Groups, Rings and Modules

June 3, 2023

Contents

0.	Introduction	4
١.	Groups	5
1.	Revision and Basic Theory	6
2.	Group Actions	11
3.	Alternating Groups	15
4.	p-groups and p-subgroups4.1. Sylow Theorems	18 19
5.	Matrix Groups	22
6.	Finite abelian groups	25
11.	Rings	27
7.	Definition and Examples	28
8.	Homomorphisms, Ideals and Quotients	32
9.	Integral domains, maximal ideals and prime ideals	38
10	Factorisation in integral domains	42
11	Factorisation in Polynomial Rings	50
12	Algebraic Integers	54

13. Noetherian Rings	57
III. Modules	60
14. Modules	61
15. Direct Sums and Free Module	66
16. The Structure Theorem and Applications	69
17. Modules over PID (non-examinable)	79

Lectures

Lecture 1Lecture 2Lecture 3 Lecture 4 Lecture 5Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10Lecture 11 Lecture 12 Lecture 13 Lecture 14Lecture 15 Lecture 16 Lecture 17Lecture 18Lecture 19 Lecture 20Lecture 21 Lecture 22Lecture 23

Lecture 24

Start of lecture 1

0. Introduction

This course will consist of 3 main sections:

- Groups Continuation from IA, focussing on:
 - Simple groups, $p\text{-}\mathrm{groups},$ $p\text{-}\mathrm{subgroups}.$
 - Main result in this part of the course will be the Sylow theorems.
- Rings Sets where you can add, subtract and multiply. For example
 - $-\mathbb{Z}$ or $\mathbb{C}[X]$.
 - Rings of integers $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{2}]$ (more in part II number fields)
 - Polynomial rings (Part II Algebraic Geometry)

A ring where you can divide is a field, for example \mathbb{Q} , \mathbb{R} , \mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$ (prime p).

- Modules Analogue of vector spaces where the scalars belong to a ring instead of a field. We will classify modules over certain nice rings
 - Allows us to prove Jordan Normal form and classify finite abelian groups.

Chapter I

Groups

Contents

1.	Revision and Basic Theory	6
2.	Group Actions	11
3.	Alternating Groups	15
4.	p-groups and p-subgroups4.1. Sylow Theorems	18 19
5.	Matrix Groups	22
6.	Finite abelian groups	25

1. Revision and Basic Theory

Definition (Group). A group is a pair (G, \cdot) where G is a set and $\cdot: G \times G \to G$ is a binary operator satisfying:

- Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall a, b, c \in G.$
- Identity: $\exists e \in G$ such that $e \cdot g = g \cdot e = g \quad \forall g \in G$.
- Inverses: $\forall g \in G \ \exists g^{-1}G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$.

Remarks

- (i) In checking \cdot is well-defined, need to check *closure*, i.e. $a, b \in G \implies a \cdot b \in G$. (This is implicit in the notation $\cdot : G \times G \to G$).
- (ii) If using additive (multiplicative) notation, then often write 0 (or 1) for identity.

Definition (Subgroup). A subset $H \subset G$ is a subgroup (written $H \leq G$) if $h \cdot h' \in H \forall h, h' \in H$ and (H, \cdot) is a group.

Remark. A subset H of G is a subgroup if H is non-empty and $a, b \in H \implies a \cdot b^{-1} \in H$.

Examples

- (i) Additive groups $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +)$.
- (ii) Cyclic and dihedral groups. C_n = cyclic group of order n, D_{2n} = symmetric of a regular n-gon.
- (iii) Abelian groups: those (G, \cdot) such that

$$a \cdot b = b \cdot a \quad \forall a, b \in G$$

(iv) Symmetric and alternating groups

 S_n = all permutations of $\{1, \ldots, n\}$

 $A_n \leq S_n$ subgroup of even permutations

(v) Quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ with

$$ij = k$$
, $ji = -k$, $i^2 = -1$,...

- (vi) General and special linear groups.
 - $GL_n(\mathbb{R}) = \{n \times n \text{ matrices over } \mathbb{R} \text{ with } \det \neq 0, \text{ and } \cdot \text{ is matrix multiplication.} \}$
 - $\operatorname{SL}_n(\mathbb{R}) \subset \operatorname{GL}_n(\mathbb{R})$ subgroup of matrices with determinant 1.

Definition. The (direct) product of groups G and H is the set $G \times H$ with operation

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$$

Let $H \leq G$, the left cosets of H in G are the sets $gH := \{gh \colon h \in H\}$ for $g \in G$. These partition G, and each has the same cardinality as H. Deduce

Theorem 1.1 (Lagrange's Theorem). Let G be a finite group and $H \leq G$. Then $|G| = |H| \cdot [G : H]$ where [G : H] is the number of left cosets of H in G. [G : H] is the index of H in G.

Remark. Can also carry this out with right cosets. Lagrange \implies number of left cosets = number of right cosets.

Definition. Let $g \in G$. If $\exists n \geq 1$ such that $g^n = 1$, then the least such n is the order of g. Otherwise g has infinite order.

Remark. If g has order d, then

- (i) $g^n = 1 \implies d \mid n$.
- (ii) $\{1, g, \dots, g^{d-1}\} \leq G$ and so if G is finite then $d \mid |G|$ (Lagrange).

A subgroup $H \leq G$ is normal if $g^{-1}Hg = H \ \forall g \in G$. We write $H \leq G$.

Proposition 1.2. If $H \leq G$, then the set G/J of left cosets of H in G is a group (called the quotient) with operation $g_1H \cdot g_2H = g_1g_2H$.

Proof. Check · well defined. Suppose $g_1H = g'_1H$ and $g_2H = g'_2H$. Then $g'_1 = g_1h_1$ and $g'_2 = g_2h_2$ for some $h_1, h_2 \in H$. Then

$$\implies g_1'g_2' = g_1h_1g_2h_2 = g_1g_2\underbrace{(g_2^{-1}h_1g_2)}_{\in H}\underbrace{h_2}_{\in H}$$

$$\implies g_1'g_2'H = g_1g_2H$$

Associativity is inherited from G, the identity is H = eH and the inverse of gH is $g^{-1}H$.

Definition. If G, H are groups, a function $\phi : G \to H$ is a group homomorphism if $\phi(g_1g_2) = \phi(g_1)\phi(g_2) \ \forall g_1, g_2 \in G$

It has kernel $\ker(\phi) := \{g \in G \mid \phi(g) = 1\} \le G$, and image $\operatorname{Im}(\phi) := \{\phi(g) \mid g \in G\} \le H$.

If $a \in \ker(\phi)$ and $g \in G$, then

$$\phi(g^{-1}ag) = \phi(g^{-1}) \underbrace{\phi(a)}_{=1} \phi(g) = 1$$

so $g^{-1}ag \in \ker(\phi)$. So $\ker(\phi) \trianglelefteq G$.

Definition. An isomorphism of groups is a group homomorphism that is also a bijection. We say G and H are isomorphic (written $G \cong H$) if \exists isomorphism $\phi: G \to H$. (Exercise: Check $\phi^{-1}: H \to G$ is a group homomorphism).

Theorem (First Isomorphism Theorem). Let $\phi: G \to H$ be a group homomorphism. Then $\ker(\phi) \leq G$ and $G/\ker(\phi) \cong \operatorname{Im}(\phi)$.

Proof. Let $K = \ker(\phi)$. Already checked K is normal. Define $\Phi: G/K \to \operatorname{Im}(\phi)$, $gK \mapsto \phi(g)$. Check Φ is well-defined and injective:

$$g_1 K = g_2 K \iff g_2^{-1} g_1 \in K$$
$$\iff \phi(g_2^{-1} g_1) = 1$$
$$\iff \phi(g_2) = \phi(g_1)$$

Check Φ is a group homomorphism:

$$\Phi(g_1Kg_2K) = \Phi(g_1g_2K)$$
$$= \phi(g_1g_2)$$
$$= \phi(g_1)\phi(g_2)$$
$$= \Phi(g_1K)\Phi(g_2K)$$

 Φ is surjective: Let $x \in \text{Im}(\phi)$, say $\phi(g) = x$ for some $g \in G$. Then $x = \Phi(gK) \in \text{Im}(\Phi)$.

Start of lecture 2

Example. $\phi \colon \mathbb{C} \to \mathbb{C}^{\times} = \{x \in \mathbb{C} \mid x \neq 0\}, z \mapsto e^{z}$. Since $e^{z+w} = e^{z}e^{w}$, this is a group homomorphism from $(\mathbb{C}, +)$ to (\mathbb{C}^{\times}, x) .

$$\ker(\phi) = \{ z \in \mathbb{C} \mid e^z = 1 \} = 2\pi i\mathbb{Z}$$

 $\operatorname{Im}(\phi) = \mathbb{C}^{\times}$ (by existence of log)

therefore $\mathbb{C}/2\pi i\mathbb{Z}\cong\mathbb{C}^{\times}$.

Theorem (Second Isomorphism Theorem). Let $H \leq G$, and $K \leq G$. Then $HK = \{hk \colon h \in H, k \in K\} \leq G$ and $H \cap K \leq H$. Moreover

$$HK/K \cong H/H \cap K$$

Proof. Let $h_1k_1, h_2k_2 \in HK$ (so $h_1, h_2 \in H, k_1, k_2 \in K$). Then

$$h_1k_1(h_2k_2)^{-1} = \underbrace{h_1h_2^{-1}}_{\in H} \underbrace{h_2k_1k_2^{-1}h_2^{-1}}_{\in K} \in HK$$

Thus $HK \leq G$ (by Remark from last lecture).

Let $\phi: H \to G/K$, $h \mapsto h \to hK$. This is the composite of $H \hookrightarrow G$ and the quotient map $G \to G/K$, hence ϕ is a group homomorphism.

$$\ker(\phi) = \{h \in H \mid hK = k\} = H \cap K \trianglelefteq H$$
$$\operatorname{Im}(\phi) = \{hK \mid h \in H\} = HK/K$$

First isomophism theorem implies $H/H \cap K \cong HK/K$.

Remark. Suppose $K \leq G$. There is a bijection

{subgroups of G/K} \leftrightarrow {subgroups of G containing H}

defined by $X \mapsto \{g \in G : gK \in X\}$ and $H/K \leftrightarrow H$. This restricts to a bijection

{normal subgroups of G/K} \leftrightarrow {normal subgroups of G containing K}

Theorem 1.3 (Third Isomorphism Theorem). Let $K \leq H \leq G$ be normal subgroups of G. Then

$$\frac{G/K}{H/K} \cong G/H$$

Proof. Let $\phi: G/K \to G/H$, $gK \mapsto gH$. If $g_1K = g_2K$, then $g_2^{-1}g_1 \in K \leq H \implies g_1H = g_2H$. Thus ϕ well-defined. ϕ is surjective group homomorphism with kernel H/K.

If $K \leq G$ then studying the groups K and G/K gives some information about G. This is not always available.

Definition. A group G is *simple* if 1 and G are its only normal subgroups, except if G is the trivial group (convention).

Lemma 1.4. Let G be an abelian group. G is simple if and only if $G \cong C_p$ for some prime p.

- *Proof.* \leftarrow Let $H \leq C_p$. By Lagrange's Theorem, $|H| \mid |C_p| = p$. So |H| is 1 or p, i.e. $H = \{1\}$ or $H = C_p$. Thus C_p is simple.
 - ⇒ Let $1 \neq g \in G$. *G* contains the subgroup $\langle g \rangle = \langle \dots, g^{-2}, g^{-1}, 1, g, g^2, \dots \rangle$ normal in *G* since *G* is abelian. Since *G* is simple, $\langle g \rangle = G$. If *G* is infinite, $G \cong (\mathbb{Z}, +)$ and $2\mathbb{Z} \leq \mathbb{Z}$, contradiction. Otherwise $G \cong C_n$ for some *n*, so $g^n = 1$. If $m \mid n$, then $g^{n/m}$ generates a subgroup of order *m* inside *G*. So *G* is simple \Longrightarrow only factors of *n* are 1 and *n*, so *n* is prime.

Lemma 1.5. If G is a finite group, then G has a composition series

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{m-1} \trianglelefteq G_m = G$$

with each quotient G_i/G_{i-1} simple.

