G is abelian.

See example sheet for case |G| = p3.

4.1. Sylow Theorems

Theorem (Sylow). Let G be a finite group of order pam where p is a prime with
p ∤ m. Then

(i) The set Sylp(G) = {P ≤ G : |P | = pa} of Sylow p-subgroups is non-empty.

(ii) All elements of Sylp(G) are conjugate.

(iii) np := | Sylp(G)| satisfies np ≡ 1 (mod p) and np
∣∣ |G| (and hence np | m).

Corollary 4.5. If np = 1, then the unique Sylow p-subgroup is normal.

Proof. Let g ∈ G and P ∈ Sylp(G). Then gPg−1 ∈ Sylp(G) and so gPg−1 = P . Thus
p ⊴ G.
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Example. Let |G| = 1000 = 23 × 53. Then n5 ≡ 1 (mod 5) and n5 | 8, so n5 = 1.
Thus the unique Sylow 5-subgroup is normal, and hence G is not simple.

Example. |G| = 132 = 23 × 3× 11. n11 ≡ 1 (mod 11) and n11 | 12, so n11 = 1 or
n11 = 12. Suppose G is simple. Then n11 ̸= 1 (otherwise the Sylow 11 subgroup
is normal) and hence n11 = 12. Now n3 ≡ 1 (mod 3) and n3 | 44. So n3 = 4, 22
(n3 ̸= 1 if G is simple).

Suppose n3 = 4. Then letting G act on Syl3(G) by conjugation gives a group
homomorphism ϕ : G→ S4. Since G is simple, we must have ker(ϕ) = 1 or ker(ϕ) =
G. But ker(ϕ) = G contradicts Sylow (ii). So ker(ϕ) = G, so G ↪→ S4. But this is
not possible since |G| > |S4|.

Thus n3 = 22 and n11 = 12. So G has 22 × (3 − 1) = 44 elements of order 3 and
12× (11− 1) = 120 elements of order 11. But 44 + 120 > 132 = |G|.

Hence there does not exist a simple group of order 132.

Proof of Sylow Theorems

Let |G| = pam, p prime, p ∤ m.

(i) Let Ω be the set of all subsets of G of size pa.

|Ω| =
(
pam

pa

)
=
pam

pa
· p

am− 1

pa − 1
· · · p

am− pa + 1

1

For 0 ≤ k < pa, the numbers pam− k and pa − k are divisible by the same power
of p. Therefore |Ω| is coprime to p (�).

Let G act on Ω by left multiplication, i.e. for g ∈ G and X ∈ Ω

g ∗X = {gx : x ∈ X} ∈ Ω

For any X ∈ Ω we have |GX || orbG(X)| = |G| = pam. By (�) there exists X such
that | orbG(X)| is coprime to p. Thus pa

∣∣ |GX | (1). On the other hand, if g ∈ G
and x ∈ X, then g ∈ (gx−1) ∗X and hence

G =
⋃
g∈G

g ∗X =
⋃

Y ∈orbG(X)

Y

=⇒ |G| ≤ | orbG(X)||X|

=⇒ |GX | =
|G|

| orbG(X)|
≤ |X| = pa (2)
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(1) and (2) implies
|GX | = pa

i.e. GX ∈ Sylp(G).

Start of
lecture 6 (ii) We prove a stronger result:

Lemma 4.6. If P ∈ Sylp(G) and Q ≤ G is a p-subgroup then Q ≤ gPg−1 for
some g ∈ G.

Proof. Let Q act on the left cosets G/P by left multiplication, ie

q · gP = qgP

By the orbit-stabiliser theorem, each orbit has size dividing |Q| so either 1 or a
multiple of p. Since |G/P | = m is coprime to p, there exists orbit of size 1, i.e.
there exists g ∈ G such that qgP = gP for all q ∈ Q.

=⇒ g−1qg ∈ P ∀q ∈ Q
=⇒ Q ≤ gPg−1

(iii) Let G act on Sylp(G) by conjugation. Sylow (ii) implies action is transitive. Then
the orbit-stabiliser theorem implies

np = | Sylp(G)|
∣∣ |G|

Now let P ∈ Sylp(G). Then P acts on Sylp(G) by conjugation. The orbits have
size dividing |P | = pa, so either 1 or a multiple of p. To show np ≡ 1 (mod p) it
suffices to show that {P} is the unique orbit of size 1.

If {Q} is an orbit of size 1, then P normalizes Q, i.e. P ≤ NG(Q). Now P and
Q are Sylow p-subgroups of NG(Q), hence by (ii) are conjugate in NG(Q), hence
equal since Q ⊴ NG(Q). Thus {P} is the unique orbit of size 1.
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5. Matrix Groups

Let F be a field (for example C or Z/pZ). Let

GLn(F ) := n× n invertible matrices with entries in F .

SLn(F ) := ker(GLn(F )
det−→ F×) ⊴ GLn(F )

Let Z ⊴ GLn(F ) be the subgroup of scalar matrices.

Definition.

PGLn(F ) =
GLn(F )

Z

PSLn(F ) =
SLn(F )

Z ∩ SLn(F )
∼=
Z SLn(F )

Z
≤ PGLn(F )

Example 5.1. G = GLn(Z/pZ). A list of n vectors in (Z/pZ)n are columns of
some A ∈ G if and only if they are linearly independent. Thus

|G| = (pn − 1)︸ ︷︷ ︸
first column

· (pn − p)︸ ︷︷ ︸
second column

· · · (pn − p2) · · · (pn − pp−1)︸ ︷︷ ︸
last column

= p1+2+···+(n−1)(pn − 1)(pn−1 − 1) · · · (p− 1)

= p(
n
2)

n∏
i=1

(pi − 1)

So Sylow p-subgroups have size p(
n
2). Let

U =



1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1


 ≤ G

set of upper triangular matrices with 1’s on the diagonal. Then U ∈ Sylp(G), since
there are

(
n
2

)
entries above the diagonal to fill and each can take p values. Just as

PGL2(C) acts on C ∪ {∞} via Möbius maps, PGL2(Z/pZ) acts on Z/pZ ∪ {∞}.
Indeed GL2(Z/pZ acts as (

a b
c d

)
: z 7→ az + b

cz + d

and since scalars act trivially, we obtain an action of PGL2(Z/pZ).
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Lemma 5.2. The permutation representation PGL2(Z/pZ)→ Sp+1 is injective (in
fact an isomorphism if p = 2 or p = 3).

Proof. Suppose az+b
cz+d = z for all z ∈ Z/pZ∪{∞}. Setting z = 0 gives b = 0, z =∞ gives

c = 0, z = 1 gives a = d, so (
a b
c d

)
is a scalar matrix, hence trivial in PGL2(Z/pZ).

Lemma 5.3. If p is an odd prime then

|PSL2(Z/pZ)| =
p(p− 1)(p+ 1)

2

Proof. By Example 5.1

|GL2(Z/pZ)| = p(p− 1)(p2 − 1)

The group homomorphism

GL2(Z/pZ)
det−→ (Z/pZ)×

is surjective: (
a 0
0 1

)
7→ a

therefore | SL2(Z/pZ) = GL2(Z/pZ)
p−1 = p(p− 1)(p+ 1). If(

λ 0
0 λ

)
∈ SL2(Z/pZ)

then λ2 ≡ 1 (mod p)

=⇒ p | (λ− 1)(λ+ 1)

=⇒ λ ≡ ±1 (mod p)

Thus Z ∩ SL2(Z/pZ) = {±I} (distinct since p > 2). Thus

|PSL2(Z/pZ)| =
1

2
|SL2(Z/pZ)|

=
p(p− 1)(p+ 1)

2

Start of
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Example 5.4. Let G = PSL2(Z/5Z). Then |G| = 4×5×6
2 = 60 = 22 × 3× 5. Let G

act on Z/5Z ∪ {∞} via (
a b
c d

)
: 2 7→ az + b

cz + d

By Lemma 5.2 the permutation representation

ϕ : G→ Sym({0, 1, 2, 3, 4,∞}) ∼= S6

is injective.

Claim: Im(ϕ) ≤ A6, i.e. ψ : G
ϕ−→ S6

sgn−→ {±1} is trivial.
Proof: Let g ∈ G have order d. Write d = 2nm with m odd. Then hm has order 2n.
If ψ(hm) = 1 then ψ(h)m = 1 so ψ(h) = 1. So it suffices to show that ψ(g) = 1 for
all g ∈ G with order a power of 2.
Lemma 4.7 implies every such g belongs to a Sylow 2-subgroup.
Therefore it suffices to check ψ(H) = 1 for H a Sylow 2-subgroup. (since ker(ψ) ⊴ G
and all Sylow 2-subgroups are conjugate).

Take

H =

〈(
2 0
0 3

)
{±I},

(
0 1
−1 0

)
{±I}

〉
≤ G =

SL2(Z/5Z)
{±I}

We compute

ϕ

(
2 0
0 3

)
= (1 4)(2 3)

ϕ

(
0 2
−1 0

)
= (0 ∞)(1 4)

Both of these are even, therefore ψ(H) = 1. This proves the claim.

On Example Sheet 1, Question 14 we will prove that if G ≤ A6 and |G| = 60 then
G ∼= A5.

Facts (not proved in this course)

PSLn(Z/pZ) is a simple group ∀n ≥ 2, p prime except (n, p) = (2, 2), (2, 3) (these are
examples of finite groups of Lie type). The smallest non-abelian simple groups are

A5
∼= PSL2(Z/5Z)

(order 60) and
PSL2(Z/7Z) ∼= GL3(Z/7Z)

(order 168).
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6. Finite abelian groups

Later we prove (in the modules chapter)

Theorem 6.1. Every finite abelian group is isomorphic to a product of cyclic
groups.

However it may be possible to write the same group as a product of cyclic groups in
more than one way.

Lemma 6.2. If m,n ∈ Z≥1 coprime then

Cm × Cn
∼= Cmn

Proof. let g and h be generators of Cm and Cn. Then (g, h) ∈ Cm × Cn and (g, h)r =
(gr, hr). Then

(g, h)r = 1 ⇐⇒ m | r and n | r
⇐⇒ mn | r

(since m,n coprime). Thus (g, h) has order mn = |Cm × Cn|. Therefore Cm × Cn
∼=

Cmn.

Corollary 6.3. Let G be a finite abelian group. Then

G ∼= Cn1 × Cn2 × · · · × Cnk

where each ni is a prime power.

Proof. If n = pa11 · · · parr (p1, . . . , pr distinct primes), then Lemma 6.2 shows

Cn
∼= Cpa1

× · · · × Cparr

Writing each of the cyclic groups in Theorem 6.1 in this way gives the result.

In fact when we prove Theorem 6.1 we will prove the following refinement:

Theorem 6.4. Let G be a finite abelian group. Then

G ∼= Cd1 × Cd2 × · · · × Cdt

for some d1 | D2 | · · · | dt.
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Remark 6.5. The integers n1, . . . , nk in Corollary 6.3 (up to ordering) and d1, . . . , dt
in Theorem 6.4 (assuming d1 > 1) are uniquely determined by the group G.

(Proof omitted – but works by counting the number of elements of G of each prime
power order).

Examples

(i) The abelian groups of order 8 are

C8, C2 × C2 and C2 × C2 × C2

(ii) The abelian groups of order 12 are

C2 × C2 × C3
∼= C2 × C6

and
C4 × C3

∼= C12

Definition (Exponent of a group). The exponent of a group G is the least integer
n ≥ 1 such that gn = 1 for all g ∈ G, i.e. the lowest common multiple of all the
orders of the elements of G.

Example. A4 has exponent 6.

Corollary 6.6. Every finite abelian group contains an element whose order is the
exponent of the group.