Warning. G_i need not be normal in G; we only necessarily know that G_i is normal in G_{i+1} .

Proof. Induct on |G|. Case |G| = 1. If |G| > 1, let G_{m-1} be a normal subgroup of largest possible order $\neq |G|$. By earlier Remark, G/G_{m-1} must be simple. Apply induction to G_{m-1} .

Start of lecture 3

2. Group Actions

Definition. For X a set, let Sym(X) be the group of all bijections $X \to X$ under composition (identity $id = id_X$).

Definition. A group G is a permutation group of degree n if $G \leq \text{Sym}(X)$ with |X| = n.

Example. $S_n = \text{Sym}(\{1, 2, \dots, n\})$ is a permutation group of degree n, as is $A_n \leq S_n$. $D_{2n} = \{\text{symmetries of a regular } n\text{-gon}\}$ so is a subgroup of $S_n \cong \text{Sym}(\{\text{vertices of } n\text{-gon}\}).$

Definition. An action of a group G on a set X is a function $*: G \times X \to X$ satisfying

(i) e * x = x for all $x \in X$

(ii) $(g_1g_2) * x = g_1 * (g_2 * x)$ for all $g_1, g_2 \in G$ and for all $x \in X$.

Proposition 2.1. An action of a group G on a set X is equivalent to specifying a group homomorphism $\phi: G \to \text{Sym}(X)$.

Proof. For each $g \in G$, let $\phi_g \colon X \to X$, $x \mapsto g * x$. We have

$$\phi_{g_1g_2}(x) = (g_1g_2) * x$$

= $g_1 * (g_2 * x)$
= $\phi_{g_1}(g_2 * x)$
= $\phi_{g_1} \circ \phi_{g_2}(x)$

Then $\phi_{g_1g_2} = \phi_{g_1} \circ \phi_{g_2}$ (†).

In particular, $\phi_g \circ \phi_{q^{-1}} = \phi_{q^{-1}} \circ \phi_g = \phi_e = \text{id. Thus } \phi_y \in \text{Sym}(X).$

Define $\phi: G \to \text{Sym}(X), g \mapsto \phi_g$ (a group homomorphism by (\dagger)). Conversely let $\phi: G \to \text{Sym}(X)$ be a group homomorphism. Define $*: G \times X \to X, (g, x) \mapsto \phi(g)(x)$. Then

(i) $e * x = \phi(e)(x) = id(x) = x$.

(ii)

$$(g_1g_2) * x = \phi(g_1g_2)(x) = \phi(g_1) \circ \phi(g_2)(x) = g_1 * (g_2 * x)$$

Definition. We say $\phi: G \to \text{Sym}(X)$ is a permutation representation of G.

Definition. Let G act on a set X.

(i) The orbit of $x \in X$ is

$$\operatorname{orb}_G(x) = \{g \in x \mid g \in G\} \subseteq X.$$

(ii) The stabiliser $x \in X$ is

$$G_x = \{g \in G \mid g \ast x = x\} \le G.$$

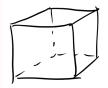
Recall Groups IA: Orbit-Stabiliser theorem. There is a bijection

 $\operatorname{orb}_G(x) \leftrightarrow G/G_x$

(where G/G_x is the set of left cosets of G_x in G). In particular if G is finite,

 $|G| = |\operatorname{orb}_G(x)||G_x|$

Example. Let G be the group of all symmetries of a cube. X = set of vertices, $x \in X$, $|\operatorname{orb}_G(x)| = 8$, $|G_x| = 6$.



Hence |G| = 48.

Remark. (i) ker $\phi = \bigcap_{x \in X} G_x$ is called the kernel of the group action.

- (ii) The orbits partition X. We say the action is *transitive* if there is only one orbit.
- (iii) $G_{g*x} = gG_xg^{-1}$, so if $x, y \in X$ belong to the same orbit, then their stabilizers are conjugate.

Examples

Example. Let G act on itself by left multiplication, i.e. $g * x = g \cdot x$. The kernel of this action is

$$\{g \in G \mid g \cdot x = x \ \forall x \in G\} = \{e\}$$

Thus $G \hookrightarrow \text{Sym}(G)$. This proves:

Theorem 2.2 (Cayley's Theorem). Any finite group G is isomorphic to a subgroup of S_n for some n. (Take n = |G|).

Example. Let $H \leq G$. G acts on G/H (left cosets) by left multiplication, i.e. g * xH = gxH. This action is transitive (since $(x_2x_1^{-1})x_1H = x_2H$) with

$$G_{xH} = \{g \in G \mid gxH = xH\} = \{g \in G \mid x^{-1}gx \in H\} = x^{-1}Hx$$

Thus $\ker(\phi) = \bigcap_{x \in G} x H x^{-1}$. This is largest normal subgroup of G that is contained in H.

Theorem 2.3. let G be a non-abelian simple group, and $H \leq G$ a subgroup of index n > 1. Then $n \geq 5$ and G is isomorphic to a subgroup of A_n .

Proof. Let G act on X = G/H by left multiplication and let $\phi: G \to \text{Sym}(X) = S_n$ be the associated permutation representation. As G is simple, $\text{ker}(\phi) = 1$ or $\text{ker}(\phi) = G$. If $\text{ker}(\phi) = G$, then $\text{Im}(\phi) = 1$, contradiction since G acts transitively on X and |X| > 1. Thus $\text{ker}(\phi) = 1$ and $G \cong \text{Im}(\phi) \leq S_n$. Since $G \leq S_n$ and $A_n \leq S_n$, second isomorphism theorem gives:

$$G \cap A_n \trianglelefteq G$$

and

$$G/G \cap A_n \cong GA_n/A_n \le S_n/A_n \cong C_2$$

G simple implies that $G \cap A_n = 1$ or G. If it equals 1 then $G \hookrightarrow C_2$ contradicts G non-abelian. If it equals G then $G \leq A_n$. Finally, if $n \leq 4$, then A_n has no non-abelian simple subgroup (just list them!).

Start of lecture 4

Example. Let G act on itself by conjugation, i.e. $g * x = gxg^{-1}$.

Definition. $\operatorname{orb}_G(x) = \{gxg^{-1} \mid g \in G\} = \operatorname{ccl}_G(x)$ – the conjugacy class of x in G.

Definition. $G_x = \{g \in G \mid gx = xg\} = C_G(x) \leq G$ – the centraliser of x in G.

Definition. $\ker(\phi) = \{g \in G \mid gx = xg, \forall x \in G\} = Z(G)$ – center of G.

Note. The map $\phi(g): G \to G, h \mapsto ghg^{-1}$ satisfies

$$\phi(g)(h_1h_2) = gh_1h_2g^{-1}$$

= $gh_1g^{-1}gh_2g^{-1}$
= $\phi(g)(h_1)\phi(g)(h_2)$

so $\phi(g)$ is a group homomorphism, and also a bijection, so $\phi(g)$ is an isomorphism.

Definition.

 $Aut(G) = \{\text{group isomorphism } f \colon G \to G\}$

Then $\operatorname{Aut}(G) \leq \operatorname{Sym}(X)$ and $\phi: G \to \operatorname{Sym}(X)$ has image in $\operatorname{Aut}(G)$.

Example. Let X be the set of all subgroups of G. Then G acts on X by conjugation, i.e. $g * H = gHg^{-1}$. The stabiliser of H is

$$\{g \in G \mid gHg^{-1} = H\} = N_G(H)$$

the *normaliser* of H in G. This is the largest subgroup of G containing H as a normal subgroup.

3. Alternating Groups

Part IA: elements in S_n are conjugate if and only if they have the same cycle type.

Example. In S_5 , we have		
	cycle type	# elements
	id	1
	(* *)	10
	(* *)(* *)	15
	(* * *)	20
	(* * *)(* *)	20
	(* * * *)	30
	(* * * * *)	24
	total	120

Let $g \in A_n$. Then $C_{A_n}(g) = C_{S_n}(g) \cap A_n$ if there exists odd permutation commuting with g. Then $|C_{A_n}(g)| = \frac{1}{2}|C_{S_n}(g)|$ and $|\operatorname{ccl}_{A_n}(g)| = |\operatorname{ccl}_{S_n}(g)|$ otherwise $|C_{A_n}(g)| = |C_{S_n}(g)|$ and $|\operatorname{ccl}_{A_n}(g)| = \frac{1}{2}|\operatorname{ccl}_{S_n}(g)|$.

Example. Taking n = 5, (1 2)(3 4) commutes with (1 2) and (1 2 3) commutes with (4 5) (and (1 2) and (4 5) are both odd). But if $h \in C_{S_5}(g)$ where g = (1 2 3 4 5), then (1 2 3 4 5) $= h(1 2 3 4 5)h^{-1} = (h(1) h(2) h(3) h(4) h(5))$. So $h \in \langle g \rangle \leq A_5$. $|\operatorname{ccl}_{A_5}(g)| = \frac{1}{2}|\operatorname{ccl}_{A_5}(g)| = 12$. Thus A_5 has conjugacy classes of sizes 1, 15, 20, 12, 12.

If $H \leq A_5$, then H is a union of conjugacy classes. So |H| = 1 + 15a + 20b + 12c for some integers $a, b \in \{0, 1\}, c \in \{0, 1, 2\}$ and by Lagrange's Theorem |H||60. One can check that the only way that this can happen is if |H| = 1 or |H| = 60. So A_5 is simple.

Lemma 3.1. A_n is generated by 3-cycles.

Proof. Each $\sigma \in A_n$ is product of an even number of transpositions. Thus suffices to write the product of any two transpositions as a product of 3-cycles.

For a, b, c, d distinct, the possible distinct cases are $(a \ b)(a \ b)$, $(a \ b)(b \ c)$ and $(a \ b)(c \ d)$. We can check these are all a product of 3-cycles:

$$(a \ b)(a \ b) = id(a \ b)(b \ c) = (a \ b \ c)(a \ b)(c \ d) = (a \ c \ b)(a \ c \ d)$$

Lemma 3.2. If $n \ge 5$ then all 3-cycles in A_n are conjugate.

Proof. We claim that any 3-cycle is conjugate to $(1 \ 2 \ 3)$. Indeed if $(a \ b \ c)$ is a 3-cycle then $(a \ b \ c) = \sigma(1 \ 2 \ 3)\sigma^{-1}$ for some $\sigma \in S_n$. If $\sigma \notin A_n$ then replace by $\tilde{\sigma} = \sigma(4 \ 5)$. \Box

Theorem 3.3. A_n is simple for all $n \ge 5$.

Proof. Let $1 \neq N \leq A_n$. Suffices to show that N contains a 3-cycle, since by Lemma 3.1 and Lemma 3.2 we have $N = A_n$.

Take $1 \neq \sigma \in N$ and write σ as a product of disjoint cycles.

• Case 1: σ contains a cycle of length $r \geq 4$. Without loss of generality $\sigma = (1 \ 2 \cdots r)\tau$. Let $\delta = (1 \ 2 \ 3)$. Then

$$\underbrace{\sigma_{\in N}^{-1}}_{\in N} \underbrace{\delta_{\in N}^{-1} \sigma \delta}_{\in N} = (r \cdots 2 \ 1)(1 \ 3 \ 2)(1 \ 2 \ 3 \cdots r)(1 \ 2 \ 3)$$
$$= (2 \ 3 \ r)$$

So N contains a 3-cycle.

• Case 2: σ contains two 3-cycles. Without loss of generality $\sigma = (1\ 2\ 3)(4\ 5\ 6)\tau$. Let $\delta = (1\ 2\ 4)$. Then

$$\underbrace{\sigma^{-1}}_{\in N} \underbrace{\delta^{-1} \sigma \delta}_{\in N} = (1 \ 3 \ 2)(4 \ 6 \ 5)(1 \ 4 \ 2)(1 \ 2 \ 3)(4 \ 5 \ 6)(1 \ 2 \ 4)$$
$$= (1 \ 2 \ 4 \ 3 \ 6)$$

So now done by case 1.