Proof. If G ∼= Cd1 × · · ·Cdt with d1 | d2 | · · · | dt, then every g ∈ G has order dividing
dt and if h ∈ Cdt is a generator then (1, 1, 1, . . . , 1, h) ∈ G has order dt. Thus G has
exponent dt.

Start of
lecture 8
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7. Definition and Examples

Definition (Ring). A ring is a triple (R,+, ·) consisting of a set R and two binary
operators + : R×R→ R and · : R×R→ R satisfying:

(i) (R,+) is an abelian group, with identity 0 (sometimes written 0R).

(ii) Multiplication is associative and has an identity, i.e.

x · (y · z) = (c · y) · z ∀x, y, z ∈ R

and there exists 1 ∈ R such that x · 1 = 1 · x = x for all x ∈ R (sometimes we
will write 1R).

(iii) Distributive laws

x · (y + z) = x · y + x · z ∀x, y, z ∈ R
(x+ y) · z = x · z + y · z ∀x, y, z ∈ R

Definition (Commutative ring). We say R is a commutative ring if x · y = y · x for
all x, y ∈ R.

Note. In this course we only consider commutative rings.

Remarks

(i) As in the case of groups, check closure!

(ii) For x ∈ R, write −x for the inverse of x under + and abbreviate x+(−y) as x− y.

(iii) 0 · x = (0 + 0) · x = 0 · x+ 0 · x, so 0 · x = 0 for all x ∈ R.

(iv) 0 = 0 · x = (1− 1) · x = 1 · x+ (−1) · x = x+ (−1) · x hence (−1) · x = −x for all
x ∈ R.

Definition (Subring). A subset S ⊂ R is a subring (written S ≤ R) if it is a ring
under + and · with the same identity elements 0 and 1.

Examples

(i) Z[i] = {a+ bi : a, b ∈ Z} ≤ C (ring of Gaussian integers)
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(ii) Q(
√
2) = {a+ b

√
2 : a, b ∈ Q} ≤ R.

(iii) Z/nZ = integers mod n.

(iv) R, S rings. The product R× S is a ring via

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2)
0R×S = (0R, 0S)

1R×S = (1R, 1S)

Note: R× {0} is not a subring of R× S.

(v) Let R be a ring. A polynomial f over R is an expression f = a0+a1X+ · · ·+anXn,
ai ∈ R. (Note “X” is just a symbol, not a variable). The degree of f is the largest
n ∈ N such that an ̸= 0. We write R[X] for the set of all polynomials over R. If
g = b0 + b1X + · · ·+ bmX

m is another polynomial, set

f + g =
∑
i

(ai + bi)X
i

f · g =
∑
i

 i∑
j=0

ajbi−j

Xi

Then R[X] is a ring with identities 0 and 1. We identify R with the subring of
R[X] of constant polynomials (ie

∑
i aiX

i with ai = 0 for all i ≥ 1).

Definition (Unit). An element r ∈ R is a unit if it has an inverse under multi-
plication, i.e. ∃s ∈ R such that r · s = 1. The units in a ring R form a group
(R×, ·).

For example, Z× = {±1}, Q× = Q \ {0}.

Definition (Field). A field is a ring with 0 ̸= 1 such that every non zero element
is a unit.

Remark. If R is a ring with 0 = 1, then x = x · 1 = x · 0 = 0 for all x ∈ R, so
R = {0} the trivial ring.
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Proposition 7.1. Let f, g ∈ R[X]. Suppose the leading coefficient of g is a unit.
Then there exists q, r ∈ R[X] such that

f(X) = q(X)g(X) + r(X)

where deg(r) < deg(g).

Proof. By induction on n = deg f . Write

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 an ̸= 0

g(X) = bmX
mbm−1X

m−1 + · · ·+ b1X + b0 bm ̸= 0

If n < m, then put q = 0, r = f and done. Otherwise we have n ≥ m and we set

f1(X) = f(X)− anb−1
m Xn−mXn−mg(X)

Coefficient ofXn is an−anb−1
m bm = 0 therefore deg(f1) < n. By the induction hypothesis,

there exists q1, r ∈ R[X] such that

f1(X) = q1(X)g(X) + r(X) deg(r) < deg(g)

=⇒ f(X) = (g1(X) + anb
−1
m Xn−m)︸ ︷︷ ︸

=g(X)

g(X) + r(X)

Remark. If R is a field then we only need g ̸= 0.

Further Examples

(i) If R is a ring and S is a set then the set of all functions S → R is a ring under
pointwise operations

(f + g)(x) = f(x) + g(x)

(f · g)(x) = f(x) · g(x)

Further interesting examples appear as subrings, for example

{continuous functions R→ R}

has
{polynomial functions R→ R} = R[X]

as a subring.

(ii) Power series ring R[X] = {a0 + a1X + · · · | ai ∈ R}.
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(iii) Laurent polynomials

RJX,X−1K =

{∑
i∈Z

a ·Xi : ai ∈ R, only finitely many ai ̸= 0

}

Start of
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8. Homomorphisms, Ideals and Quotients

Definition. Let R and S be rings. A function ϕ : R→ S is a ring homomorphism
if

(i) ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) for all r1, r2 ∈ R.

(ii) ϕ(r1r2) = ϕ(r1) · ϕ(r2) for all r1, r2 ∈ R.

(iii) ϕ(1R) = 1S

A ring homomorphism that is also a bijection is called an isomorphism.

The kernel of ϕ is
ker(ϕ) = {r ∈ R | ϕ(r) = 0S}

Lemma 8.1. A ring homomorphism ϕ : R → S is injective if and only if ker(ϕ) =
0R.

Proof. ϕ : (R,+)→ (S,+) is a group homomorphism.

Definition. A subset I ∈ R is an ideal (written I ⊴ R) if

(i) I is a subgroup of (R,+)

(ii) If r ∈ R and x ∈ I, then rx ∈ I.

We say I is proper if I ̸= R.

Lemma 8.2. If ϕ : R→ S is a ring homomorphism, then ker(ϕ) is an ideal of R.

Proof. ϕ : (r,+)→ (S,+) is a group homomorphism, ker(ϕ) is a subgroup of (R,+). If
r ∈ R and x ∈ ker(ϕ), then

ϕ(rx) = ϕ(r)ϕ(x) = ϕ(r) · 0S = 0S

hence rx ∈ ker(ϕ).

Remark. If I contains a unit, then 1R ∈ I and hence I = R. Thus if I is a proper
ideal, 1R ̸∈ I, so I is not a subring.
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Lemma 8.3. The ideals in Z are

nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}

for n = 0, 1, 2 . . ..

Proof. Certainly nZ ⊴ Z. Let I ⊴ Z be a non-zero ideal, and n the smallest positive
integer in I. Then nZ ⊂ I. If m ∈ I, then write m = qn + r with q, r ∈ Z. Then
r = m−qn ∈ I. Contradicts choice of n unless r = 0. But then m ∈ nZ, i.e. I ⊂ nZ.

Definition. For a ∈ R, write (a) = {ra : r ∈ R} ⊴ R. This is the ideal generated
by a. More generally, if a1, a2, . . . , an ∈ R, we write

(a1, . . . , an) = {r1a1 + · · · rnan | ri ∈ R} ⊴ R.

Definition. Let I ⊴ R. We say I is principal if I = (a) for some a ∈ R.

Theorem 8.4. If I ⊴ R then the set R/I of cosets of I in (R,+) forms a ring
(called the quotient ring) with operations

(r1 + I) + (r2 + I) = r1 + r2 + I

(r1 + I)(r2 + I) = r1r2 + I

and 0R/I = 0R + I, 1R/I = 1R + I. Moreover, the map R → R/I, r 7→ r + I is a
ring homomorphism with kernel I.

Proof. Already know (R/I,+) is a group. If r1 + I = r′1 + I and r2 + I = r′2 + I, then

r′1 = r1 + a1, r′2 = r2 + a2

for some a1, a2 ∈ I. Then

r′1r
′
2 = (r1 + a1)(r2 + a2)

= r1r2 + r1a2︸︷︷︸
∈I

+ r2a1︸︷︷︸
∈I

+a1a2

thus r′1r
′
2 + I = r1r2 + I. Remaining properties for R/I follow from those for R.

33



Example. (i) nZ ⊴ Z. Quotient ring Z/nZ. Z/nZ has elements 0 + nZ, 1 +
nZ, . . . , (n− 1) + nZ. Addition and multiplication carried out mod n.

(ii) Consider (X) ⊂ C[X] (polynomials with 0 constant term). If

f(X) = anX
n + r · · · a1X + a0, a1 ∈ C

then f(X)+(X) = a0+(X). There is a bijection C[X]/(X)→ C, f(X)+(X) 7→
f(0), a+(X)←[ a. These maps are ring homomorphisms. Thus C[X]/(X) ∼= C.

(iii) Consider (X2 + 1) ⊴ R[X]

R[X]/(X2 + 1) = {f(X) + (X2 + 1) : f(X) ∈ R[X]}

By proposition 7.1, f(X) = q(X)(X2 + 1) + r(X) with deg r < 2, i.e. r(X) =
a+ bX, a, b ∈ R. Thus

R[X]/(X2 + 1) = {a+ bX + (X2 + 1) : a, b ∈ R}

If a+bX+(X2+1) = a′+b′X+(X2+1). Then a = a′+(b−b′)X = g(X)(X2+1)
for some g(X) ∈ R[X]. Comparing degrees, we see g(X) = 0 and a = a′, b = b′.
Consider the bijection

R[X]/(X2 + 1)→ C, a+ bX + (X2 + 1) 7→ a+ bi

We show ϕ is a ring homomorphism It preserves additions and maps 1+(X2+1)
to 1. Now we check that it respects multiplication:

ϕ((a+ bX + (X2 + 1))(c+ dX + (X2 + 1)))

= ϕ((a+ bX)(c+ dX) + (X2 + 1))

= ϕ(ac+ (ad+ bc)X +������
bd(X2 + 1)− bd+ (X2 + 1))

= ac− bd+ (ad+ bc)i

= ϕ(a+ bX + (X2 + 1))ϕ(c+ dX + (X2 + 1))

Thus R[X]/(X2 + 1) ∼= C.

Start of
lecture 10 Theorem (First Isomorphism Theorem for Rings). Let ϕ : R→ S be a ring homo-

morphism. Then ker(ϕ) ⊴ R, Im(ϕ) ≤ S and there exists isomorphism

R/ ker(ϕ) ∼= Im(ϕ)

Proof. Already saw that ker(ϕ) ⊴ R (Lemma 8.2), and Im(ϕ) is a subgroup of (S,+).
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Now

ϕ(r1)ϕ(r2) = ϕ(r1r2) ∈ Im(ϕ)

1S = ϕ(1R) ∈ Im(ϕ)

Thus Im(ϕ) is a subring of S. Let K = ker(ϕ). Define

Φ : R/K → Im(ϕ)

r +K 7→ ϕ(r)

By the first isomorphism theorem for groups, this is well-defined, a bijection and a group
homomorphism under +. Also Φ(1R +K) = ϕ(1R) = 1S and

Φ((r1 +K)(r2 +K)) = Φ(r1r2 +K)

= ϕ(r1r2)

= ϕ(r1)Φ(r2)

= Φ(r1 +K)Φ(r2 +K)

Thus Φ is a ring isomorphism.