• Case 3: σ contains two 2-cycles. Without loss of generality $\sigma = (1 \ 2)(3 \ 4)\tau$. Let $\delta = (1 \ 2 \ 3)$. Then

$$\underbrace{\sigma_{\in N}^{-1}}_{\in N} \underbrace{\delta_{\in N}^{-1} \sigma \delta}_{\in N} = (1 \ 2)(3 \ 4)(1 \ 3 \ 2)(1 \ 2)(3 \ 4)(1 \ 2 \ 3)$$
$$= (1 \ 4)(2 \ 4)$$

Let $\varepsilon = (2 \ 3 \ 5) \ (n \ge 5)$. Then

$$\underbrace{\pi^{-1}\varepsilon^{-1}\pi\varepsilon}_{\in N} = (1\ 4)(2\ 3)(2\ 5\ 3)(1\ 4)(2\ 3)(2\ 3\ 5)$$
$$= (2\ 5\ 3)$$

So N contains a 3-cycle.

Conclusion of proof: Remains to consider σ with one of these cycle types:

- Case (* *) or (* *)(* * *) but then $\sigma \notin A_n$, contradiction.
- Case (* * *) but then σ is a 3-cycle so we're already done.

Start of lecture 5

4. *p*-groups and *p*-subgroups

Definition. Let p be a prime. A finite group G is a p-group if $|G| = p^n$, $n \ge 1$.

Theorem 4.1. If G is a p-group, then $Z(G) \neq 1$.

Proof. For $g \in G$, we have $|\operatorname{ccl}_G(g)||C_G(g)| = |G| = p^n$, so each conjugacy class has size a power of p. Since G is a union of conjugacy classes:

$$|G| = \#(\text{conjugacy classes of size 1}) \pmod{p}$$

Note that

$$g \in Z(G) \iff gxg^{-1} = x \ \forall x \in G$$
$$\iff x^{-1}gx = g \ \forall x \in G$$
$$\iff \operatorname{ccl}_G(g) = \{g\}$$

So |Z(G)| = #(conjugacy classes of size 1). So $0 \equiv |Z(G)| \pmod{p}$. We know $|Z(G)| \ge 1$ since $e \in Z(G)$, so therefore $|Z(G)| \ge p > 1$.

Corollary 4.2. The only simple p-group is C_p .

Proof. Let G be a simple p-group. Since $Z(G) \leq G$ we have Z(G) = 1 or G. But by the previous theorem, $Z(G) \neq 1$, so Z(G) = G, so G is abelian. Conclude by Lemma 1.3.

Corollary. Let G be a p-group of order p^n . Then G has a subgroup of order p^n for all $0 \le r \le n$.

Proof. By Lemma 1.4, G has a composition series

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{m-1} \trianglelefteq G_m = G,$$

with each G_i/G_{i-1} being simple, and also since G is a p-group, G_i/G_{i-1} is a p-group, so $G_i/G_{i=1} \cong C_p$ by Corollary 4.2.

Thus $|G_i| = p^i$ for $0 \le i \le m$ and m = n.

Lemma 4.3. For G a group, if G/Z(G) is cyclic, then G is abelian (and so G/Z(G) is trivial).

Proof. Let gZ(G) be a generator for G/Z(G). Then each coset is of the form $g^rZ(G)$ for some $r \in \mathbb{Z}$. Thus $G = \{g^rz : r \in \mathbb{Z}, z \in G(Z)\}$. Then

$$(g^{r_1}z_1) \cdot (g^{r_2}z_2) = g^{r_1+r_2}z_1z_2$$

= $g^{r_1+r_2}z_2z_1$
= $(g^{r_2}z_2) \cdot (g^{r_1}z_1)$

So G is abelian.

Corollary 4.4. If $|G| = p^2$, then G is abelian.

Proof. We consider the 3 possible cases for |Z(G)| ($|Z(G)| | p^2$ by Lagrange's theorem)

- If |Z(G)| = 1, then this contradicts Theorem 4.1.
- If |Z(G)| = p, then |G/Z(G)| = p. Apply Lemma 4.1, contradiction.
- $|Z(G)| = p^2$, then Z(G) = G so G is abelian.

See example sheet for case $|G| = p^3$.

4.1. Sylow Theorems

Theorem (Sylow). Let G be a finite group of order p^am where p is a prime with $p \nmid m$. Then

- (i) The set $\operatorname{Syl}_p(G) = \{P \leq G \colon |P| = p^a\}$ of Sylow *p*-subgroups is non-empty.
- (ii) All elements of $\text{Syl}_p(G)$ are conjugate.
- (iii) $n_p := |\operatorname{Syl}_p(G)|$ satisfies $n_p \equiv 1 \pmod{p}$ and $n_p \mid |G|$ (and hence $n_p \mid m$).

Corollary 4.5. If $n_p = 1$, then the unique Sylow *p*-subgroup is normal.

Proof. Let $g \in G$ and $P \in \operatorname{Syl}_p(G)$. Then $gPg^{-1} \in \operatorname{Syl}_p(G)$ and so $gPg^{-1} = P$. Thus $p \leq G$.

Example. Let $|G| = 1000 = 2^3 \times 5^3$. Then $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 8$, so $n_5 = 1$. Thus the unique Sylow 5-subgroup is normal, and hence G is not simple.

Example. $|G| = 132 = 2^3 \times 3 \times 11$. $n_{11} \equiv 1 \pmod{11}$ and $n_{11} \mid 12$, so $n_{11} = 1$ or $n_{11} = 12$. Suppose G is simple. Then $n_{11} \neq 1$ (otherwise the Sylow 11 subgroup is normal) and hence $n_{11} = 12$. Now $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 44$. So $n_3 = 4, 22$ $(n_3 \neq 1 \text{ if } G \text{ is simple})$.

Suppose $n_3 = 4$. Then letting G act on $\text{Syl}_3(G)$ by conjugation gives a group homomorphism $\phi: G \to S_4$. Since G is simple, we must have $\ker(\phi) = 1$ or $\ker(\phi) = G$. But $\ker(\phi) = G$ contradicts Sylow (ii). So $\ker(\phi) = G$, so $G \hookrightarrow S_4$. But this is not possible since $|G| > |S_4|$.

Thus $n_3 = 22$ and $n_{11} = 12$. So G has $22 \times (3 - 1) = 44$ elements of order 3 and $12 \times (11 - 1) = 120$ elements of order 11. But 44 + 120 > 132 = |G|.

Hence there does not exist a simple group of order 132.

Proof of Sylow Theorems

Let $|G| = p^a m$, p prime, $p \nmid m$.

(i) Let Ω be the set of all subsets of G of size p^a .

$$|\Omega| = \binom{p^a m}{p^a} = \frac{p^a m}{p^a} \cdot \frac{p^a m - 1}{p^a - 1} \cdots \frac{p^a m - p^a + 1}{1}$$

For $0 \le k < p^a$, the numbers $p^a m - k$ and $p^a - k$ are divisible by the same power of p. Therefore $|\Omega|$ is coprime to p (†).

Let G act on Ω by left multiplication, i.e. for $g \in G$ and $X \in \Omega$

$$g * X = \{gx \colon x \in X\} \in \Omega$$

For any $X \in \Omega$ we have $|G_X||\operatorname{orb}_G(X)| = |G| = p^a m$. By (†) there exists X such that $|\operatorname{orb}_G(X)|$ is coprime to p. Thus $p^a \mid |G_X|$ (1). On the other hand, if $g \in G$ and $x \in X$, then $g \in (gx^{-1}) * X$ and hence

$$G = \bigcup_{g \in G} g * X = \bigcup_{Y \in \operatorname{orb}_G(X)} Y$$
$$\implies |G| \le |\operatorname{orb}_G(X)| |X|$$
$$\implies |G_X| = \frac{|G|}{|\operatorname{orb}_G(X)|} \le |X| = p^a$$
(2)

(1) and (2) implies

$$|G_X| = p^a$$

i.e. $G_X \in \operatorname{Syl}_p(G)$.

Start of lecture 6

(ii) We prove a stronger result:

Lemma 4.6. If $P \in \text{Syl}_p(G)$ and $Q \leq G$ is a *p*-subgroup then $Q \leq gPg^{-1}$ for some $g \in G$.

Proof. Let Q act on the left cosets G/P by left multiplication, ie

$$q \cdot gP = qgP$$

By the orbit-stabiliser theorem, each orbit has size dividing |Q| so either 1 or a multiple of p. Since |G/P| = m is coprime to p, there exists orbit of size 1, i.e. there exists $g \in G$ such that qgP = gP for all $q \in Q$.

$$\implies g^{-1}qg \in P \quad \forall q \in Q$$
$$\implies Q \le gPg^{-1} \qquad \Box$$

(iii) Let G act on $\text{Syl}_p(G)$ by conjugation. Sylow (ii) implies action is transitive. Then the orbit-stabiliser theorem implies

$$n_p = |\operatorname{Syl}_p(G)| \mid |G|$$

Now let $P \in \text{Syl}_p(G)$. Then P acts on $\text{Syl}_p(G)$ by conjugation. The orbits have size dividing $|P| = p^a$, so either 1 or a multiple of p. To show $n_p \equiv 1 \pmod{p}$ it suffices to show that $\{P\}$ is the unique orbit of size 1.

If $\{Q\}$ is an orbit of size 1, then P normalizes Q, i.e. $P \leq N_G(Q)$. Now P and Q are Sylow *p*-subgroups of $N_G(Q)$, hence by (ii) are conjugate in $N_G(Q)$, hence equal since $Q \leq N_G(Q)$. Thus $\{P\}$ is the unique orbit of size 1.

5. Matrix Groups

Let F be a field (for example \mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$). Let

 $\operatorname{GL}_n(F) := n \times n$ invertible matrices with entries in F. $\operatorname{SL}_n(F) := \ker(\operatorname{GL}_n(F) \xrightarrow{\operatorname{det}} F^{\times}) \trianglelefteq \operatorname{GL}_n(F)$

Let $Z \trianglelefteq \operatorname{GL}_n(F)$ be the subgroup of scalar matrices.

Definition.

$$\operatorname{PGL}_{n}(F) = \frac{\operatorname{GL}_{n}(F)}{Z}$$
$$\operatorname{PSL}_{n}(F) = \frac{\operatorname{SL}_{n}(F)}{Z \cap \operatorname{SL}_{n}(F)} \cong \frac{Z \operatorname{SL}_{n}(F)}{Z} \le \operatorname{PGL}_{n}(F)$$

Example 5.1. $G = \operatorname{GL}_n(\mathbb{Z}/p\mathbb{Z})$. A list of *n* vectors in $(\mathbb{Z}/p\mathbb{Z})^n$ are columns of some $A \in G$ if and only if they are linearly independent. Thus

$$\begin{aligned} |G| &= \underbrace{(p^n - 1)}_{\text{first column second column}} \cdot \underbrace{(p^n - p)}_{\text{first column second column}} \cdots (p^n - p^2) \cdots \underbrace{(p^n - p^{p-1})}_{\text{last column}} \\ &= p^{1+2+\dots+(n-1)}(p^n - 1)(p^{n-1} - 1) \cdots (p-1) \\ &= p^{\binom{n}{2}} \prod_{i=1}^n (p^i - 1) \end{aligned}$$

So Sylow *p*-subgroups have size $p^{\binom{n}{2}}$. Let

$$U = \left\{ \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\} \le G$$

set of upper triangular matrices with 1's on the diagonal. Then $U \in \text{Syl}_p(G)$, since there are $\binom{n}{2}$ entries above the diagonal to fill and each can take p values. Just as $\text{PGL}_2(\mathbb{C})$ acts on $\mathbb{C} \cup \{\infty\}$ via Möbius maps, $\text{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ acts on $\mathbb{Z}/p\mathbb{Z} \cup \{\infty\}$. Indeed $\text{GL}_2(\mathbb{Z}/p\mathbb{Z} \text{ acts as})$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d}$$

and since scalars act trivially, we obtain an action of $PGL_2(\mathbb{Z}/p\mathbb{Z})$.

Lemma 5.2. The permutation representation $\operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z}) \to S_{p+1}$ is injective (in fact an isomorphism if p = 2 or p = 3).

Proof. Suppose $\frac{az+b}{cz+d} = z$ for all $z \in \mathbb{Z}/p\mathbb{Z} \cup \{\infty\}$. Setting z = 0 gives $b = 0, z = \infty$ gives c = 0, z = 1 gives a = d, so

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a scalar matrix, hence trivial in $PGL_2(\mathbb{Z}/p\mathbb{Z})$.