Theorem (Second Isomorphism Theorem for Rings). Let R ≤ S and J ⊴ S. Then
R ∩ J ⊴ R, R+ J = {r + a | r ∈ R, a ∈ J} ≤ S, and

R

R ∩ J
∼=
R+ J

J
≤ S

J

Proof. By second isomorphism theorem for groups, R + S is a subgroup of (S,+), and
we have

1S = 1S︸︷︷︸
∈R

+ 0S︸︷︷︸
∈J

∈ R+ J

If r1, r2 ∈ R and a1, a2 ∈ J then

(r1 + a1)(r2 + a2) = r1r2︸︷︷︸
∈J

+ r1a2︸︷︷︸
∈J

+ r2a1︸︷︷︸
∈J

+ a1a2︸︷︷︸
∈J

∈ R+ J

Thus R+J ≤ J . Let ϕ : R→ S/J , r 7→ r+J . This is the composite of inclusion R ⊂ S
and the quotient map S → S/J hence ϕ is a ring homomorphism.

ker(ϕ) = {r ∈ R | r + J = J} = R ∩ J ⊴ R

Im(ϕ) = {r + J | r ∈ R} = R+ J

J
≤ S

J

Apply first isomorphism theorem.
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Note. Let I ⊴ R. There exists bijection

{ideals in R/I} ↔ {ideals in R containing I}
K 7→ {r ∈ R | r + I ∈ K}

J/I ←[ J

Theorem (Third Isomorphism Theorem for Rings). Let I ⊴ R, J ⊴ R with I ≤ J .
Then J/I ⊴ R/I and

R/I

J/I
∼=
R

J

Proof. Consider

ϕ : R/I → R/J

r + I 7→ r + J

This is a surjective ring homomorphism (well-defined since I ≤ S).

ker(ϕ) = {r + I : r ∈ J} = J/I ⊴ R/I

Apply first isomorphism theorem.

Example. There is a surjective ring homomorphism ϕ : R[X]→ C

f(X) =
m∑

n=1

anX
n 7→ f(i) =

m∑
n=1

ani
m

Proposition 7.1 implies ker(ϕ) = (X2 + 1). First isomorphism theorem implies
R[X]/(X2 + 1) ∼= C.
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Example. R a ring. Then there exists a unique ring homomorphism i : Z → R
given by

0 7→ 0R

1 7→ 1R

n 7→ (1R + · · ·+ 1R︸ ︷︷ ︸
n times

)

−n 7→ −(1r + · · ·+ 1R)

Since ker(i) ⊴ Z, have ker(i) = nZ for n ∈ {0, 1, 2, . . .}. By first isomorphism
theorem, Z/nZ ∼= Im(i) ≤ R.

Definition. We call n the characteristic of R. For example Z,Q,R and C have
characteristic 0, and Z/pZ or Z/pZ[X] have characteristic p.
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9. Integral domains, maximal ideals and prime ideals

Definition (Integral Domain and Zero-Divisor). An integral domain is a ring with
0 ̸= 1 such that for a, b ∈ R, ab = 0 =⇒ a = 0 or b = 0. A zero-divisor in a ring R
is a non-zero element a such that ab = 0 for some 0 ̸= b ∈ R. So an integral domain
is a ring with no zero-divisors.

Examples

(i) All fields are integral domains (if ab = 0 with b ̸= 0, multiply by b−1 to get a = 0)

(ii) Any subring of an integral domain is an integral domain, for example Z ≤ Q,Z[i] ≤
C.

(iii) Z× Z is not an integral domain since (1, 0)(0, 1) = (0, 0).

Lemma 9.1. R an integral domain =⇒ R[X] an integral domain.

Proof. Write f(X) = amx
m + · · · + a1X + a0, am ̸= 0, g(X) = bnX

n + · · · + b1X + b0,
bn ̸= 0. Then

f(X)g(X) = ambnX
n + · · ·

where ambn ̸= 0 since R is an integral domain. Thus deg(fg) = m+n = deg(f)+deg(g)
and fg ̸= 0.

Start of
lecture 11 Definition. A polynomial

f(X) = anX
n + an−1X

n−1 + · · ·+ a0 ∈ R[X]

if monic if an = 1R.

Lemma 9.2. Let R be an integral domain and 0 ̸= f ∈ R[X]. Let

Roots(f) = {a ∈ R | f(a) = 0}

Then |Roots(f)| ≤ deg(f).

Proof. Example Sheet 2.
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Theorem 9.3. Let F be a field. Then any finite subgroup G ≤ (F×, •) is cyclic.

Proof. G is a finite abelian group. If G not cyclic, then by Theorem 6.4 (structure
theorem for finite abelian groups) there exists H ≤ G such that H ∼= Cd1 ×Cd1 for some
d1 ≥ 2. But then the polynomial f(X) = Xd1 − 1 ∈ F [X] has degree d1 and ≥ d21 roots,
which contradicts Lemma 9.2.

Example. (Z/pZ)× is cyclic.

Proposition 9.4. Any finite integral domain is a field.

Proof. Let R be a finite integral domain. Let 0 ̸= a ∈ R. Consider map ϕ : R → R,
x 7→ ax. If ϕ(x) = ϕ(y), then a(x − y) = 0 therefore x − y = 0 (since R is an integral
domain and a ̸= 0), hence x = y.

Thus ϕ is injective, and hence surjective since R is finite. Hence there exists b ∈ R such
that ab = 1, i.e. a is a unit. Thus R is a field.

Theorem 9.5 (Field of Fractions Existence). Let R be an integral domain. There
exists a field F such that

(i) R ≤ F .

(ii) Every element of F can be written in the form ab−1 where a, b ∈ R with b ̸= 0.

F is called the field of fractions of R.

Proof. Consider the set S = {(a, b) | a, b ∈ R, b ̸= 0} and the equivalence relation on S
given by

(a, b) ∼ (c, d) ⇐⇒ ad− bc = 0

Clearly reflexive and symmetric. For transitivity, if (a, b) ∼ (c, d) ∼ (e, f), then

(ad)f = (bc)f = b(cf) = b(de) =⇒ d(af − be) = 0

Since R an integral domain and d ̸= 0, this gives af − be = 0, i.e. (a, b) ∼ (e, f). Let
F = S/ ∼ and write a

b for [(a, b)]. Define

a

b
+
c

d
=
ad+ bc

bd

and
a

b
· c
d
=
ac

bd
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Can be checked that these operations are well defined and maps F into a ring with
0F = 0R

1R
and 1F = 1R

1R
.

If a
b ̸= 0F , then a ̸= 0R and a

b ·
b
a = ab

ba = 1R
1R

= 1F . So F is a field and

(i) Identify R with subring
{

r
1R

: r ∈ R
}
≤ F .

(ii) a
b = a · b−1.

Example. (i) Z is an integral domain with field of fractions Q.

(ii) C[X] has field of fractions C(X) = field of rational functions in X.

Definition. An ideal I ⊴ R is maximal if I ̸= R and if I ⊆ J ⊴ R then J = I or
R.

Lemma 9.6. A (non-zero) ring R is a field if and only if its only ideals are {0} and
R.

Proof. (⇒) If 0 ̸= I ⊴ R, then I contains a unit and hence I = R.

(⇐) If 0 ̸= x ∈ R, then the (x) is non-zero hence (x) = R and there exists y ∈ R such
that xy = 1, i.e. x is a unit.

Proposition 9.7. Let I ⊴ R be an ideal. I is maximised if and only if R/I is a
field.

Proof.

R/I is a field ⇐⇒ I/I and R/I are the only ideals in R/I

⇐⇒ I and R are the only ideals in R containing I

⇐⇒ I ⊴ R is maximal

Definition. An ideal I ⊴ R is prime if I ̸= R and whenever a, b ∈ R with a, b ∈ I,
we have a ∈ I or b ∈ I.
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Example. The ideal nZ ⊴ Z is a prime ideal if and only if n = 0 or n = p is a prime
number. If ab ∈ pZ, then p | ab so p | a or p | b, so a ∈ pZ or b ∈ pZ. Conversely, if
n = uv with u, v > 1, then uv ∈ nZ, but u ̸∈ nZ, v ̸∈ nZ.

Proposition 9.8. Let I ⊴ R be an ideal. Then I is prime if and only if R/I is an
integral domain.

Proof.

I is prime ⇐⇒ whenever a, b ∈ R with ab ∈ I, we have a ∈ I or b ∈ I
⇐⇒ whenever a+ I, b+ I ∈ R/I with (a+ I)(b+ I) = 0 + I

we have a+ I = 0 + I or b = 0 + I

⇐⇒ R/I is an integral domain.

Remark. Proposition 9.7 and 9.8 show that I maximal implies I is prime.

Start of
lecture 12 Remark. If char(R) = n, then Z/nZ ≤ R. So if R is an integral domain, then Z/nZ

is an integral domain. Therefore nZ ⊴ Z a prime ideal, therefore n = 0 or p a prime.
In particular, a field has characteristic 0 (and contains Q) or has characteristic p
(and contains Fp

∼= Z/pZ).
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10. Factorisation in integral domains

This section: R is an integral romain.

Definition. (i) a ∈ R is a unit if there exists b ∈ R with ab = 1 (equivalently
(a) = R). R× := units in R.

(ii) a ∈ R divides b ∈ R (written a | b) if there exists c ∈ R such that b = ac
(equivalently (b) ⊆ (a)).

(iii) a, b ∈ R are associate if a = bc for some unit c ∈ R× (equivalently (a) = (b),
or a | b and b | a).

(iv) r ∈ R is irreducible if r ̸= 0, r is not a unit and

r = ab =⇒ a or b is a unit

(v) r ∈ R is prime if r ̸= 0, r is not a unit and

r | ab =⇒ r | a or r | b

Note. These properties depend on ambient ring R. For example:

� 2 is prime and irreducible in Z, but not in Q.

� 2X is irreducible in Q[X], but not in Z[X].

Lemma 10.1. (r) ⊴ R is a prime ideal if and only if r = 0 or is a prime.

Proof. ⇒ Suppose (r) is prime and r ̸= 0. Since prime ideals are proper, (r) ̸= R, so
r ̸∈ R×. If r | ab, then ab ∈ (r) so a ∈ (r) or b ∈ (r) hence r | a or r | b, i.e. r is
prime.

⇐ {0} ⊴ R is a prime ideal since R an integral domain. Let r ∈ R be a prime. If
ab ∈ (r), then r | ab hence r | a or r | b. Hence a ∈ (r) or b ∈ (r), i.e. (r) is a
prime ideal.

Lemma 10.2. If r ∈ R is prime, then it is irreducible.

Proof. Since r is prime, r ̸= 0 and r ̸∈ R×. Suppose r = ab. Then r | ab so r | a or
r | b. WLOG assume r | a, so r = rc for some c ∈ R. Then r = ab = rcb, therefore
r(1− bc) = 0. Then since R is an integral domain and r ̸= 0, bc = 1, i.e. b is a unit.
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Example. Let R = Z[
√
−5] = {a+b

√
−5 : a, b ∈ Z} ≤ C (note R ∼= Z[X]/(X2+5)).

R a subring of C, so an integral domain. Define a functionN : R→ Z≥0, a+b
√
−5 7→

a2 + 5b2 “the norm”. Note that N(z1z2) = N(z1)N(z2).

Claim. R× = {±1}.

Proof. If r ∈ R×, i.e. rs = 1 for some s ∈ R. Then N(r)N(s) = N(1) = 1 so N(r) = 1.
But only integer solutions to a2 + 5b2 = 1 are (a, b) = (0, 1), (−1, 0).

Claim. 2 ∈ R is irreducible.

Proof. Suppose 2 = rs, r, s ∈ R. Then 4 = N(2) = N(r)N(s). Since a2 + 5b2 = 2 has
no integer solutions R has no elements of norm 2. Thus N(r) = 1 and N(2) = 4 (or vice
versa). But N(r) = 1 implies r is a unit (for example rr = 1).

By similar reasoning, 3, 1 +
√
−5, 1−

√
−5 are irreducible (as there are no elements of

norm 3).

Now (1 +
√
−5)(1−

√
−5) = 6 = 2 · 3. Thus 2 | (1 +

√
−5)(1−

√
−5), but 2 ∤ 1 +

√
−5

and 2 ∤ 1−
√
−5 (check by taking norms, 4 ∤ 6). Thus 2 is not prime in R.