Lemma 5.3. If p is an odd prime then

$$\operatorname{PSL}_2(\mathbb{Z}/p\mathbb{Z})| = \frac{p(p-1)(p+1)}{2}$$

Proof. By Example 5.1

$$|\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})| = p(p-1)(p^2-1)$$

The group homomorphism

$$\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z}) \xrightarrow{\operatorname{det}} (\mathbb{Z}/p\mathbb{Z})^{\times}$$

is surjective:

therefore
$$|\operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z}) = \frac{\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})}{p-1} = p(p-1)(p+1)$$
. If
 $\begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z})$

then $\lambda^2 \equiv 1 \pmod{p}$

$$\implies p \mid (\lambda - 1)(\lambda + 1)$$
$$\implies \lambda \equiv \pm 1 \pmod{p}$$

Thus $Z \cap \operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z}) = \{\pm I\}$ (distinct since p > 2). Thus

$$|\operatorname{PSL}_2(\mathbb{Z}/p\mathbb{Z})| = \frac{1}{2} |\operatorname{SL}_2(\mathbb{Z}/p\mathbb{Z})|$$
$$= \frac{p(p-1)(p+1)}{2} \square$$

Start of lecture 7

Example 5.4. Let $G = \text{PSL}_2(\mathbb{Z}/5\mathbb{Z})$. Then $|G| = \frac{4 \times 5 \times 6}{2} = 60 = 2^2 \times 3 \times 5$. Let G act on $\mathbb{Z}/5\mathbb{Z} \cup \{\infty\}$ via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : 2 \mapsto \frac{az+b}{cz+d}$$

By Lemma 5.2 the permutation representation

$$\phi: G \to \operatorname{Sym}(\{0, 1, 2, 3, 4, \infty\}) \cong S_6$$

is injective.

Claim: $\operatorname{Im}(\phi) \leq A_6$, i.e. $\psi: G \xrightarrow{\phi} S_6 \xrightarrow{\operatorname{sgn}} \{\pm 1\}$ is trivial. Proof: Let $g \in G$ have order d. Write $d = 2^n m$ with m odd. Then h^m has order 2^n . If $\psi(h^m) = 1$ then $\psi(h)^m = 1$ so $\psi(h) = 1$. So it suffices to show that $\psi(g) = 1$ for all $g \in G$ with order a power of 2.

Lemma 4.7 implies every such g belongs to a Sylow 2-subgroup.

Therefore it suffices to check $\psi(H) = 1$ for H a Sylow 2-subgroup. (since ker $(\psi) \trianglelefteq G$ and all Sylow 2-subgroups are conjugate).

Take

$$H = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \{\pm I\}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \{\pm I\} \right\rangle \le G = \frac{\operatorname{SL}_2(\mathbb{Z}/5\mathbb{Z})}{\{\pm I\}}$$

We compute

$$\phi \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = (1 \ 4)(2 \ 3)$$
$$\phi \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} = (0 \ \infty)(1 \ 4)$$

Both of these are even, therefore $\psi(H) = 1$. This proves the claim.

On Example Sheet 1, Question 14 we will prove that if $G \leq A_6$ and |G| = 60 then $G \cong A_5$.

Facts (not proved in this course)

 $\mathrm{PSL}_n(\mathbb{Z}/p\mathbb{Z})$ is a simple group $\forall n \geq 2$, p prime except (n,p) = (2,2), (2,3) (these are examples of finite groups of Lie type). The smallest non-abelian simple groups are

$$A_5 \cong \mathrm{PSL}_2(\mathbb{Z}/5\mathbb{Z})$$

(order 60) and

$$\operatorname{PSL}_2(\mathbb{Z}/7\mathbb{Z}) \cong \operatorname{GL}_3(\mathbb{Z}/7\mathbb{Z})$$

(order 168).

6. Finite abelian groups

Later we prove (in the modules chapter)

Theorem 6.1. Every finite abelian group is isomorphic to a product of cyclic groups.

However it may be possible to write the same group as a product of cyclic groups in more than one way.

Lemma 6.2. If $m, n \in \mathbb{Z}_{\geq 1}$ coprime then

 $C_m \times C_n \cong C_{mn}$

Proof. let g and h be generators of C_m and C_n . Then $(g,h) \in C_m \times C_n$ and $(g,h)^r = (g^r, h^r)$. Then

$$(g,h)^r = 1 \iff m \mid r \text{ and } n \mid r$$

 $\iff mn \mid r$

(since m, n coprime). Thus (g, h) has order $mn = |C_m \times C_n|$. Therefore $C_m \times C_n \cong C_{mn}$.

Corollary 6.3. Let G be a finite abelian group. Then

$$G \cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_k}$$

where each n_i is a prime power.

Proof. If $n = p_1^{a_1} \cdots p_r^{a_r}$ $(p_1, \ldots, p_r \text{ distinct primes})$, then Lemma 6.2 shows

$$C_n \cong C_{p_1^a} \times \dots \times C_{p_r^{a_r}}$$

Writing each of the cyclic groups in Theorem 6.1 in this way gives the result. \Box

In fact when we prove Theorem 6.1 we will prove the following refinement:

Theorem 6.4. Let G be a finite abelian group. Then

$$G \cong C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}$$

for some $d_1 \mid D_2 \mid \cdots \mid d_t$.

Remark 6.5. The integers n_1, \ldots, n_k in Corollary 6.3 (up to ordering) and d_1, \ldots, d_t in Theorem 6.4 (assuming $d_1 > 1$) are uniquely determined by the group G.

(Proof omitted – but works by counting the number of elements of G of each prime power order).

Examples

(i) The abelian groups of order 8 are

 C_8 , $C_2 \times C_2$ and $C_2 \times C_2 \times C_2$

(ii) The abelian groups of order 12 are

$$C_2 \times C_2 \times C_3 \cong C_2 \times C_6$$

and

$$C_4 \times C_3 \cong C_{12}$$

Definition (Exponent of a group). The *exponent* of a group G is the least integer $n \ge 1$ such that $g^n = 1$ for all $g \in G$, i.e. the lowest common multiple of all the orders of the elements of G.

Example. A_4 has exponent 6.

Corollary 6.6. Every finite abelian group contains an element whose order is the exponent of the group.

Proof. If $G \cong C_{d_1} \times \cdots \otimes C_{d_t}$ with $d_1 \mid d_2 \mid \cdots \mid d_t$, then every $g \in G$ has order dividing d_t and if $h \in C_{d_t}$ is a generator then $(1, 1, 1, \dots, 1, h) \in G$ has order d_t . Thus G has exponent d_t .

Start of lecture 8

Chapter II

Rings

Contents

7. Definition and Examples	28
8. Homomorphisms, Ideals and Quotients	32
9. Integral domains, maximal ideals and prime ideals	38
10. Factorisation in integral domains	42
11. Factorisation in Polynomial Rings	50
12. Algebraic Integers	54
13. Noetherian Rings	57

7. Definition and Examples

Definition (Ring). A *ring* is a triple $(R, +, \cdot)$ consisting of a set R and two binary operators $+ : R \times R \to R$ and $\cdot : R \times R \to R$ satisfying:

- (i) (R, +) is an abelian group, with identity 0 (sometimes written 0_R).
- (ii) Multiplication is associative and has an identity, i.e.

$$x \cdot (y \cdot z) = (c \cdot y) \cdot z \qquad \forall x, y, z \in R$$

and there exists $1 \in R$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in R$ (sometimes we will write 1_R).

(iii) Distributive laws

$$\begin{aligned} x \cdot (y+z) &= x \cdot y + x \cdot z & \forall x, y, z \in R \\ (x+y) \cdot z &= x \cdot z + y \cdot z & \forall x, y, z \in R \end{aligned}$$

Definition (Commutative ring). We say R is a commutative ring if $x \cdot y = y \cdot x$ for all $x, y \in R$.

Note. In this course we only consider commutative rings.

Remarks

- (i) As in the case of groups, check closure!
- (ii) For $x \in R$, write -x for the inverse of x under + and abbreviate x + (-y) as x y.
- (iii) $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$ for all $x \in R$.
- (iv) $0 = 0 \cdot x = (1 1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$ hence $(-1) \cdot x = -x$ for all $x \in R$.

Definition (Subring). A subset $S \subset R$ is a *subring* (written $S \leq R$) if it is a ring under + and \cdot with the same identity elements 0 and 1.

Examples

(i) $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \le \mathbb{C}$ (ring of Gaussian integers)

- (ii) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \leq \mathbb{R}.$
- (iii) $\mathbb{Z}/n\mathbb{Z} = \text{integers mod } n.$
- (iv) R, S rings. The product $R \times S$ is a ring via

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$
$$(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)$$
$$0_{R \times S} = (0_R, 0_S)$$
$$1_{R \times S} = (1_R, 1_S)$$

Note: $R \times \{0\}$ is not a subring of $R \times S$.

(v) Let R be a ring. A polynomial f over R is an expression $f = a_0 + a_1 X + \dots + a_n X^n$, $a_i \in \mathbb{R}$. (Note "X" is just a symbol, not a variable). The *degree* of f is the largest $n \in \mathbb{N}$ such that $a_n \neq 0$. We write R[X] for the set of all polynomials over R. If $g = b_0 + b_1 X + \dots + b_m X^m$ is another polynomial, set

$$f + g = \sum_{i} (a_i + b_i) X^i$$
$$f \cdot g = \sum_{i} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) X^i$$

Then R[X] is a ring with identities 0 and 1. We identify R with the subring of R[X] of constant polynomials (ie $\sum_{i} a_i X^i$ with $a_i = 0$ for all $i \ge 1$).

Definition (Unit). An element $r \in R$ is a *unit* if it has an inverse under multiplication, i.e. $\exists s \in R$ such that $r \cdot s = 1$. The units in a ring R form a group (R^{\times}, \cdot) .

For example, $\mathbb{Z}^{\times} = \{\pm 1\}, \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}.$

Definition (Field). A *field* is a ring with $0 \neq 1$ such that every non zero element is a unit.

Remark. If R is a ring with 0 = 1, then $x = x \cdot 1 = x \cdot 0 = 0$ for all $x \in R$, so $R = \{0\}$ the trivial ring.

Proposition 7.1. Let $f, g \in R[X]$. Suppose the leading coefficient of g is a unit. Then there exists $q, r \in R[X]$ such that

$$f(X) = q(X)g(X) + r(X)$$

where $\deg(r) < \deg(g)$.

Proof. By induction on $n = \deg f$. Write

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \qquad a_n \neq 0$$

$$g(X) = b_m X^m b_{m-1} X^{m-1} + \dots + b_1 X + b_0 \qquad b_m \neq 0$$

If n < m, then put q = 0, r = f and done. Otherwise we have $n \ge m$ and we set

$$f_1(X) = f(X) - a_n b_m^{-1} X^{n-m} X^{n-m} g(X)$$

Coefficient of X^n is $a_n - a_n b_m^{-1} b_m = 0$ therefore $\deg(f_1) < n$. By the induction hypothesis, there exists $q_1, r \in R[X]$ such that

$$f_1(X) = q_1(X)g(X) + r(X) \qquad \deg(r) < \deg(g)$$
$$\implies f(X) = \underbrace{(g_1(X) + a_n b_m^{-1} X^{n-m})}_{=g(X)} g(X) + r(X)$$

Remark. If R is a field then we only need $g \neq 0$.

Further Examples

(i) If R is a ring and S is a set then the set of all functions $S \to \mathbb{R}$ is a ring under pointwise operations

$$(f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Further interesting examples appear as subrings, for example

{continuous functions $\mathbb{R} \to \mathbb{R}$ }

has

{polynomial functions
$$\mathbb{R} \to \mathbb{R}$$
} = $R[X]$

as a subring.

(ii) Power series ring $R[X] = \{a_0 + a_1 X + \dots \mid a_i \in R\}.$

(iii) Laurent polynomials

$$R\llbracket X, X^{-1}\rrbracket = \left\{ \sum_{i \in \mathbb{Z}} a \cdot X^i : a_i \in R, \text{only finitely many } a_i \neq 0 \right\}$$

Start of lecture 9

8. Homomorphisms, Ideals and Quotients

Definition. Let R and S be rings. A function $\phi: R \to S$ is a ring homomorphism if

- (i) $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$ for all $r_1, r_2 \in R$.
- (ii) $\phi(r_1r_2) = \phi(r_1) \cdot \phi(r_2)$ for all $r_1, r_2 \in R$.
- (iii) $\phi(1_R) = 1_S$

A ring homomorphism that is also a bijection is called an *isomorphism*.

The kernel of ϕ is

$$\ker(\phi) = \{r \in R \mid \phi(r) = 0_S\}$$

Lemma 8.1. A ring homomorphism $\phi : R \to S$ is injective if and only if ker $(\phi) = 0_R$.

Proof. $\phi : (R, +) \to (S, +)$ is a group homomorphism.

Definition. A subset $I \in R$ is an ideal (written $I \leq R$) if

(i) I is a subgroup of (R, +)

(ii) If $r \in R$ and $x \in I$, then $rx \in I$.

We say I is proper if $I \neq R$.

Lemma 8.2. If $\phi : R \to S$ is a ring homomorphism, then ker (ϕ) is an ideal of R.

Proof. $\phi : (r, +) \to (S, +)$ is a group homomorphism, $\ker(\phi)$ is a subgroup of (R, +). If $r \in R$ and $x \in \ker(\phi)$, then

$$\phi(rx) = \phi(r)\phi(x) = \phi(r) \cdot 0_S = 0_S$$

hence $rx \in \ker(\phi)$.

Remark. If I contains a unit, then $1_R \in I$ and hence I = R. Thus if I is a proper ideal, $1_R \notin I$, so I is not a subring.

Lemma 8.3. The ideals in \mathbb{Z} are

$$n\mathbb{Z} = \{\ldots, -2n, -n, 0, n, 2n, \ldots\}$$

for $n = 0, 1, 2 \dots$

Proof. Certainly $n\mathbb{Z} \leq \mathbb{Z}$. Let $I \leq \mathbb{Z}$ be a non-zero ideal, and n the smallest positive integer in I. Then $n\mathbb{Z} \subset I$. If $m \in I$, then write m = qn + r with $q, r \in \mathbb{Z}$. Then $r = m - qn \in I$. Contradicts choice of n unless r = 0. But then $m \in n\mathbb{Z}$, i.e. $I \subset n\mathbb{Z}$. \Box

Definition. For $a \in R$, write $(a) = \{ra : r \in R\} \leq R$. This is the *ideal generated* by a. More generally, if $a_1, a_2, \ldots, a_n \in R$, we write

$$(a_1,\ldots,a_n) = \{r_1a_1 + \cdots + r_na_n \mid r_i \in R\} \leq R.$$

Definition. Let $I \leq R$. We say I is *principal* if I = (a) for some $a \in R$.

Theorem 8.4. If $I \leq R$ then the set R/I of cosets of I in (R, +) forms a ring (called the quotient ring) with operations

$$(r_1 + I) + (r_2 + I) = r_1 + r_2 + I$$

 $(r_1 + I)(r_2 + I) = r_1r_2 + I$

and $0_{R/I} = 0_R + I$, $1_{R/I} = 1_R + I$. Moreover, the map $R \to R/I$, $r \mapsto r + I$ is a ring homomorphism with kernel I.

Proof. Already know (R/I, +) is a group. If $r_1 + I = r'_1 + I$ and $r_2 + I = r'_2 + I$, then

$$r_1' = r_1 + a_1, \qquad r_2' = r_2 + a_2$$

for some $a_1, a_2 \in I$. Then

$$r'_{1}r'_{2} = (r_{1} + a_{1})(r_{2} + a_{2})$$

= $r_{1}r_{2} + \underbrace{r_{1}a_{2}}_{\in I} + \underbrace{r_{2}a_{1}}_{\in I} + a_{1}a_{2}$

thus $r'_1r'_2 + I = r_1r_2 + I$. Remaining properties for R/I follow from those for R.

Example. (i) $n\mathbb{Z} \leq \mathbb{Z}$. Quotient ring $\mathbb{Z}/n\mathbb{Z}$. $\mathbb{Z}/n\mathbb{Z}$ has elements $0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \ldots, (n-1) + n\mathbb{Z}$. Addition and multiplication carried out mod n.

(ii) Consider $(X) \subset \mathbb{C}[X]$ (polynomials with 0 constant term). If

$$f(X) = a_n X^n + r \cdots a_1 X + a_0, \qquad a_1 \in \mathbb{C}$$

then $f(X)+(X) = a_0+(X)$. There is a bijection $\mathbb{C}[X]/(X) \to \mathbb{C}, f(X)+(X) \mapsto f(0), a+(X) \leftrightarrow a$. These maps are ring homomorphisms. Thus $\mathbb{C}[X]/(X) \cong \mathbb{C}$.

(iii) Consider $(X^2 + 1) \leq \mathbb{R}[X]$

$$\mathbb{R}[X]/(X^2+1) = \{f(X) + (X^2+1) : f(X) \in \mathbb{R}[X]\}$$

By proposition 7.1, $f(X) = q(X)(X^2 + 1) + r(X)$ with deg r < 2, i.e. r(X) = a + bX, $a, b \in \mathbb{R}$. Thus

$$\mathbb{R}[X]/(X^2+1) = \{a+bX+(X^2+1): a, b \in \mathbb{R}\}\$$

If $a+bX+(X^2+1) = a'+b'X+(X^2+1)$. Then $a = a'+(b-b')X = g(X)(X^2+1)$ for some $g(X) \in \mathbb{R}[X]$. Comparing degrees, we see g(X) = 0 and a = a', b = b'. Consider the bijection

$$\mathbb{R}[X]/(X^2+1) \to \mathbb{C}, \qquad a+bX+(X^2+1) \mapsto a+bi$$

We show ϕ is a ring homomorphism It preserves additions and maps $1+(X^2+1)$ to 1. Now we check that it respects multiplication:

$$\phi((a + bX + (X^{2} + 1))(c + dX + (X^{2} + 1)))$$

$$= \phi((a + bX)(c + dX) + (X^{2} + 1))$$

$$= \phi(ac + (ad + bc)X + bd(X^{2} + 1) - bd + (X^{2} + 1))$$

$$= ac - bd + (ad + bc)i$$

$$= \phi(a + bX + (X^{2} + 1))\phi(c + dX + (X^{2} + 1))$$

Thus $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.

Start of lecture 10

Theorem (First Isomorphism Theorem for Rings). Let $\phi : R \to S$ be a ring homomorphism. Then $\ker(\phi) \leq R$, $\operatorname{Im}(\phi) \leq S$ and there exists isomorphism

 $R/\ker(\phi) \cong \operatorname{Im}(\phi)$

Proof. Already saw that ker(ϕ) $\leq R$ (Lemma 8.2), and Im(ϕ) is a subgroup of (S, +).

Now

$$\phi(r_1)\phi(r_2) = \phi(r_1r_2) \in \operatorname{Im}(\phi)$$
$$1_S = \phi(1_R) \in \operatorname{Im}(\phi)$$

Thus $\operatorname{Im}(\phi)$ is a subring of S. Let $K = \ker(\phi)$. Define

$$\Phi: R/K \to \operatorname{Im}(\phi)$$
$$r + K \mapsto \phi(r)$$

By the first isomorphism theorem for groups, this is well-defined, a bijection and a group homomorphism under +. Also $\Phi(1_R + K) = \phi(1_R) = 1_S$ and

$$\Phi((r_1 + K)(r_2 + K)) = \Phi(r_1r_2 + K)$$

= $\phi(r_1r_2)$
= $\phi(r_1)\Phi(r_2)$
= $\Phi(r_1 + K)\Phi(r_2 + K)$

Thus Φ is a ring isomorphism.

Theorem (Second Isomorphism Theorem for Rings). Let $R \leq S$ and $J \leq S$. Then $R \cap J \leq R$, $R + J = \{r + a \mid r \in R, a \in J\} \leq S$, and

$$\frac{R}{R\cap J} \cong \frac{R+J}{J} \le \frac{S}{J}$$

Proof. By second isomorphism theorem for groups, R + S is a subgroup of (S, +), and we have

$$1_S = \underbrace{1_S}_{\in R} + \underbrace{0_S}_{\in J} \in R + J$$

If $r_1, r_2 \in R$ and $a_1, a_2 \in J$ then

$$(r_1 + a_1)(r_2 + a_2) = \underbrace{r_1 r_2}_{\in J} + \underbrace{r_1 a_2}_{\in J} + \underbrace{r_2 a_1}_{\in J} + \underbrace{a_1 a_2}_{\in J} \in R + J$$

Thus $R + J \leq J$. Let $\phi : R \to S/J$, $r \mapsto r + J$. This is the composite of inclusion $R \subset S$ and the quotient map $S \to S/J$ hence ϕ is a ring homomorphism.

$$\ker(\phi) = \{r \in R \mid r+J = J\} = R \cap J \leq R$$
$$\operatorname{Im}(\phi) = \{r+J \mid r \in R\} = \frac{R+J}{J} \leq \frac{S}{J}$$

Apply first isomorphism theorem.

Note. Let $I \trianglelefteq R$. There exists bijection

$$\{ \text{ideals in } R/I \} \leftrightarrow \{ \text{ideals in } R \text{ containing } I \}$$

$$K \mapsto \{ r \in R \mid r + I \in K \}$$

$$J/I \leftarrow J$$

Theorem (Third Isomorphism Theorem for Rings). Let $I \trianglelefteq R$, $J \trianglelefteq R$ with $I \le J$. Then $J/I \trianglelefteq R/I$ and

$$\frac{R/I}{J/I} \cong \frac{R}{J}$$

Proof. Consider

$$\phi: R/I \to R/J$$
$$r+I \mapsto r+J$$

This is a surjective ring homomorphism (well-defined since $I \leq S$).

$$\ker(\phi) = \{r + I : r \in J\} = J/I \trianglelefteq R/I$$

Apply first isomorphism theorem.

Example. There is a surjective ring homomorphism $\phi : \mathbb{R}[X] \to \mathbb{C}$

$$f(X) = \sum_{n=1}^{m} a_n X^n \mapsto f(i) = \sum_{n=1}^{m} a_n i^m$$

Proposition 7.1 implies $\ker(\phi) = (X^2 + 1)$. First isomorphism theorem implies $\mathbb{R}[X]/(X^2 + 1) \cong \mathbb{C}$.

Example. R a ring. Then there exists a unique ring homomorphism $i : \mathbb{Z} \to R$ given by

$$0 \mapsto 0_R$$

$$1 \mapsto 1_R$$

$$n \mapsto \underbrace{(1_R + \dots + 1_R)}_{n \text{ times}}$$

$$-n \mapsto -(1_r + \dots + 1_R)$$

Since ker $(i) \leq \mathbb{Z}$, have ker $(i) = n\mathbb{Z}$ for $n \in \{0, 1, 2, ...\}$. By first isomorphism theorem, $\mathbb{Z}/n\mathbb{Z} \cong \text{Im}(i) \leq R$.

Definition. We call *n* the characteristic of *R*. For example $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} have characteristic 0, and $\mathbb{Z}/p\mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z}[X]$ have characteristic *p*.

9. Integral domains, maximal ideals and prime ideals

Definition (Integral Domain and Zero-Divisor). An integral domain is a ring with $0 \neq 1$ such that for $a, b \in R$, $ab = 0 \implies a = 0$ or b = 0. A zero-divisor in a ring R is a non-zero element a such that ab = 0 for some $0 \neq b \in R$. So an integral domain is a ring with no zero-divisors.

Examples

- (i) All fields are integral domains (if ab = 0 with $b \neq 0$, multiply by b^{-1} to get a = 0)
- (ii) Any subring of an integral domain is an integral domain, for example $\mathbb{Z} \leq \mathbb{Q}, \mathbb{Z}[i] \leq \mathbb{C}$.
- (iii) $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain since (1,0)(0,1) = (0,0).

Lemma 9.1. R an integral domain $\implies R[X]$ an integral domain.