Takeaways

(i) Irreducible does not imply prime!

(ii) 2 · 3 = (1 +
√
−5)(1−

√
−5) gives two different factorisations into irreducibles.

Remark. Since R× = {±1}, the irreducibles in (ii) are not associates.

Definition (Principal Ideal Domain). An integral domain R is a principal ideal
domain (PID) if every ideal I ⊴ R is principal, i.e. I = (r) for some r ∈ R.

For example, Z is a PID by Lemma 8.3.

Proposition 10.3. Let R be a PID. Then every irreducible element of R is prime.
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Proof. Let r ∈ R be irreducible and r | ab, and assume r ∤ a. R a PID implies (a, r) = (d)
for some d ∈ R. In particular r = cd for some c ∈ R. Since r is irreducible, either c or d
is a unit. If c a unit, then (a, r) = (r) so r | a, contradiction. If d a unit, then (a, r) = R.
So there exists s, t ∈ R such that sa + tr = 1. Then b = sab + trb, and since r | ab we
have r | b. Then r is prime.

Start of
lecture 13

Let R be an integral domain.

Lemma 10.4. Let R be a PID and 0 ̸= r ∈ R. Then r is irreducible ⇐⇒ (r) is a
maximal ideal.

Proof. ⇒ r ̸∈ R× so (r) ̸= R. Suppose (r) ⊆ J ⊆ R. R a PID implies J = (a) for
some a ∈ R. Hence r = ab for some b ∈ R. Since r is irreducible, either a ∈ R× in
which case J = R or b ∈ R× in which case (r) = J . Thus (r) is maximal.

⇐ (r) ̸= R so r ̸∈ R×. Suppose r = ab. Then (r) ⊆ (a) ⊆ R. Since (r) is maximal,
either (a) = (r) in which case b is a unit, or (a) = R in which case a is a unit.
Thus r is irreducible.

Remark. (i) Backwards direction holds without assuming R a PID.

(ii) Let R a PID, 0 ̸= rR. Then

(r) maximal ⇐⇒ r irreducible

⇐⇒ r prime

⇐⇒ (r) prime

Thus there exists a bijection

{non-zero prime ideals} ↔ {non-zero maximal ideals}

Definition (Euclidean domain). An integral domain is a Euclidean domain (ED)
if there is a function ϕ : R \ {0} → Z≥0 (a Euclidean function) such that:

(i) If a | b then ϕ(a) ≤ ϕ(b).

(ii) If a, b ∈ R with b ̸= 0, ∃q, r ∈ R with a = bq+r and either r = 0 or ϕ(r) < ϕ(b).

Example. Z is an ED with Euclidean function ϕ(n) = |n|.
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Proposition 10.5. If R is a Euclidean domain, then it is a principal ideal doman
(ie ED implies PID).

Proof. Let R have Euclidean function ϕ : R \ {0} → Z≥0. Let I ⊴ R non-zero. Choose
b ∈ I \ {0} with ϕ(b) minimal, then (b) ⊆ I. For a ∈ I, write a = bq + r with q, r ∈ R
and either r = 0 or ϕ(r) < ϕ(b). Since r = a− bq ∈ I, cannot have ϕ(r) < ϕ(b) by choice
of b. Thus a = bq ∈ (b), and hence (b) = I.

Remark. Only used (ii) here. Property (i) allows us to describe the units in R as

R× = {u ∈ R \ {0} | ϕ(u) = ϕ(1)}
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Example. (i) F a field, F [X] is an ED with Euclidean function ϕ(f) = deg f ,
f ∈ F [X]. (Proposition 7.1)

(ii) R = Z[i] is an ED with Euclidean function

ϕ(a+ ib) = N(a+ ib) = |a+ ib|2 = a2 + b2

Since N(z1z2) = N(z1)N(z2), property (i) holds. For property (ii), let z1, z2 ∈
Z[i] with z2 ̸= 0. Consider z1

z2
∈ C. This has distance less than 1 from the

nearest element of Z[i], i.e. there exists q ∈ Z[i] such that
∣∣∣ z1z2 − q∣∣∣ < 1 (∗).

Set r = z1 − z2q ∈ Z[i]. Then z1 = z2q + r and

ϕ(r) = |r|2 = |z1 − z2q|2 < |z2|2 = ϕ(z2)

Thus Proposition 10.5 implies that Z[i] and F [X] for F a field are PIDs.

Example. Let A be an n×n matrix over a field F . Let I = {f ∈ F [X] : f(A) = 0}.
If f, g ∈ I, then (f − g)(A) = f(A) − g(A) = 0 =⇒ f − g ∈ I. If f ∈ F [X] and
g ∈ I, then (f ·g)(A) = f(A) ·g(A) = 0 =⇒ fg ∈ I. Thus I ⊆ F [X] is an ideal, and
hence I = (f) for some f ∈ F [X] since F [X] is a PID. May assume f is monic upon
mlutiplying by a unit in F . Then for g ∈ F [X], g(A) = 0 ⇐⇒ g ∈ I ⇐⇒ g ∈ (f),
i.e. f | g. Thus f is minimal polynomial of A.
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Example (Field of order 8). Let F2 = Z/2Z. Let f(X) = X3 +X + 1 ∈ F2[X]. If
f(X) = g(X)h(X) with g, h ∈ F2[X] and deg(g),deg(h) > 0, then either deg(g) = 1
or deg(h) = 1, and so f has a root. But f(0) ̸= 0 and f(1) ̸= 0 (in F2). Thus f is
irreducible. Since F2[X] a PID, Lemma 10.4 implies (f) ⊴ F2[X] is maximal, henec

F2[X]/(f) = {aX2 + bX + c+ (f) | a, b, c ∈ F2}

is a field of order 8.

Start of
lecture 14 Example. Z[X] is not a PID. Consider I = (2, X) ⊴ Z[X]. Then

I = {2f1(X) +Xf2(X) : f1, f2 ∈ Z[X]}
= {f ∈ Z[X] : f(0) if even}

Suppose I = (f) for some f ∈ Z[X]. Then 2 = fg for some g ∈ Z[X]. Thus
deg(f) = deg(g) = 0 and f ∈ Z. Hence f = ±1 or ±2. Thus I = Z[X] or 2Z[X].
The first case is a contradiction since 1 ̸∈ I, and the second is a contradiction since
X ∈ I.

Definition. An integral domain is a unique factorisation domain (UFD) if

(i) Every non-zero, non-unit is a product of irreducibles.

(ii) If p1 · · · pm = q1 · · · qn where pi, qi are irreducibles, then m = n and we can
reorder so that pi is an associate of qi for all i = 1, . . . , n.

Goal: PID =⇒ UFD.

Proposition 10.6. Let R be an integral domain satisfying (i) in definition of UFD.
Then R is a UFD if and only if every irreducible is prime.

Proof. ⇒ Suppose p ∈ R is irreducible and p | ab. Then ab = pc for some c ∈ R.
Writing a, b, c as products of irreducibles, it follows from (ii) that p | a or p | b.
Thus p is prime.

⇐ Suppose p1 · · · pm = q1 · · · qn with each pi and qi irreducible. Since p1 is prime and
p1 | q1 · · · qn, we have p1 | qi for some i. Upon reordering, we may assume p1 | q1,
i.e. q1 = up1 for some u ∈ R. But q1 is irreducible and p1 not a unit, so u is a
unit. Thus p1 and q1 are associates. Cancelling p1 gives p2 · · · pmm = (uq2) · · · qn.
Result then follows by induction.
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Lemma 10.7. Let R be a PID and I1 ⊆ I2 ⊆ I3 ⊆ · · · a nested sequence of ideals.
Then ∃N ∈ N such that In = In+1 for all n ≥ N . (Rings satisfying the “ascending
chain condition” are called Noetherian – more later).

Proof. Let I =
⋃∞

i=1 Ii. This is an ideal in R. (See Example Sheet 2). Since R is a PID,
we have I = (a) for some a ∈ R. Then (a) =

⋃∞
i=1 Ii, so a ∈ IN for some N . Then for

any n ≥ N we have
(a) ⊆ IN ⊆ In ⊆ I = (a)

and so In = I.

Theorem 10.8. If R is a principal ideal domain, then it is a unique factorisation
domain. (i.e. PID implies UFD).

Proof. (i) Let 0 ̸= x ̸= R, not a unit. Suppose x is not a product of irreducibles. Then
x not irreducible, so can write x = x1y1 where x1, y1 are not units. Then either x1
or y1 is not a product of irreducibles, say x1. We have (x) ⊆ (x1) and inclusion is
strict since y1 not a unit. Now write x1 = x2y2 where x2, y2 are not units. Repeat
this procedure to get

(x) ⊊ (x1) ⊊ (x2) ⊊ · · ·
contradicting Lemma 10.7.

(ii) By proposition 10.6, suffices to show irreducibles are prime. Conclude by Proposi-
tion 10.3.

Examples

ED =⇒ PID =⇒ UFD =⇒ Integral Domain

Z/4Z ✗ ✗ ✗ ✗

Z[
√
−5] ✗ ✗ ✗ ✓

Z[X] ✗ ✗ ✓ ✓

Z
[
1+

√
−19
2

]
✗ ✓ ✓ ✓

Z[i] ✓ ✓ ✓ ✓

Definition. R an integral domain.

(i) d ∈ R is a greatest common divisor of a1, . . . an ∈ R (written d = gcd(a1, . . . , an))
if d | ai for all i and if d′ | ai for all i, then d′ | d.

(ii) m ∈ R is a least common multiple of a1, . . . , an ∈ R (writtenm = lcm(a1, . . . , an))
if ai | m for all i and if ai | m′ for all i, then m | m′.

Both gcd’s and lcm’s (when they exist) are unique up to associates.
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Proposition 10.9. In a UFD, both lcm’s and gcd’s exist.

Proof. Write ai = ui
∏

j p
nij

j for all 1 ≤ i ≤ n, where ui is a unit, the pi are irreducible
which are not associates of each other, and nij ∈ Z≥0.

We claim that d =
∏

j p
mj

j where mf = min1≤i≤n nij is the gcd of a1, . . . , an. Certainly

d | ai for all i. If d′ | ai for all i, then d′ = u
∏

j p
tj
j , we find tj ≤ nij for all j so tj ≤ mj .

Therefore d′ | d. The argument for lcm’s is similar.

Start of
lecture 15
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11. Factorisation in Polynomial Rings

Goal of this lecture:

Theorem 11.1. If R is a UFD then R[X] is a UFD.

In this section: R is a UFD with field of fractions F . We have R[X] ≤ F [X].

Moreover F [X] is an ED hence a PID and a UFD.

Definition. The content of f = anX
n + · · ·+ a1X + a0 ∈ R[X] is

c(f) = gcd(a0, a1, . . . , an)

(well-defined up to multiplication by a unit). We say f is primitive if c(f) is a unit.

Lemma 11.2. (i) If f, g ∈ R[X] are primitive, then fg is also primitive.

(ii) If f, g ∈ R[X], then c(fg) = c(f)c(g) (equality is up to units).

Proof. (i) Let f = anX
n + · · · + a1X + a0, g = bmX

m + · · · + b1X + b0. If fg is not
primitive, c(fg) is not a unit, so there is some prime p such that p | c(fg). Since
f, g primitive, p ∤ c(f) and p ∤ c(g). Suppose p | a0, p | a1, . . . , p ∤ ak, p | b0, p | b1,
. . . , p ∤ bl. Then the coefficient of Xkl in fg is∑

i+j=k+1

aibj = · · ·+ ak−1bl−1︸ ︷︷ ︸
divisible by p

+akbl + ak−1bl−1 + · · ·︸ ︷︷ ︸
divisible by p

Note that the LHS is divisible by p, hence p | akbl so p | ak or p | bl, contradiction.