Proof. Write $f(X) = a_m x^m + \dots + a_1 X + a_0$, $a_m \neq 0$, $g(X) = b_n X^n + \dots + b_1 X + b_0$, $b_n \neq 0$. Then

$$f(X)g(X) = a_m b_n X^n + \cdots$$

where $a_m b_n \neq 0$ since R is an integral domain. Thus $\deg(fg) = m + n = \deg(f) + \deg(g)$ and $fg \neq 0$.

Start of lecture 11

Definition. A polynomial

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0 \in R[X]$$

if monic if $a_n = 1_R$.

Lemma 9.2. Let R be an integral domain and $0 \neq f \in R[X]$. Let

$$\operatorname{Roots}(f) = \{a \in R \mid f(a) = 0\}$$

Then $|\operatorname{Roots}(f)| \le \deg(f)$.

Proof. Example Sheet 2.

Theorem 9.3. Let F be a field. Then any finite subgroup $G \leq (F^{\times}, \bullet)$ is cyclic.

Proof. G is a finite abelian group. If G not cyclic, then by Theorem 6.4 (structure theorem for finite abelian groups) there exists $H \leq G$ such that $H \cong C_{d_1} \times C_{d_1}$ for some $d_1 \geq 2$. But then the polynomial $f(X) = X^{d_1} - 1 \in F[X]$ has degree d_1 and $\geq d_1^2$ roots, which contradicts Lemma 9.2.

Example. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Proposition 9.4. Any finite integral domain is a field.

Proof. Let R be a finite integral domain. Let $0 \neq a \in R$. Consider map $\phi : R \to R$, $x \mapsto ax$. If $\phi(x) = \phi(y)$, then a(x - y) = 0 therefore x - y = 0 (since R is an integral domain and $a \neq 0$), hence x = y.

Thus ϕ is injective, and hence surjective since R is finite. Hence there exists $b \in R$ such that ab = 1, i.e. a is a unit. Thus R is a field.

Theorem 9.5 (Field of Fractions Existence). Let R be an integral domain. There exists a field F such that

(i) $R \leq F$.

(ii) Every element of F can be written in the form ab^{-1} where $a, b \in R$ with $b \neq 0$.

F is called the *field of fractions* of R.

Proof. Consider the set $S = \{(a, b) \mid a, b \in R, b \neq 0\}$ and the equivalence relation on S given by

$$(a,b) \sim (c,d) \iff ad - bc = 0$$

Clearly reflexive and symmetric. For transitivity, if $(a, b) \sim (c, d) \sim (e, f)$, then

$$(ad)f = (bc)f = b(cf) = b(de) \implies d(af - be) = 0$$

Since R an integral domain and $d \neq 0$, this gives af - be = 0, i.e. $(a, b) \sim (e, f)$. Let $F = S/\sim$ and write $\frac{a}{b}$ for [(a, b)]. Define

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bd}{bd}$$

and

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Can be checked that these operations are well defined and maps F into a ring with $0_F = \frac{0_R}{1_R}$ and $1_F = \frac{1_R}{1_R}$.

If $\frac{a}{b} \neq 0_F$, then $a \neq 0_R$ and $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = \frac{1_R}{1_R} = 1_F$. So F is a field and

- (i) Identify R with subring $\left\{\frac{r}{1_R}: r \in R\right\} \leq F$.
- (ii) $\frac{a}{b} = a \cdot b^{-1}$.

Example. (i) \mathbb{Z} is an integral domain with field of fractions \mathbb{Q} .

(ii) $\mathbb{C}[X]$ has field of fractions $\mathbb{C}(X)$ = field of rational functions in X.

Definition. An ideal $I \leq R$ is maximal if $I \neq R$ and if $I \subseteq J \leq R$ then J = I or R.

Lemma 9.6. A (non-zero) ring R is a field if and only if its only ideals are $\{0\}$ and R.

Proof. (\Rightarrow) If $0 \neq I \leq R$, then I contains a unit and hence I = R.

(\Leftarrow) If $0 \neq x \in R$, then the (x) is non-zero hence (x) = R and there exists $y \in R$ such that xy = 1, i.e. x is a unit.

Proposition 9.7. Let $I \leq R$ be an ideal. I is maximised if and only if R/I is a field.

Proof.

R/I is a field $\iff I/I$ and R/I are the only ideals in R/I $\iff I$ and R are the only ideals in R containing I $\iff I \lhd R$ is maximal

Definition. An ideal $I \leq R$ is prime if $I \neq R$ and whenever $a, b \in R$ with $a, b \in I$, we have $a \in I$ or $b \in I$.

Example. The ideal $n\mathbb{Z} \leq \mathbb{Z}$ is a prime ideal if and only if n = 0 or n = p is a prime number. If $ab \in p\mathbb{Z}$, then $p \mid ab$ so $p \mid a$ or $p \mid b$, so $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$. Conversely, if n = uv with u, v > 1, then $uv \in n\mathbb{Z}$, but $u \notin n\mathbb{Z}$, $v \notin n\mathbb{Z}$.

Proposition 9.8. Let $I \leq R$ be an ideal. Then I is prime if and only if R/I is an integral domain.

Proof.

$$\begin{split} I \text{ is prime } & \Longleftrightarrow \text{ whenever } a, b \in R \text{ with } ab \in I, \text{ we have } a \in I \text{ or } b \in I \\ & \Longleftrightarrow \text{ whenever } a+I, b+I \in R/I \text{ with } (a+I)(b+I) = 0+I \\ & \text{ we have } a+I = 0+I \text{ or } b = 0+I \\ & \iff R/I \text{ is an integral domain.} \end{split}$$

Remark. Proposition 9.7 and 9.8 show that I maximal implies I is prime.

Start of lecture 12

Remark. If $\operatorname{char}(R) = n$, then $\mathbb{Z}/n\mathbb{Z} \leq R$. So if R is an integral domain, then $\mathbb{Z}/n\mathbb{Z}$ is an integral domain. Therefore $n\mathbb{Z} \leq \mathbb{Z}$ a prime ideal, therefore n = 0 or p a prime. In particular, a field has characteristic 0 (and contains \mathbb{Q}) or has characteristic p (and contains $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$).

10. Factorisation in integral domains

This section: R is an integral romain.

Definition. (i) $a \in R$ is a unit if there exists $b \in R$ with ab = 1 (equivalently (a) = R). $R^{\times} :=$ units in R.

- (ii) $a \in R$ divides $b \in R$ (written $a \mid b$) if there exists $c \in R$ such that b = ac (equivalently $(b) \subseteq (a)$).
- (iii) $a, b \in R$ are associate if a = bc for some unit $c \in R^{\times}$ (equivalently (a) = (b), or $a \mid b$ and $b \mid a$).
- (iv) $r \in R$ is irreducible if $r \neq 0$, r is not a unit and

$$r = ab \implies a \text{ or } b \text{ is a unit}$$

(v) $r \in R$ is prime if $r \neq 0$, r is not a unit and

$$r \mid ab \implies r \mid a \text{ or } r \mid b$$

Note. These properties depend on ambient ring R. For example:

- 2 is prime and irreducible in \mathbb{Z} , but not in \mathbb{Q} .
- 2X is irreducible in $\mathbb{Q}[X]$, but not in $\mathbb{Z}[X]$.

Lemma 10.1. $(r) \leq R$ is a prime ideal if and only if r = 0 or is a prime.

- *Proof.* \Rightarrow Suppose (r) is prime and $r \neq 0$. Since prime ideals are proper, $(r) \neq R$, so $r \notin R^{\times}$. If $r \mid ab$, then $ab \in (r)$ so $a \in (r)$ or $b \in (r)$ hence $r \mid a$ or $r \mid b$, i.e. r is prime.
 - $\Leftarrow \{0\} ext{ } ≤ R$ is a prime ideal since R an integral domain. Let $r \in R$ be a prime. If $ab \in (r)$, then $r \mid ab$ hence $r \mid a$ or $r \mid b$. Hence $a \in (r)$ or $b \in (r)$, i.e. (r) is a prime ideal.

Lemma 10.2. If $r \in R$ is prime, then it is irreducible.

Proof. Since r is prime, $r \neq 0$ and $r \notin \mathbb{R}^{\times}$. Suppose r = ab. Then $r \mid ab$ so $r \mid a$ or $r \mid b$. WLOG assume $r \mid a$, so r = rc for some $c \in R$. Then r = ab = rcb, therefore r(1-bc) = 0. Then since R is an integral domain and $r \neq 0$, bc = 1, i.e. b is a unit. \Box

Example. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5} : a, b \in \mathbb{Z}\} \leq \mathbb{C}$ (note $R \cong \mathbb{Z}[X]/(X^2+5)$). R a subring of \mathbb{C} , so an integral domain. Define a function $N : R \to \mathbb{Z}_{\geq 0}, a+b\sqrt{-5} \mapsto a^2 + 5b^2$ "the norm". Note that $N(z_1z_2) = N(z_1)N(z_2)$.

Claim. $R^{\times} = \{\pm 1\}.$

Proof. If $r \in \mathbb{R}^{\times}$, i.e. rs = 1 for some $s \in \mathbb{R}$. Then N(r)N(s) = N(1) = 1 so N(r) = 1. But only integer solutions to $a^2 + 5b^2 = 1$ are (a, b) = (0, 1), (-1, 0).

Claim. $2 \in R$ is irreducible.

Proof. Suppose 2 = rs, $r, s \in R$. Then 4 = N(2) = N(r)N(s). Since $a^2 + 5b^2 = 2$ has no integer solutions R has no elements of norm 2. Thus N(r) = 1 and N(2) = 4 (or vice versa). But N(r) = 1 implies r is a unit (for example $r\bar{r} = 1$).

By similar reasoning, $3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducible (as there are no elements of norm 3).

Now $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6 = 2 \cdot 3$. Thus $2 \mid (1 + \sqrt{-5})(1 - \sqrt{-5})$, but $2 \nmid 1 + \sqrt{-5}$ and $2 \nmid 1 - \sqrt{-5}$ (check by taking norms, $4 \nmid 6$). Thus 2 is *not* prime in *R*.

Takeaways

- (i) Irreducible does not imply prime!
- (ii) $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ gives two different factorisations into irreducibles.

Remark. Since $R^{\times} = \{\pm 1\}$, the irreducibles in (ii) are not associates.

Definition (Principal Ideal Domain). An integral domain R is a principal ideal domain (PID) if every ideal $I \leq R$ is principal, i.e. I = (r) for some $r \in R$.

For example, \mathbb{Z} is a PID by Lemma 8.3.

Proposition 10.3. Let R be a PID. Then every irreducible element of R is prime.

Proof. Let $r \in R$ be irreducible and $r \mid ab$, and assume $r \nmid a$. R a PID implies (a, r) = (d)for some $d \in R$. In particular r = cd for some $c \in R$. Since r is irreducible, either c or d is a unit. If c a unit, then (a, r) = (r) so $r \mid a$, contradiction. If d a unit, then (a, r) = R. So there exists $s, t \in R$ such that sa + tr = 1. Then b = sab + trb, and since $r \mid ab$ we have $r \mid b$. Then r is prime. \square

Let R be an integral domain.

Start of lecture 13

Lemma 10.4. Let R be a PID and $0 \neq r \in R$. Then r is irreducible $\iff (r)$ is a maximal ideal.

- Proof. $\Rightarrow r \notin R^{\times}$ so $(r) \neq R$. Suppose $(r) \subseteq J \subseteq R$. R a PID implies J = (a) for some $a \in R$. Hence r = ab for some $b \in R$. Since r is irreducible, either $a \in R^{\times}$ in which case J = R or $b \in R^{\times}$ in which case (r) = J. Thus (r) is maximal.
 - $\Leftarrow (r) \neq R$ so $r \notin R^{\times}$. Suppose r = ab. Then $(r) \subseteq (a) \subseteq R$. Since (r) is maximal, either (a) = (r) in which case b is a unit, or (a) = R in which case a is a unit. Thus r is irreducible.

Remark. (i) Backwards direction holds without assuming R a PID.

(ii) Let R a PID, $0 \neq rR$. Then

$$(r) \text{ maximal} \iff r \text{ irreducible}$$
$$\iff r \text{ prime}$$
$$\iff (r) \text{ prime}$$

Thus there exists a bijection

{non-zero prime ideals} \leftrightarrow {non-zero maximal ideals}

Definition (Euclidean domain). An integral domain is a *Euclidean domain* (ED) if there is a function $\phi: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ (a Euclidean function) such that:

(i) If $a \mid b$ then $\phi(a) \leq \phi(b)$.

(ii) If $a, b \in R$ with $b \neq 0, \exists q, r \in R$ with a = bq + r and either r = 0 or $\phi(r) < \phi(b)$.

Example. \mathbb{Z} is an ED with Euclidean function $\phi(n) = |n|$.

Proposition 10.5. If R is a Euclidean domain, then it is a principal ideal doman (ie ED implies PID).

Proof. Let R have Euclidean function $\phi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$. Let $I \leq R$ non-zero. Choose $b \in I \setminus \{0\}$ with $\phi(b)$ minimal, then $(b) \subseteq I$. For $a \in I$, write a = bq + r with $q, r \in R$ and either r = 0 or $\phi(r) < \phi(b)$. Since $r = a - bq \in I$, cannot have $\phi(r) < \phi(b)$ by choice of b. Thus $a = bq \in (b)$, and hence (b) = I.

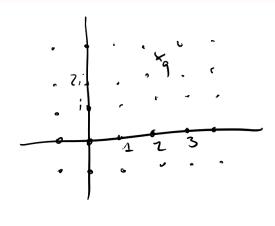
Remark. Only used (ii) here. Property (i) allows us to describe the units in R as $R^{\times} = \{u \in R \setminus \{0\} \mid \phi(u) = \phi(1)\}$

Example. (i) F a field, F[X] is an ED with Euclidean function $\phi(f) = \deg f$, $f \in F[X]$. (Proposition 7.1)

(ii) $R = \mathbb{Z}[i]$ is an ED with Euclidean function

$$\phi(a+ib) = N(a+ib) = |a+ib|^2 = a^2 + b^2$$

Since $N(z_1z_2) = N(z_1)N(z_2)$, property (i) holds. For property (ii), let $z_1, z_2 \in \mathbb{Z}[i]$ with $z_2 \neq 0$. Consider $\frac{z_1}{z_2} \in \mathbb{C}$. This has distance less than 1 from the nearest element of $\mathbb{Z}[i]$, i.e. there exists $q \in \mathbb{Z}[i]$ such that $\left|\frac{z_1}{z_2} - q\right| < 1$ (*).



Set $r = z_1 - z_2 q \in \mathbb{Z}[i]$. Then $z_1 = z_2 q + r$ and

$$\phi(r) = |r|^2 = |z_1 - z_2 q|^2 < |z_2|^2 = \phi(z_2)$$

Thus Proposition 10.5 implies that $\mathbb{Z}[i]$ and F[X] for F a field are PIDs.

Example. Let A be an $n \times n$ matrix over a field F. Let $I = \{f \in F[X] : f(A) = 0\}$. If $f, g \in I$, then $(f - g)(A) = f(A) - g(A) = 0 \implies f - g \in I$. If $f \in F[X]$ and $g \in I$, then $(f \cdot g)(A) = f(A) \cdot g(A) = 0 \implies fg \in I$. Thus $I \subseteq F[X]$ is an ideal, and hence I = (f) for some $f \in F[X]$ since F[X] is a PID. May assume f is monic upon multiplying by a unit in F. Then for $g \in F[X]$, $g(A) = 0 \iff g \in I \iff g \in (f)$, i.e. $f \mid g$. Thus f is minimal polynomial of A. **Example** (Field of order 8). Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. Let $f(X) = X^3 + X + 1 \in \mathbb{F}_2[X]$. If f(X) = g(X)h(X) with $g, h \in \mathbb{F}_2[X]$ and $\deg(g), \deg(h) > 0$, then either $\deg(g) = 1$ or $\deg(h) = 1$, and so f has a root. But $f(0) \neq 0$ and $f(1) \neq 0$ (in \mathbb{F}_2). Thus f is irreducible. Since $\mathbb{F}_2[X]$ a PID, Lemma 10.4 implies $(f) \leq \mathbb{F}_2[X]$ is maximal, hence

$$\mathbb{F}_{2}[X]/(f) = \{aX^{2} + bX + c + (f) \mid a, b, c \in \mathbb{F}_{2}\}$$

is a field of order 8.

Start of lecture 14

Example. $\mathbb{Z}[X]$ is not a PID. Consider $I = (2, X) \leq \mathbb{Z}[X]$. Then

$$I = \{2f_1(X) + Xf_2(X) : f_1, f_2 \in \mathbb{Z}[X]\}\$$

= { $f \in \mathbb{Z}[X] : f(0)$ if even}

Suppose I = (f) for some $f \in \mathbb{Z}[X]$. Then 2 = fg for some $g \in \mathbb{Z}[X]$. Thus $\deg(f) = \deg(g) = 0$ and $f \in \mathbb{Z}$. Hence $f = \pm 1$ or ± 2 . Thus $I = \mathbb{Z}[X]$ or $2\mathbb{Z}[X]$. The first case is a contradiction since $1 \notin I$, and the second is a contradiction since $X \in I$.

Definition. An integral domain is a unique factorisation domain (UFD) if

- (i) Every non-zero, non-unit is a product of irreducibles.
- (ii) If $p_1 \cdots p_m = q_1 \cdots q_n$ where p_i , q_i are irreducibles, then m = n and we can reorder so that p_i is an associate of q_i for all $i = 1, \ldots, n$.

Goal: PID \implies UFD.

Proposition 10.6. Let R be an integral domain satisfying (i) in definition of UFD. Then R is a UFD if and only if every irreducible is prime.

- *Proof.* \Rightarrow Suppose $p \in R$ is irreducible and $p \mid ab$. Then ab = pc for some $c \in R$. Writing a, b, c as products of irreducibles, it follows from (ii) that $p \mid a$ or $p \mid b$. Thus p is prime.
 - $\Leftarrow \text{ Suppose } p_1 \cdots p_m = q_1 \cdots q_n \text{ with each } p_i \text{ and } q_i \text{ irreducible. Since } p_1 \text{ is prime and } p_1 \mid q_1 \cdots q_n, \text{ we have } p_1 \mid q_i \text{ for some } i. \text{ Upon reordering, we may assume } p_1 \mid q_1, \text{ i.e. } q_1 = up_1 \text{ for some } u \in R. \text{ But } q_1 \text{ is irreducible and } p_1 \text{ not a unit, so } u \text{ is a unit. Thus } p_1 \text{ and } q_1 \text{ are associates. Cancelling } p_1 \text{ gives } p_2 \cdots p_m m = (uq_2) \cdots q_n. \text{ Result then follows by induction.}$

Lemma 10.7. Let R be a PID and $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ a nested sequence of ideals. Then $\exists N \in \mathbb{N}$ such that $I_n = I_{n+1}$ for all $n \geq N$. (Rings satisfying the "ascending chain condition" are called Noetherian – more later).

Proof. Let $I = \bigcup_{i=1}^{\infty} I_i$. This is an ideal in R. (See Example Sheet 2). Since R is a PID, we have I = (a) for some $a \in R$. Then $(a) = \bigcup_{i=1}^{\infty} I_i$, so $a \in I_N$ for some N. Then for any $n \geq N$ we have

$$(a) \subseteq I_N \subseteq I_n \subseteq I = (a)$$

and so $I_n = I$.

Theorem 10.8. If R is a principal ideal domain, then it is a unique factorisation domain. (i.e. PID implies UFD).

Proof. (i) Let $0 \neq x \neq R$, not a unit. Suppose x is not a product of irreducibles. Then x not irreducible, so can write $x = x_1y_1$ where x_1, y_1 are not units. Then either x_1 or y_1 is not a product of irreducibles, say x_1 . We have $(x) \subseteq (x_1)$ and inclusion is strict since y_1 not a unit. Now write $x_1 = x_2y_2$ where x_2, y_2 are not units. Repeat this procedure to get

$$(x) \subsetneq (x_1) \subsetneq (x_2) \subsetneq \cdots$$

contradicting Lemma 10.7.

(ii) By proposition 10.6, suffices to show irreducibles are prime. Conclude by Proposition 10.3.

Examples

	ED	\Longrightarrow	PID	\Longrightarrow	UFD	\Longrightarrow	Integral Domain
$\mathbb{Z}/4\mathbb{Z}$	X		X		X		X
$\mathbb{Z}[\sqrt{-5}]$	X		×		X		1
$\mathbb{Z}[X]$	X		×		\checkmark		\checkmark
$\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$	×		1		1		1
$\mathbb{Z}[i]$	1		1		\checkmark		\checkmark

Definition. R an integral domain.

- (i) $d \in R$ is a greatest common divisor of $a_1, \ldots, a_n \in R$ (written $d = \gcd(a_1, \ldots, a_n)$) if $d \mid a_i$ for all i and if $d' \mid a_i$ for all i, then $d' \mid d$.
- (ii) $m \in R$ is a least common multiple of $a_1, \ldots, a_n \in R$ (written $m = \operatorname{lcm}(a_1, \ldots, a_n)$) if $a_i \mid m$ for all i and if $a_i \mid m'$ for all i, then $m \mid m'$.

Both gcd's and lcm's (when they exist) are unique up to associates.

Proposition 10.9. In a UFD, both lcm's and gcd's exist.

Proof. Write $a_i = u_i \prod_j p_j^{n_{ij}}$ for all $1 \le i \le n$, where u_i is a unit, the p_i are irreducible which are *not* associates of each other, and $n_{ij} \in \mathbb{Z}_{\ge 0}$.

We claim that $d = \prod_j p_j^{m_j}$ where $m_f = \min_{1 \le i \le n} n_{ij}$ is the gcd of a_1, \ldots, a_n . Certainly $d \mid a_i$ for all *i*. If $d' \mid a_i$ for all *i*, then $d' = u \prod_j p_j^{t_j}$, we find $t_j \le n_{ij}$ for all *j* so $t_j \le m_j$. Therefore $d' \mid d$. The argument for lcm's is similar.

Start of lecture 15

11. Factorisation in Polynomial Rings

Goal of this lecture:

Theorem 11.1. If R is a UFD then R[X] is a UFD.

In this section: R is a UFD with field of fractions F. We have $R[X] \leq F[X]$.

Moreover F[X] is an ED hence a PID and a UFD.

Definition. The content of $f = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ is

 $c(f) = \gcd(a_0, a_1, \dots, a_n)$

(well-defined up to multiplication by a unit). We say f is *primitive* if c(f) is a unit.

Lemma 11.2. (i) If $f, g \in R[X]$ are primitive, then fg is also primitive. (ii) If $f, g \in R[X]$, then c(fg) = c(f)c(g) (equality is up to units).

Proof. (i) Let $f = a_n X^n + \dots + a_1 X + a_0$, $g = b_m X^m + \dots + b_1 X + b_0$. If fg is not primitive, c(fg) is not a unit, so there is some prime p such that $p \mid c(fg)$. Since f, g primitive, $p \nmid c(f)$ and $p \nmid c(g)$. Suppose $p \mid a_0, p \mid a_1, \dots, p \nmid a_k, p \mid b_0, p \mid b_1, \dots, p \nmid b_l$. Then the coefficient of X^{k_l} in fg is

$$\sum_{i+j=k+1} a_i b_j = \underbrace{\dots + a_{k-1} b_{l-1}}_{\text{divisible by } p} + a_k b_l + \underbrace{a_{k-1} b_{l-1} + \dots}_{\text{divisible by } p}$$

Note that the LHS is divisible by p, hence $p \mid a_k b_l$ so $p \mid a_k$ or $p \mid b_l$, contradiction.

(ii) Write $f = c(f)f_0$ and $c(g)g_0$ where $f_0, g_0 \in R[X]$ primitive. Then

 $fg = c(f)c(g)f_0g_0$

where f_0g_0 is primitive by (i). Hence c(fg) = c(f)c(g) (up to a unit).

Corollary 11.3. Let $p \in R$ be prime. Then p is prime in R[X].