(ii) Write f = c(f)f0 and c(g)g0 where f0, g0 ∈ R[X] primitive. Then

fg = c(f)c(g)f0g0

where f0g0 is primitive by (i). Hence c(fg) = c(f)c(g) (up to a unit).

Corollary 11.3. Let p ∈ R be prime. Then p is prime in R[X].

Proof. R[X]× = R×, so p is not a unit in R[X]. Let f ∈ R[X]. Then p | f in R[X] if
and only if p | c(f) in R. Thus if p | gh in R[X], we have

p | c(gh) = c(g)c(h) =⇒ p | c(g) or c(h) in R
=⇒ p | g or p | h in R[X], i.e. p prime in R[X].
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Lemma 11.4. Let f, g ∈ R[X] with g primitive. If g | f in F [X], then g | f in
R[X].

Proof. Let f = gh, h ∈ F [X]. Let a ∈ R such that ah ∈ R[X] (“clear denominators”),
and write ah = c(ah)h0, af = c(ah)h0g with h0 primitive, and hence h0g primitive.
Taking contents, we find that a | c(ah). Thus h ∈ R[X] and g | f in R[X].

Lemma (Gauss’s Lemma). Let f ∈ R[X] be primitive. Then f irreducible in R[X]
implies f irreducible in F [X].

Proof. Since f ∈ R[X] is irreducible and primitive, we have deg(f) > 0, and so f not a
unit in F [X]. Suppose that f is not irreducible in F [X], say f = gh, where g, h ∈ F [X]
with deg(g), deg(h) > 0. Let λ ∈ F× such that λ−1g ∈ R[X] is primitive. (For example,
let 0 ̸= b ∈ R such that bg ∈ R[X]. Then bg = c(bg)g0 with g0 primitive. So can take

λ = c(bg)
b ∈ F×).

Upon replacing g by λ−1g and h by λh, may assume g ∈ R[X] primitive. Then Lemma
11.4 implies h(X) ∈ R[X] and so f = gh in R[X], deg(g), deg(h) > 0, contradiction.

Remark. We’ll see “⇐” also holds.

Lemma 11.5. Let g ∈ R[X] be primitive. Then g is prime in F [X] implies g prime
in R[X].

Proof. Suppose f1, f2 ∈ R[X] and g | f1f2 in R[X]. g prime in F [X] implies g | f1 or
g | f2 in F [X] hence by Lemma 11.4, g | f1 or g | f2 in R[X], i.e. g prime in R[X].

Now we can finally prove Theorem 11.1:

Proof of Theorem 11.1. Let f ∈ R[X]. Write f = c(f)f0 with f0 ∈ R[X] primitive. R
a UFD implies c(f) a product of irreducibles in R (which are irreducible in R[X]). If
f0 not irreducible, say f0 = gh, then deg(g), deg(h) > 0 since f0 primitive, and g, h
primitive.

By induction on degree, f0 a product of irreducibles in R[X] – establishes (i) in definition
of UFD. By Proposition 10.6, suffices to show that if f ∈ R[X] is irreducible, then f is
prime. Write f = c(f)f0, f0 ∈ R[X] primitive. Then f irreducible implies f constant or
primitive.
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� Case f constant: f irreducible in R[X] implies f irreducible in R, hence prime in
R (since UFD), hence f prime in R[X] by Corollary 11.3.

� Case f primitive: f irreducible in R[X] implies f irreducible in F [X] (Gauss’s
Lemma), hence f prime in F [X] (F [X] an ED hence UFD), hence f prime in
R[X] by Lemma 11.5.

Remark. By Lemma 10.2, the three implications in the f primitive case are actually
equivalences.

Start of
lecture 16 Example. (i) Theorem 11.1 implies Z[X] is a UFD.

(ii) Let R[X1, . . . , Xn] be the polynomial ring in X1, . . . , Xn with coefficients in R.
(Define inductively R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]). Applying Theo-
rem 11.1 inductively implies R[X1, . . . , Xn] is a UFD if R is as UFD.

Theorem (Eisenstein’s Criterion). Let R be a UFD and f(X) = anX
n + · · · +

a1X + a0 ∈ R[X] primitive. Suppose ∃p ∈ R irreducible (= prime) such that

� p ∤ an

� p | ai ∀0 ≤ i ≤ n− 1

� p2 ∤ a0

Then f is irreducible in R[X].

Proof. Suppose f = gh, g, h ∈ R[X] not units. f primitive implies deg(g), deg(h) > 0.
Let g = rkX

k + · · · + r1X + r0, h = slX
l + · · · + s1X + s0 with k + l = m. Then

p ∤ an = rksl so p ∤ rk and p ∤ sl, and p | a0 = r0s0 so p | r0 or p | s0. WLOG p | r0.
Then there exists j ≤ k such that p | r0, p | r1, . . . , p | rj−1, p ∤ rj . Then

aj = r0sj + r1sj−1 + · · ·+ rj−1s1︸ ︷︷ ︸
divisible by p

+rjso

but p divides aj since j < n, thus p | rjs0, hence p | s0. Then p2 | r0s0 = a0, contradicting
the third assumption.
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Example. (i) f(X) = X3 + 2X + 5 ∈ Z[X]. If f irreducible in Z[X], then

f(X) = (x+ a)(X2 + bX + c)

for some a, b, c ∈ Z. Thus ac = 5. But ±1, ±5 are not roots of f , contradiction.
By Gauss’s Lemma, f irreducible in Q[X]. Thus Q[X]/(f) is a field (Lemma
10.4).

(ii) Let p ∈ Z be a prime. Eisenstein’s criterion implies xn − p is irreducible in
Z[X], have irreducible in Q[X] by Gauss’s Lemma.

(iii) Let f(X) = Xp−1+Xp−2+· · ·+X+1 ∈ Z[X] where p is prime. Eisenstein does
not apply directly to f . But note that f(X) = Xp−1

X−1 . Substituting Y = X − 1
gives

f(Y + 1) =
(Y + 1)p − 1

(Y + 1)− 1
= Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

p− 2

)
Y +

(
p

p− 1

)
Now p |

(
p
i

)
for all 1 ≤ i ≤ p−1 and p2 ∤

(
p

p−1

)
= p. Thus f(Y +1) is irreducible

in Z[Y ], so f(X) is irreducible in Z[X] (because if it did have a factorisation
then we could construct a factorisation of f(Y + 1)).
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12. Algebraic Integers

Recall Z[i] = {a+ bi : a, b ∈ Z} ≤ C – ring of Gaussian integers. Norm N : Z[i]→ Z≥0,
a + ib 7→ a2 + b2 with N(z1) = N(z1)N(z2) is a Euclidean function. Thus Z[i] is a

Euclidean Domain, hence PID and UFD, and so primes = irreducibles in Z[i]. The

units in Z[i] are ±1, ±i.

Example. (i) 2 = (1 + i)(1− i) and 5 = (2 + i)(2− i) are not primes in Z[i].

(ii) N(3) = 9 so if 3 = ab in Z[i] then N(a)N(b) = 9. But Z[i] has no elements of
norm 3. Thus a or b is a unit, hence 3 is a prime in Z[i]. Similarly 7 is prime.

Proposition 12.1. Let p ∈ Z be a prime number. Then the following are equiva-
lent:

(i) p is not prime in Z[i].

(ii) p = a2 + b2 for some a, b ∈ Z.

(iii) p = 2 or p ≡ 1 (mod 4).

Proof.

(i) =⇒ (ii) Let p = xy, x, y ∈ Z[i] not units. Then p2 = N(p) = N(x)N(y),
N(x), N(y) > 1. Thus N(x) = N(y) = p. Writing x = a + ib gives
p = N(x) = a2 + b2.

(ii) =⇒ (iii) The squares modulo 4 are 0 and 1. Thus if p = a2 + b2, then p ̸≡ 3
(mod 4).

(iii) =⇒ (i) Already saw 2 not prime in Z[i]. Assume p ≡ 1 (mod 4). By Theorem
9.3, (Z/pZ)× is cyclic of order p−1. Then (Z/pZ)× contains an element
of order 4, i.e. there exists x ∈ Z with xa ≡ 1 (mod p) but x2 ̸≡ 1
(mod p). Thus x2 ≡ −1 (mod p). Now p | x2 + 1 = (x + i)(x − i) but
p ∤ x+ i and p ∤ x− i. Thus p not prime.

Theorem 12.2. The primes in Z[i] (up to associates) are

(i) a + ib, where a, b ∈ Z and a2 + b2 = p a prime number with p = 2 or p ≡ 1
(mod 4).

(ii) Prime numbers p ∈ Z with p ≡ 3 (mod 4).

Proof. First we check these are primes.
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(i) N(a + ib) = p. If a + ib = uv then either N(u) = 1 or N(v) = 1. Thus a + ib is
irreducible, hence prime.

(ii) Proposition 12.1, now let z ∈ Z[i] prime (= irreducible). Then z ∈ Z[i] is also
irreducible and N(z) = zz is a factorisation into irreducibles. Let p ∈ Z be a prime
number dividing N(z). If p ≡ 3 (mod 4), then p is prime in Z[i]. Thus p | z or
p | z, so p is an associate of z or z. Hence p is an associate of z. Otherwise, p = 2 or
p ≡ 1 (mod 4) and P = a2+b2 = (a+ib)(a−ib), a, b ∈ Z. Then (a+ib)(a−ib) | zz.
Thus z is an associate of a+ ib or a− ib by uniqueness of factorisation.

Start of
lecture 17 Remark. In Theorem 12.2, if p = a2+ b2, a+ bi and a− bi are not associates unless

p = 2 ((1 + i) = (1− i)i).

Corollary 12.3. An integer n ≥ 1 is the sum of 2 squares if and only if every prime
factor p of n with p ≡ 3 (mod 4) divides n to an even power.

Proof.

n = a2 + b2 ⇐⇒ n = N(x) for some x ∈ Z[i]
⇐⇒ n a product of norms of primes in Z[i]

Theorem 12.2 implies that norms of primes in Z[i] are the primes p ∈ Z with p ̸≡ 3
(mod 4) and squares of primes p ∈ Z with p ≡ 3 (mod 4).

Example. 65 = 5 · 13. Factoring into primes in Z[i] gives

5 = (2 + i)(2− i)
13 = (2 + 3i)(2− 3i)

Thus 65 = (2 + i)(2 + 3i)(2 + i)(2 + 3i), i.e.

65 = N((2 + i)(2 + 3i))

= N(1 + 8i)

= 12 + 82

But also have

65 = N((2 + i)(2− 3i))

= N(7− 4i)

= 72 + 42
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Definition. (i) α ∈ C is an algebraic number if there exists non-zero f ∈ Q[X]
with f(α) = 0.

(ii) α ∈ C is an algebraic integer if there exists monic f ∈ Z[X] with f(α) = 0.

Notation. Let R be a subring of S, and α ∈ S. We write R[α] for the smallest
subring of S containing R and α, i.e. if

ϕ : R[X]→ S, g(X) 7→ g(α)

then R[α] = Im(ϕ).

Let α be an algebraic number and let ϕ : Q[X] → C, g(X) 7→ g(α). (Im(ϕ) = Q[α]).
Q[X] is a PID hence ker(ϕ) = (f) for some f ∈ Q[X]. Then f ̸= 0, since α an algebraic
number. Upon multiplying f by a unit, may assume f is monic.

Definition. f is theminimal polynomial of α. By isomorphism theorem, Q[X]/(f) ∼=
Q[α] ≤ C. Thus Q[α] an integral domain, hence f irreducible in Q[X] (hence Q[α]
is a field).

Proposition 12.4. Let α be an algebraic integer, and f ∈ Q[X] its minimal polyno-
mial. Then f ∈ Z[X] and (f) = ker(θ), where θ : Z[X]→ C is the map g(X) 7→ g(α).

Proof. Let λ ∈ Q× such that λf ∈ Z[X] is primitive. Then λf(α) = 0, so λf ∈ ker(θ).
Let g ∈ ker(θ) ⊴ Z[X]. Then g ∈ ker(ϕ) and hence λf | g in Q[X]. Then by Lemma
11.4, λf | g in Z[X]. Thus ker(θ) = (λf). Now α is an algebraic integer, hence there
exists g ∈ ker(θ) monic. Then λf | g in Z[X] hence λ = ±1. Hence f ∈ Z[X], and
(f) = ker(θ).

Let α ∈ C an algebraic integer. Applying isomorphism theorem to θ gives Z[X]/(f) ∼=
Z[α]. Examples: i,

√
2, −1+

√
3

2 , n
√
p have minimal polynomials X2+1, X2−2, X2+X+1,

Xn − p. Hence

Z[X]/(X2 + 1) ∼= Z[i], Z[X]/(X2 − 2) ∼= Z[
√
2]

etc.

Corollary 12.5. If α is an algebraic integer and α ∈ Q, then α ∈ Z.

Proof. Let α be an algebraic integer. Then minimal polynomial has coefficients in Z.
α ∈ Q implies minimal polynomial is X − α, and so α ∈ Z.
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13. Noetherian Rings

We showed that any PID R satisfies the ascending chain condition (ACC): If I1 ⊆ I2 ⊆
· · · are ideals in R, then there exists N ∈ N such that In = In+1 for all n ≥ N . More
generally:

Lemma 13.1. Let R be a ring.

R satisfies ACC ⇐⇒ All ideals in R are finitely generated

Proof. ⇐ Let I1 ⊆ I2 ⊆ · · · be a chain of ideals and I =
⋃

n≥1 In, which is again an
ideal. By assumption I = (a1, . . . , an) for some a1, . . . , am ∈ R. These elements
belong to a nested union, so there exists N ∈ N such that a1, . . . , am ∈ IN . Then
for n ≥ N ,

(a1, . . . , am) ⊆ IN ⊆ IN ⊆ I = (a1, . . . , am)

so In = IN .

⇒ Assume J ⊴ R not finitely generated. Choose a1 ∈ J . Then J ̸= (a1) , so can
choose a2 ∈ J \ (a1). Then J ̸= (a1, a2), so choose a3 ∈ J \ (a1, a2). Continuing
this process we obtain a chain of ideals

(a1) ⊊ (a1, a2) ⊊ (a1, a2, a3) ⊊ · · ·

with strict inclusions, which contradicts ACC.

Definition (Noetherian Ring). A ring is called Noetherian if it satisfies the As-
cending Chain Condition.

Start of
lecture 18 Theorem (Hilbert’s Basis Theorem). If R is a Noetherian ring, then R[X] is also

Noetherian.

Proof. Assume J ⊴ R[X] is not finitely generated. Choose f1 ∈ J of minimal degree.
Then (f1) ⊊ J . Choose f2 ∈ J \ (f1) of minimal degree. Then (f1, f2) ⊊ J . Choose
f3 ∈ J \ (f1, f2) of minimal degree and so on. We obtain a sequence f1, f2, . . . with
deg fi ≤ deg fi+1. Set ai := leading coefficient of fi. We obtain (a1) ⊆ (a1, a2) ⊆ · · · ,
a chain of ideals in R. Since R is Noetherian, there exists m ∈ N such that am+1 ∈
(a1, . . . , am). Let am+1 =

∑m
i=1 λiai, λi ∈ R and set

g =

m∑
i=1

λifiX
deg fm−1−deg fi ∈ (f1, . . . , fm)
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Then deg fm+1 = deg g and they have the same leading coefficient am+1. Then fm+1−g ∈
J and deg(fm+1− g) < deg fm+1. Hence by minimality of degree of fm+1, we must have
fm+1−g ∈ (f1, . . . , fm). But g ∈ (f1, . . . , fm), hence fm+1 ∈ (f1, . . . , fm), contradiction.
Thus J is finitely generated, so R[X] is Noetherian by Lemma 13.1.

Corollary. � Z[X1, . . . , Xn] is Noetherian.

� F [X1, . . . , Xn] Noetherian, F a field.

Examples

Let R = C[X1, . . . , Xn]. Let V ⊆ Cn be a subset of the form

{(a1, . . . , an) | f(a1, . . . , an) = 0,∀f ∈ F}

where F ⊂ R is a possibly infinite set of polynomials. Let

I =

{
m∑
i=1

λifi | m ∈ N, λi ∈ R, fi ∈ F

}

Then I ⊴ R, so I = (g1, . . . , gr), gi ∈ I (since R Noetherian). Thus

V = {(a1, . . . , an) | gi(a1, . . . , an) = 0, i = 1, . . . , n}

i.e. V is defined by finitely many polymonials.

Lemma 13.2. Let R be a Noetherian ring and I ⊴ R. Then R/I is Noetherian.

Proof. Let J ′
1 ⊆ J ′

2 ⊆ · · · a chain of ideals in R/I. By the ideal correspondence we have
J ′
i = Ji/I for some J1 ⊆ J2 ⊆ · · · a chain of ideals in R (containing I). R Noetherian

implies there exists N ∈ N such that Jn = Jn+1 for all n ≥ N , hence J ′
n = Jn+1 for all

n ≥ N . Thus R/I is Noetherian.

Examples

(i) Z[i] = Z[X]/(X2 + 1) is Noetherian.

(ii) R[X] Noetherian implies R[X]/X is Noetherian.

Examples of non-Noetherian Rings

(i) R = Z[X1, X2, . . .] =
⋃

n≥1 Z[X1, . . . , Xn]. i.e. polynomials in countably many
variables. But (X1) ⊆ (X1, X2) ⊊ (X1, X2, X3) ⊊ · · · is an infinite ascending
chain, so R is not Noetherian.
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(ii) R = {f ∈ Q[X] : f(0) ∈ Z} ≤ Q[X]. But:

(X) ⊊
(
1

2
X

)
⊊
(
1

4
X

)
⊊
(
1

8
X

)
⊊ · · ·

(each inclusion is strict because 2 ∈ R is not a unit).
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14. Modules

Definition (Module). Let R be a ring. A module over R is a triple (M,+, ·)
consisting of a set M and two operations

+ :M ×M →M, · : R×M →M

such that

(i) (M,+) is an abelian group, say with identity 0 (=0M ).

(ii) The operation · satisfies:

(r1 + r2) ·m = r1 ·m+ r2 ·m ∀r1, r2 ∈ R,m ∈M
r · (m1 +m2) = r ·m1 + r ·m2 ∀r ∈ R,m1,m2 ∈M
r1 · (r2 ·m) = (r1 · r2) ·m ∀r1, r2 ∈ R,m ∈M

1R ·m = m ∀m ∈M

Remark. Don’t forget closure when checking +, · well-defined.

Example. (i) Let R = F be a field. Then an F -module is precisely the same as
a vector space over F .

(ii) R = Z, a Z-module is precisely the same as an abelian group, where · : Z×A→
A maps

(n, a) 7→



n copies︷ ︸︸ ︷
a+ a+ · · ·+ a n > 0

0 n = 0

−(a+ a+ · · ·+ a︸ ︷︷ ︸
n copies

) n < 0

(iii) F a field, V a vector space over F and α : U → V a linear map. We can make
V an F [X]-module via

· : F [X]× V → V (fv) 7→ (f(α)(v))

for example (X2+!) · v = (α2 + 1V )(v).

Note. Different choices of α make V into different F [X]-modules. Some-
times we’ll write V = Vα to make this clear.
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Examples

General construction.

(i) For any ring R, Rn is an R-module via r ·(r1, . . . , rn) = (r1, . . . , rrn). In particular,
taking n = 1, R is an R-module.

(ii) If I ⊴ R, then I is an R-module (restrict the usual multiplication on R) and R/I
is an R-module via

r · (s+ I) = rs+ I

(iii) ϕ : R → S a ring homomorphism, then any S-module M may be regarded as an
R-module:

R×M →M (r,m) 7→ ϕ(r) ·m

In particular, if R ≤ S then any S-module may be viewed as an R-module.

Start of
lecture 19 Definition. M an R-module. N ⊂M is an R-submodule (written N ≤M) if it is

a subgroup of (M,+) and r · n ∈ N for all r ∈ R, n ∈ N .

Examples

(i) A subset of R is an R-submodule precisely when it is an ideal.

(ii) When R = F is a field, module ≡ vector space, submodule ≡ vector subspace.

Definition. If N ≤M an R-submodule, the quotientM/N is the quotient of groups
under + with

r · (m+N) = rm+N

This is well-defined, and makes M/N an R-module.

Definition. Let M,N be R-modules. A function f : M → N is an R-module
homomorphism if it is a homomorphism of abelian groups and

f(r ·m) = r · f(m) ∀r ∈ R,m ∈M
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Theorem (First isomorphism theorem). Let f : M → N be an R-module homo-
morphism. Then

� ker(f) := {m ∈M | f(m) = 0} ≤M

� Im(f) := {f(m) ∈ N | m ∈M} ≤ N

and M/ ker(f) ∼= Im(f).

Proof. Similar to before.

Theorem (Second isomorphism theorem). Let A,B ≤M be submodules. Then

A+B = {a+ b | a ∈ A, b ∈ B} ≤M

A ∩B ≤M

and
A/(A ∩B) ∼= (A+B)/B

Proof. Apply first isomorphism theorem to the composite A ↪→M ↪→M/B.

For third isomorphism theorem, note that there exists bijection

{submodules of M/N} ↔ {submodules of M containing N}

Theorem (Third isomorphism theorem). If N ≤ L ≤ M are R-submodules of M ,
then

M/N

L/N
∼=M/L

In particular, these apply to vector spaces (compare with results from Linear Algebra).

Let M be an R-module. If m ∈ M , write Rm = {rm ∈ M | r ∈ R} – submodule
generated by m. If A,B ≤M , write

A+B = {a+ b | a ∈ A, b ∈ B} ≤M

Definition. � M is cyclic if there exists m ∈M such that M = Rm.

� M is finitely generated if there exists m1, . . . ,mn ∈M such that

M = Rm1 +Rm2 + · · ·+Rmn
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Lemma 14.1. M is cyclic if and only if M ∼= R/I for some I ⊴ R.

Proof. ⇒ Suppose M = Rm. Then there is a surjective R-module homomorphism
R → M , r 7→ rm. Its kernel is an R-submodule of R, i.e. an ideal. Then first
isomorphism theorem gives R/I ∼=M .

⇐ R/I is generated as an R-module by 1R + I.

Lemma 14.2. M finitely generated if and only if there exists a surjective R-module
homomorphism f : Rn →M for some n.

Proof. ⇒ IfM = Rm1+Rm2+· · ·+Rmn define f : Rn →M , (r1, . . . , rn) 7→
∑n

i=1 rimi

a surjective R-module homomorphism.

⇐ Let ei = (0, . . . , 1, . . . , 0) ∈ Rn. (1 is in the i-th place). Given f , let mi := f(ei) ∈
M . Then any m ∈M is of the form

f(r1, . . . , rn) = f

(
n∑

i=1

riei

)

=
n∑

i=1

rif(ei)

=
n∑

i=1

rimi

Thus M = Rm1 + · · ·+Rmn.

Corollary 14.3. Let N ≤M be an R-submodule. If M is finitely generated, then
M/N is finitely generated.

Proof. Let f : Rn → M be a surjective R-module homomorphism. Then Rn → M →
M/N is a surjective R-module homomorphism.

Example (Counter-example). A submodule of a finitely generated module need
not be finitely generated. Let R be a non-Noetherian ring and I ⊴ R a non-finitely
generated ideal. Then R is a finitely generated R-module and I is a submodule
which is not finitely generated.
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Remark. A submodule of a finitely generated module over a Noetherian ring is
finitely generated (Examples Sheet 4).

Lemma 14.4. Let R be an integral domain. Then

every submodule of a cyclic R-submodule is cyclic ⇐⇒ R is a PID

Proof. ⇒ R is a cyclic R-module. Saying its submodules are cyclic precisely means
that every ideal is principal.

⇐ IfM is a cyclic R-module, thenM ∼= R/I, I ⊴ R by Lemma 14.1. Any submodule
of R/I is of the form J/I for some ideal J ⊴ R and I ≤ J . R a PID implies J
principal hence J/I is cyclic.

Definition. Let M be an R-module.

(i) An element m ∈M is torsion if there exists 0 ̸= r ∈ R with rm = 0.

(ii) M is a torsion module if every m ∈M is torsion.

(iii) M is torsion free if every 0 ̸= m ∈M is not torsion.

Example. � The torsion elements in a Z-module (= abelian group) are the
elements of finite order.

� Any F -module (= vector space) is torsion free.

Start of
lecture 20
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15. Direct Sums and Free Module

Definition. Let M1, . . . ,Mn be R-modules. The direct sum

M1 ⊕M2 ⊕ · · · ⊕Mn

is the set M1 × · · · ×Mn with operations

(m1, . . . ,mn) + (m′
1, . . . ,m

′
n) = (m1 +m′

1, . . . ,mn +m′
n)

r(m1, . . . ,mn) = (rm1, . . . , rmn) (r ∈ R)

Example. Rn = R⊕ · · · ⊕R.

Lemma 15.1. IfM =
⊕n

i=1Mi and Ni ≤Mi for all i, then setting N =
⊕n

i=1Ni ≤
M , we have

M/N ∼=
n⊕

i=1

Mi/Ni

Proof. Apply first isomorphism theorem to the surjective R-module homomorphism

M →
n⊕

i=1

Mi/Ni

(m1, . . . ,mn) 7→ (m1 +N1, . . . ,mn +Nn)

with kernel N =
⊕n

i=1Ni.

Definition. Let m1, . . . ,mn ∈M . The set {m1, . . . ,mn} is independent if

n∑
i=1

rimi = 0 =⇒ r1 = r2 = · · · = rn = 0

Definition. A subset S ⊂M generates M freely if

(i) S generates M , i.e. ∀m ∈M , m =
∑n

i=1 risi for some ri ∈ R, si ∈ S.

(ii) Any function ψ : S → N where N is an R-module, extends to an R-module
homomorphism θ :M → N . (Such an extension is unique by (i)).

An R-module which is freely generated by some subset S ⊂M is called free and S
is called a free basis.
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Proposition 15.2. For a subset S = {m1, . . . ,mn} ⊂M , the following are equiva-
lent:

(i) S generates M freely.

(ii) S generates M and S is independent.

(iii) Every element of M can be written uniquely as

r1m1 + · · · rnmn

for some r1, . . . , rn ∈ R.

(iv) The R-module homomorphism

Rn →M

(r1, . . . , rn) 7→
n∑

i=1

rimi

is an isomorphism.

Proof.(i) =⇒ (ii) Let S generateM freely. If S is not independent, then ∃r1, . . . , rn ∈ R with∑
rimi = 0 and some rj ̸= 0. Define ψ : S → R

mi 7→

{
1 i = j

0 i ̸= j

extends to R-module homomorphism M → R. Then

0 = θ(0)

= θ
(∑

rimi

)
=
∑

riθ(mi)

= ri

Thus S is independent. The rest are exercises.

Example. A is non-trivial finite abelian group. Then A is not a free Z-module.
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Example. The set {2, 3} generates Z as a Z-module, but they are not independent
since

(3) · 2 + (−2) · 3 = 0

Furthermore, no subset of {2, 3} is a free basis, since {2} and {3} do not generate.

Proposition 15.3 (Invariance of dimension). Let R be a non-zero ring. If Rm ∼= Rn

as R-modules then m = n.

Proof. First, we introduce a general construction. Let I ⊴ R and M an R-module.
Define

IM =
{∑

aimi : ai ∈ I,mi ∈M
}
≤M

The quotient M/IM is an R/I-module via

(r + I)(m+ IM) = rm+ IM

Well-defined: if b ∈ I then

b · (m+ IM) = bm+ IM = 0 + IM

Suppose Rm ∼= Rn. Choose I ⊴ R maximal ideal (user Zorn’s Lemma and Example
Sheet 2 Question 4). By the above, we get an isomorphism of R/i module

(R/I)m ∼= Rm/IRm ∼= Rn/IRn ∼= (R/I)n

But I ⊴ R is maximal hence R/I is a field. So m = n by invariance of dimension for
vector spaces.
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16. The Structure Theorem and Applications

Until further notice: R is always a Euclidean domain, ϕ : R \ {0} → Z≥0 Euclidean
function. Let A be an m× n matrix with entries in R.

Definition. The elementary row operations are:

(ER1) Add λ times i-th row to j-th row (λ ∈ R, i ̸= j).

(ER2) Swapping i-th and j-th rows.

(ER3) Multiply i-th row by u ∈ R×.

Each of these can be realised by left multiplication by an m×m invertible matrix:

In particular, these operations are reversible. Similarly, we can define elementary column
operations (EC1-3) – realised b right multiplication by an invertible n× n matrix.

Definition (Equivalent matrices). Two m × n matrices A and B are equivalent if
there exists a sequence of elementary row and column operations taking A to B. If
they are equivalent, then there exists (invertible) P , Q such that B = QAP .

Start of
lecture 21

Let R be a Euclidean domain and ϕ : R \ {0} → Z≥0 a Euclidean function.

Theorem 16.1 (Smith Normal-form). An m×n matrix A = (aij) over a Euclidean
Domain R is equivalent to a diagonal matrix

d1 0 · · · 0 · · · 0
0 d2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · dt · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0


where di ̸= 0 and d1 | d2 | · · · | dt. The di are called invariant factors. We will show
they are unique up to associates.

69

https://notes.ggim.me/GRM#lecturelink.21


Proof. If A = 0 then done. Otherwise upon swapping rows and columns, may assume
a11 ̸= 0. We will reduce ϕ(a11) as much as possible via the following algorithm.

(Step 1) If a11 | a1j for some j ≥ 2, then write aij = qa11 + r, q1r ∈ R, ϕ(r) < ϕ(a11).
Subtracting q times column 1 from j, and swapping these columns makes the
top left entry r.

(Step 2) If a11 ∤ ai1 for some i ≥ 2 then repeat above process with row operations.

Steps 1 and 2 decrease ϕ(a11), so can repeat finitely many times until a11 | a1j
for all j ≥ 2 and a11 | ai1 for all i ≥ 2. Subtracting multiples of first row /
column from others gives

A =


a11 0 · · · 0
0
... A′

0


where A′ is a (m− 1)× (n− 1) matrix.

(Step 3) If a11 ∤ aij for some i, j ≥ 2, then add i-th row to first row, and perform column
operations as in Step 1 to decrease ϕ(a11). Then restart algorithm. Hence after
finitely many steps we get

A =


a11 0 · · · 0
0
... A′

0


with a11 = d1 say such that d1 | aij for all i, j.

Applying the same method to A′ gives the result.

For uniqueness of invariant factors – introduce minors of A.

Definition. A k × k minor of A is the determinant of a k × k submatrix of A (i.e.
a matrix formed by deleting m− k rows and n− k columns).

Definition. The k-th Fitting ideal Fitk(A) ⊴ R is the ideal generated by the k× k
minors of A.
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Lemma 16.2. If A and B are equivalent matrices, then Fitk(A) = Fitk(B) for all
k.

Proof. We show that (ER1-3) don’t change Fitk(A). Same proof works for EC1-3.

(ER1) Add λ times j-th row to i-th row, so A becomes A′. Let C be a k× k submatrix
of A and C ′ the corresponding submatrix of A′.

� If we did not choose the i-th row, then C = C ′ so detC = detC ′.

� If we choose both of the rows i and j, then C and C ′ differ by row operation,
hence detC = detC ′.

� If we chose the i-th row but not the j-th row, then by expanding along the
i-th row,

det(C ′) = det(C)± λ det(D)

where D is another R×R submatrix of A (Choose j-th row instead of i-th
row). Thus det(C ′) ∈ Fitk(A).

Hence Fitk(A
′) ⊂ Fitk(A). Since (ER1) is reversible we get ⊃ as well by same

argument, hence equality. (ER2) and (ER3) are similar but easier.

Now ifA has SNF diag(d1, . . . , dt, 0, . . . , 0), d1 | d2 | · · · | dt, then Fitk(A) = (d1d2 · · · dk) ⊴
R, k = 1, . . . , t. Thus the products d1 · · · dk (up to associate) depends only on A.

Example. Consider the matrix

A =

(
2 −1
1 2

)
over Z. (

2 −1
1 2

)
c1→c1+c2−→

(
1 −1
3 2

)
c2→c1+c2−→

(
1 0
3 5

)
R2→R2−3R1−→

(
1 0
0 5

)
But also (d1) = (2,−1, 1, 2) = (1) so d1 = ±1, (d1d) = (detA) = (5) so d2 = ±5.

We will use SNF to prove the structure theorem. First some preparation.

Lemma 16.3. R a Euclidean Domain. Any submodule of Rm is generated by at
most m elements.

71



Remark. m = 1 was Lemma 14.4.

Proof. Let N ≤ Rm. Consider the ideal

I = {r1 ∈ R | ∃r2, . . . , rm ∈ R, (r1, . . . , rn) ∈ N} ⊴ R

Since ED implies PID, we have I = (a) for some a ∈ R. Choose some n = (a, a2, . . . , am) ∈
N . For (r1, . . . , rm) ∈ N , we have r1 = ra for some r ∈ R, so

(r1, r2, . . . , rm)− rn = (0, r2 − ra2, . . . , rm − ram)

which lies in N ′ := N ∩ (0⊕ Rm−1) ≤ Rm−1, hence N = Rn+N ′. By induction, N ′ is
generated by n2, . . . , nm, hence {n, n2, . . . , nm} generates N .

Start of
lecture 22 Lemma 16.4. R an PID. Any submodule of Rm is finitely generated.

Proof. Example Sheet 4.

Theorem 16.5. Let R be a Euclidean Domain and N ≤ Rm. There is a free basis
x1, . . . , xm for Rm such that N is generated by d1x1, . . . , dtxt for some t ≤ m and
d1, . . . , dt ∈ R with d1 | d2 | · · · | dt.

Proof. By Lemma 16.3 we have N = Ry1 + · · ·+Ryn for some n ≤ m. Each yi belongs
to Rm, so we can form an m× n matrix

A = (y1|y2| · · · |yn)

By Theorem 16.1, A is equivalent to

A′ = diag(d1, . . . , dt, 0, . . . , 0)

A′ obtained from A by elementary row and column operations. Each row operation
changes our choice of free basis for Rm and each column operation changes our set
of generators for N . Thus, after changing free basis of Rm to x1, . . . , xm (say), the
submodule N is generated by d1x1, d2x2, . . . , dtxt as claimed.

Theorem (Structure Theorem). Let R be a Euclidean Domain and M a finitely
generated R-module. Then

M ∼= R/(d1)⊕R/(d2)⊕ · · · ⊕R/(dt)⊕R⊕ · · · ⊕R︸ ︷︷ ︸
k copies

for some 0 ̸= d1 ∈ R with d1 | d1 | · · · | dt and k ≥ 0. The di are called invariant
factors.
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Proof. Since M is finitely generated, there exists a surjective R-module homomorphism
ϕ : Rm →M for somem (Lemma 14.1). By first isomorphism theorem,M ∼= Rm/ ker(ϕ).
By Theorem 16.4, there exists a free basis x1, . . . , xm for Rm such that ker(ϕ) is generated
by d1x1, . . . , dtxt with d1 | d2 | · · · | dt. Then

M ∼=
R⊕R⊕ · · · ⊕R⊕R⊕ · · · ⊕R

d1R⊕ d2R⊕ · · · ⊕ dtR⊕ 0⊕ · · · ⊕ 0
∼= R/(d1)⊕R/(d2)⊕ · · · ⊕R/(dt)⊕R⊕ · · · ⊕R (by Lemma 15.1)

Remark. After deleting these di which are units, the module M uniquely deter-
mines the di (up to associates). Proof omitted.

Corollary 16.6. Let R be a Euclidean Domain. Then any finitely generated
torsion-free R-module is free.

Proof. M torsion-free =⇒ no submodules of the form R/(d) with d ̸= 0. ThusM ∼= Rm

for some m.

Example. R = Z. Consider the abelian group G generated by a and b subject to
the relations 2a + b = 0, −a + 2b = 0. Then G ∼= Z2/N , where N is generated by
(2, 1), (−1, 2).

A =

(
2 −1
1 2

)
has SNF

(
1 0
0 5

)
Thus can change basis for Z2 such that N is generated by (1, 0) and (0, 5). Thus

G ∼= Z2/N ∼=
Z⊕ Z
Z⊕ 5Z

∼= Z/5Z

More generally:

Theorem (Structure theorem for finitely generated abelian groups). Any finitely
generate abelian group G is isomorphic to

Z/d1Z⊕ · · · ⊕ Z/dtZ⊕ Z⊕ Z⊕ · · · ⊕ Z

where d1 | d2 | · · · | dt and r ≥ 0.

Proof. Take R = Z in structure theorem.
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Remark. The special case G is finite (so r = 0) was quoted as Theorem 6.4.

In Section 6, we saw that any finite abelian group can be written as a product of Cpi ’s
where p is prime. To generalise this we need:

Lemma 16.7. Let R be a PID and a, b ∈ R with gcd(a, b) = 1. Then

R/(ab) ∼= R/(a)⊕R/(b)

as R-modules. (Case R = Z was Lemma 6.2).

Proof. R a PID =⇒ (a, b) = (d) for some d ∈ R. But gcd(a, b) = 1 hence d a unit. So
there exists r, s ∈ R such that ra+ sb = 1. Define an R-module homomorphism

ψ : R→ R/(a)⊕R/(b) x 7→ (x+ (a), x+ (b))

Then ψ(sb) = (1 + (a), 0 + (b)), ψ(ra) = (0 + (a), 1 + (b)). Thus

ψ(sbx+ ray) = (x+ (a), y + (b))

for any x, y ∈ R, so ψ is surjective. Clearly (ab) ≤ ker(ψ). Conversely, if x ∈ ker(ψ),
then x ∈ (a) ∩ (b) and

x = x(ra+ sb)

= r(ax)︸ ︷︷ ︸
∈(ab)

+ s(xb)︸ ︷︷ ︸
∈(ab)

∈ (ab)

Thus ker(ψ) = (ab). Then by the First Isomorphism Theorem for rings, R/(ab) ∼=
R/(a)⊕R/(b).

Start of
lecture 23 Theorem (Primary decomposition theorem). Let R be a Euclidean Domain and

M a finitely generated R-module. Then

M ∼= R/(pn1
1 )⊕ · · · ⊕R/(pnk

k )⊕Rm

(as R-modules) where p1, . . . , pk are primes (not necessarily distinct) and m ≥ 0.

Proof. By the structure theorem

M ∼= R/(d1)⊕ · · · ⊕R/(dt)⊕Rm

So it suffices to consider M ∼= R/(di), di = upa11 · · · parr where u is a unit and p1, . . . , pr
are distinct (non-associate) primes. Lemma 16.6 implies

R/(di) ∼= R/(pa11 )⊕ · · · ⊕R/(parr )
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Let V be a vector space over a field F . Let α : V → V be a linear map and let Vα denote
the F [X]-module V where F [X]× V → V is given by (f(X), v) 7→ f(α)(v).

Lemma 16.8. If V finite dimensional, then Vα is a finitely generated F [X]-module.

Proof. If v1, . . . , vn generate V as an F -vector space, then they generate Vα as an F [X]-
module since F ≤ F [X].

Examples

(i) Suppose Vα ∼= F [X]/(Xn) as F [X]-module. Then 1, X,X2, . . . , Xn−1 is a basis for
F [X]/(Xn) as an F -vector space, and with respect to this basis α has matrix

(∗) =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


(ii) Suppose Vα ∼= F [X]/(X−λ)n as F [X]-modules. Then with respect to basis 1, (X−

λ), (X − λ)2, . . . , (X − λ)n−1, α− λid has matrix (∗), thus α has matrix

λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 0
0 0 0 · · · 1 λ


(iii) Suppose Vα ∼= F [X]/(f(X)) where f(X) = Xn + an−1X

n−1 + · · · + a0, then with
respect to basis 1, X,X2, . . . , Xn−1, α has matrix

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 0 −an−2

0 0 0 · · · 1 −an−1


This is called the companion matrix C(f) of the monic polynomial f .
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Theorem 16.9 (Rational canonical form). Let α : V → V be an endomorphism
of a finite dimensional F -vector space, where F is a field. Then F [X]-module Vα
decomposes as

Vα ∼= F [X]/(f1)⊕ · · · ⊕ F [X]/(ft)

where fi ∈ F [X] monic and f1 | f2 | · · · | ft. Moreover, with respect to a suitable
basis for V (as an F vector space), α has matrix

C(f1) 0 · · · 0
0 C(f2) · · · 0
...

...
. . .

...
0 0 · · · C(ft)

 (∗∗)

Proof. By Lemma 16.7, Vα is a finitely generated F [X]-module. Since F [X] is a Eu-
clidean Domain, structure theorem implies

Vα ∼= F [X]/(f1)⊕ · · · ⊕ F [X]/(ft)⊕ F [X]m

with f1 | f2 | · · · | ft. Since V is finite dimensional as an F vector space, m = 0. Upon
multiplying fi by a unit we may assume fi is monic.

Remark. (i) If α is represented by an n × n matrix A, then the theorem says
that A is similar to (∗∗).

(ii) The minimal polynomial of α is ft.

(iii) The characteristic polynomial of α is
∏t

i=1 fi.
The last two properties show that the minimal polynomial divides the character-

istic polynomial, which is the Cayley-Hamilton Theorem.

Example. If dimV = 2, then
∑

deg fi = 2. So

Vα = F [X]/(X − λ)⊕ F [X]/(X − λ)

or
Vα ∼= F [X]/(f)

where f is the characteristic polynomial of α.

Corollary 16.10. Let A,B ∈ GL2(F ) non-scalar. Then

A and B are similar (= conjugate) ⇐⇒ they have the same characteristic polynomial
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Proof. ⇒ Linear algebra.

⇐ By the last example, A and B are similar to C(f).

Definition. The annihilator of an R module M is

AnnR(M) = {r ∈ R | rm = 0∀m ∈M} ⊴ R

Example. (i) I ⊴ R, then AnnR(R/I) = I.

(ii) If A is a finite abelian group, then AnnZ(A) = (e) where e is the exponent of
A.

(iii) If Vα as above, then AnnF [X](Vα) is the ideal generated by the minimal poly-
nomial of α.

Start of
lecture 24 Lemma 16.11. The primes in C[X] (up to associates) are the polynomials X − λ,

for some λ ∈ C.

Proof. By the fundamental theorem of algebra, any non-constant polynomial in C[X]
has a root in C, so a factor X − λ. Hence, the irreducibles have degree 1.
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Theorem 16.12 (Jordan Normal form). Let α : V → V be an endomorphism of a
finite dimensional C-vector space. Let Vα be V regarded as a C[X]-module with X
acting as α. There is an isomorphism of C[X]-modules

Vα ∼= C[X]/((X − λ1)n1)⊕ · · · ⊕ C[X]/((X − λt)nt)

where λ1, . . . , λt ∈ C (not necessarily distinct). In particular there exists a basis for
V such that α has matrix 

Jn1(λ1) 0 · · · 0
0 Jn2(λ2) · · · 0
...

...
. . .

...
0 0 · · · 0


where

Jn(λ) =



λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 0
0 0 0 · · · 1 λ



Proof. C[X] is a Euclidean Domain and Vα is finitely generated by Lemma 16.7. We
apply the primary decomposition, noting that the primes in C[X] are as in Lemma 16.10.
V finite dimensional implies we get no copies of C[X]. Jn(λ) represents multiplying by
X on C[X]/(X − λ)n with respect to the basis 1, X − λ, (X − λ2, . . . , (X − λ)n−1.

Remark. (i) If α represented by matrix A, then the theorem says that A is
similar to a matrix in JNF.

(ii) The Jordan blocks are uniquely determined up to reordering. Can be proved
by considering the dimensions of the generalised eigenspace ker((α − λid)m),
m = 1, 2, 3, . . . (omitted).

(iii) The minimal polynomial of α is
∏

λ(X−λ)cλ where cλ is the size of the largest
λ-block.

(iv) The characteristic polynomial of α is
∏

λ(X − λ)aλ where aλ is the sum of the
sizes of λ-blocks.

(v) The number of λ blocks is the dimension of the λ-eigenspace.
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17. Modules over PID (non-examinable)

The structure theorem holds for PID’s. We illustrate some ideas which go into the proof.

Theorem 17.1. Let R be a PID. Then any finitely generated torsion-free R-module
is free. (For R a Euclidean Domain, this is Corollary 16.5).

Lemma 17.2. Let R be a PID and M an R-module. Let r1, r2 ∈ R not both zero
and let d = gcd(r1, r2).

(i) There exists A ∈ SL2(R) such that

A

(
r1
r2

)
=

(
α
0

)

(ii) If x1, x2 ∈ M then there exists x′1, x2 ∈ M such that Rx1 + Rx2 = Rx′1 + x′2
and r1x1 + r2x2 = dx′1 + 0x′2.

Proof. R a PID implies (r1, r2) = (d), hence there exists α, β ∈ R such that αr1+βr2 = d.
Write r1 = s1d, r2 = s2d for some s1, s2 ∈ R. Then αs1 + βs2 = 1.

(i) (
α β
−s2 s1

)
︸ ︷︷ ︸

det=αs1+βs2=1

(
r1
r2

)
=

(
d
0

)

(ii) Let x′1 = s1x1 + s2x2, x
′
2 = −βx1 +αx2. Then Rx

′
1 +Rx′2 ⊆ Rx1 +Rx2. To prove

the reverse inclusion we solve for x1 and x2 in terms of x′1 and x′2. This is possible
since

det

(
s1 s2
−β α

)
= αs1 + βs2 = 1

Finally

r1x1 + r2x2 = d(s1x1 + s2x2)

= dx′1

Proof of Theorem 17.1. LetM = Rx1+Rxn with n as small as possible. If x1, . . . , xn are
independent thenM is free, and we’re done. Otherwise, ∃r1, . . . , rn ∈ R not all zero with∑n

r=1 rixi = 0. WLOG r1 ̸= 0. Lemma 17.2 (ii) shows that after replacing x1 and x2 by
suitable x′1 and x′2, we may assume r1 ̸= 0 and r2 = 0. Repeating this process (changing
x1 and x3, then x1 and x4 and so on), we may assume r1 ̸= 0, r2 = 0, . . . , rn = 0. Now
r1x1 = 0 =⇒ x1 = 0 (since M is torsion free). Thus, M = Rx2 + · · · + Rxn, which
contradicts our choice of n.
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