Proof. $R[X]^{\times} = R^{\times}$, so p is not a unit in R[X]. Let $f \in R[X]$. Then $p \mid f$ in R[X] if and only if $p \mid c(f)$ in R. Thus if $p \mid gh$ in R[X], we have

$$p \mid c(gh) = c(g)c(h) \implies p \mid c(g) \text{ or } c(h) \text{ in } R$$
$$\implies p \mid g \text{ or } p \mid h \text{ in } R[X], \text{ i.e. } p \text{ prime in } R[X]. \square$$

Lemma 11.4. Let $f, g \in R[X]$ with g primitive. If $g \mid f$ in F[X], then $g \mid f$ in R[X].

Proof. Let f = gh, $h \in F[X]$. Let $a \in R$ such that $ah \in R[X]$ ("clear denominators"), and write $ah = c(ah)h_0$, $af = c(ah)h_0g$ with h_0 primitive, and hence h_0g primitive. Taking contents, we find that $a \mid c(ah)$. Thus $h \in R[X]$ and $g \mid f$ in R[X].

Lemma (Gauss's Lemma). Let $f \in R[X]$ be primitive. Then f irreducible in R[X] implies f irreducible in F[X].

Proof. Since $f \in R[X]$ is irreducible and primitive, we have $\deg(f) > 0$, and so f not a unit in F[X]. Suppose that f is not irreducible in F[X], say f = gh, where $g, h \in F[X]$ with $\deg(g), \deg(h) > 0$. Let $\lambda \in F^{\times}$ such that $\lambda^{-1}g \in R[X]$ is primitive. (For example, let $0 \neq b \in R$ such that $bg \in R[X]$. Then $bg = c(bg)g_0$ with g_0 primitive. So can take $\lambda = \frac{c(bg)}{b} \in F^{\times}$).

Upon replacing g by $\lambda^{-1}g$ and h by λh , may assume $g \in R[X]$ primitive. Then Lemma 11.4 implies $h(X) \in R[X]$ and so f = gh in R[X], $\deg(g), \deg(h) > 0$, contradiction.

Remark. We'll see " \Leftarrow " also holds.

Lemma 11.5. Let $g \in R[X]$ be primitive. Then g is prime in F[X] implies g prime in R[X].

Proof. Suppose $f_1, f_2 \in R[X]$ and $g \mid f_1 f_2$ in R[X]. g prime in F[X] implies $g \mid f_1$ or $g \mid f_2$ in F[X] hence by Lemma 11.4, $g \mid f_1$ or $g \mid f_2$ in R[X], i.e. g prime in R[X]. \Box

Now we can finally prove Theorem 11.1:

Proof of Theorem 11.1. Let $f \in R[X]$. Write $f = c(f)f_0$ with $f_0 \in R[X]$ primitive. R a UFD implies c(f) a product of irreducibles in R (which are irreducible in R[X]). If f_0 not irreducible, say $f_0 = gh$, then $\deg(g), \deg(h) > 0$ since f_0 primitive, and g, h primitive.

By induction on degree, f_0 a product of irreducibles in R[X] – establishes (i) in definition of UFD. By Proposition 10.6, suffices to show that if $f \in R[X]$ is irreducible, then f is prime. Write $f = c(f)f_0, f_0 \in R[X]$ primitive. Then f irreducible implies f constant or primitive.

- Case f constant: f irreducible in R[X] implies f irreducible in R, hence prime in R (since UFD), hence f prime in R[X] by Corollary 11.3.
- Case f primitive: f irreducible in R[X] implies f irreducible in F[X] (Gauss's Lemma), hence f prime in F[X] (F[X] an ED hence UFD), hence f prime in R[X] by Lemma 11.5.

Remark. By Lemma 10.2, the three implications in the f primitive case are actually equivalences.

Start of lecture 16

Example. (i) Theorem 11.1 implies $\mathbb{Z}[X]$ is a UFD.

(ii) Let $R[X_1, \ldots, X_n]$ be the polynomial ring in X_1, \ldots, X_n with coefficients in R. (Define inductively $R[X_1, \ldots, X_n] = R[X_1, \ldots, X_{n-1}][X_n]$). Applying Theorem 11.1 inductively implies $R[X_1, \ldots, X_n]$ is a UFD if R is as UFD.

Theorem (Eisenstein's Criterion). Let R be a UFD and $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ primitive. Suppose $\exists p \in R$ irreducible (= prime) such that

• $p \nmid a_n$

•
$$p \mid a_i \; \forall 0 \le i \le n-1$$

•
$$p^2 \nmid a_0$$

Then f is irreducible in R[X].

Proof. Suppose f = gh, $g, h \in R[X]$ not units. f primitive implies $\deg(g), \deg(h) > 0$. Let $g = r_k X^k + \cdots + r_1 X + r_0$, $h = s_l X^l + \cdots + s_1 X + s_0$ with k + l = m. Then $p \nmid a_n = r_k s_l$ so $p \nmid r_k$ and $p \nmid s_l$, and $p \mid a_0 = r_0 s_0$ so $p \mid r_0$ or $p \mid s_0$. WLOG $p \mid r_0$. Then there exists $j \leq k$ such that $p \mid r_0, p \mid r_1, \ldots, p \mid r_{j-1}, p \nmid r_j$. Then

$$a_j = \underbrace{r_0 s_j + r_1 s_{j-1} + \dots + r_{j-1} s_1}_{\text{divisible by } p} + r_j s_o$$

but p divides a_j since j < n, thus $p | r_j s_0$, hence $p | s_0$. Then $p^2 | r_0 s_0 = a_0$, contradicting the third assumption.

Example. (i) $f(X) = X^3 + 2X + 5 \in \mathbb{Z}[X]$. If f irreducible in $\mathbb{Z}[X]$, then

$$f(X) = (x + a)(X^2 + bX + c)$$

for some $a, b, c \in \mathbb{Z}$. Thus ac = 5. But $\pm 1, \pm 5$ are not roots of f, contradiction. By Gauss's Lemma, f irreducible in $\mathbb{Q}[X]$. Thus $\mathbb{Q}[X]/(f)$ is a field (Lemma 10.4).

- (ii) Let $p \in \mathbb{Z}$ be a prime. Eisenstein's criterion implies $x^n p$ is irreducible in $\mathbb{Z}[X]$, have irreducible in $\mathbb{Q}[X]$ by Gauss's Lemma.
- (iii) Let $f(X) = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Z}[X]$ where p is prime. Eisenstein does not apply directly to f. But note that $f(X) = \frac{X^{p-1}}{X-1}$. Substituting Y = X 1 gives

$$f(Y+1) = \frac{(Y+1)^p - 1}{(Y+1) - 1} = Y^{p-1} + \binom{p}{1}Y^{p-2} + \dots + \binom{p}{p-2}Y + \binom{p}{p-1}$$

Now $p \mid {p \choose i}$ for all $1 \leq i \leq p-1$ and $p^2 \nmid {p \choose p-1} = p$. Thus f(Y+1) is irreducible in $\mathbb{Z}[Y]$, so f(X) is irreducible in $\mathbb{Z}[X]$ (because if it did have a factorisation then we could construct a factorisation of f(Y+1)).

12. Algebraic Integers

Recall $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \leq \mathbb{C}$ – ring of Gaussian integers. Norm $N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$, $a + ib \mapsto a^2 + b^2$ with $N(z_1) = N(z_1)N(z_2)$ is a Euclidean function. Thus $\mathbb{Z}[i]$ is a Euclidean Domain, hence PID and UFD, and so primes = irreducibles in $\mathbb{Z}[i]$. The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.

Example. (i) 2 = (1+i)(1-i) and 5 = (2+i)(2-i) are not primes in $\mathbb{Z}[i]$.

(ii) N(3) = 9 so if 3 = ab in Z[i] then N(a)N(b) = 9. But Z[i] has no elements of norm 3. Thus a or b is a unit, hence 3 is a prime in Z[i]. Similarly 7 is prime.

Proposition 12.1. Let $p \in \mathbb{Z}$ be a prime number. Then the following are equivalent:

- (i) p is not prime in $\mathbb{Z}[i]$.
- (ii) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
- (iii) p = 2 or $p \equiv 1 \pmod{4}$.

Proof.

- (i) \implies (ii) Let p = xy, $x, y \in \mathbb{Z}[i]$ not units. Then $p^2 = N(p) = N(x)N(y)$, N(x), N(y) > 1. Thus N(x) = N(y) = p. Writing x = a + ib gives $p = N(x) = a^2 + b^2$.
- (ii) \implies (iii) The squares modulo 4 are 0 and 1. Thus if $p = a^2 + b^2$, then $p \not\equiv 3 \pmod{4}$.
- (iii) \implies (i) Already saw 2 not prime in $\mathbb{Z}[i]$. Assume $p \equiv 1 \pmod{4}$. By Theorem 9.3, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1. Then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ contains an element of order 4, i.e. there exists $x \in \mathbb{Z}$ with $x^a \equiv 1 \pmod{p}$ but $x^2 \not\equiv 1 \pmod{p}$. Thus $x^2 \equiv -1 \pmod{p}$. Now $p \mid x^2 + 1 = (x+i)(x-i)$ but $p \nmid x + i$ and $p \nmid x i$. Thus p not prime.

Theorem 12.2. The primes in $\mathbb{Z}[i]$ (up to associates) are

- (i) a + ib, where $a, b \in \mathbb{Z}$ and $a^2 + b^2 = p$ a prime number with p = 2 or $p \equiv 1 \pmod{4}$.
- (ii) Prime numbers $p \in \mathbb{Z}$ with $p \equiv 3 \pmod{4}$.

Proof. First we check these are primes.

- (i) N(a+ib) = p. If a+ib = uv then either N(u) = 1 or N(v) = 1. Thus a+ib is irreducible, hence prime.
- (ii) Proposition 12.1, now let z ∈ Z[i] prime (= irreducible). Then z̄ ∈ Z[i] is also irreducible and N(z) = zz̄ is a factorisation into irreducibles. Let p ∈ Z be a prime number dividing N(z). If p ≡ 3 (mod 4), then p is prime in Z[i]. Thus p | z or p | z̄, so p is an associate of z or z̄. Hence p is an associate of z. Otherwise, p = 2 or p ≡ 1 (mod 4) and P = a²+b² = (a+ib)(a-ib), a, b ∈ Z̄. Then (a+ib)(a-ib) | zz̄. Thus z is an associate of a + ib or a ib by uniqueness of factorisation.

Start of lecture 17

Remark. In Theorem 12.2, if $p = a^2 + b^2$, a + bi and a - bi are not associates unless p = 2 ((1 + i) = (1 - i)i).

Corollary 12.3. An integer $n \ge 1$ is the sum of 2 squares if and only if every prime factor p of n with $p \equiv 3 \pmod{4}$ divides n to an even power.

Proof.

 $n = a^2 + b^2 \iff n = N(x)$ for some $x \in \mathbb{Z}[i]$ $\iff n$ a product of norms of primes in $\mathbb{Z}[i]$

Theorem 12.2 implies that norms of primes in $\mathbb{Z}[i]$ are the primes $p \in \mathbb{Z}$ with $p \not\equiv 3 \pmod{4}$ and squares of primes $p \in \mathbb{Z}$ with $p \equiv 3 \pmod{4}$.

Example. $65 = 5 \cdot 13$. Factoring into primes in $\mathbb{Z}[i]$ gives 5 = (2+i)(2-i) 13 = (2+3i)(2-3i)Thus $65 = (2+i)(2+3i)\overline{(2+i)(2+3i)}$, i.e. 65 = N((2+i)(2+3i)) = N(1+8i) $= 1^2 + 8^2$ But also have

$$65 = N((2+i)(2-3i))$$

= N(7-4i)
= 7² + 4²

Definition. (i) $\alpha \in \mathbb{C}$ is an algebraic number if there exists non-zero $f \in \mathbb{Q}[X]$ with $f(\alpha) = 0$.

(ii) $\alpha \in \mathbb{C}$ is an algebraic integer if there exists monic $f \in \mathbb{Z}[X]$ with $f(\alpha) = 0$.

Notation. Let R be a subring of S, and $\alpha \in S$. We write $R[\alpha]$ for the smallest subring of S containing R and α , i.e. if

$$\phi: R[X] \to S, \qquad g(X) \mapsto g(\alpha)$$

then $R[\alpha] = \operatorname{Im}(\phi)$.

Let α be an algebraic number and let $\phi : \mathbb{Q}[X] \to \mathbb{C}, g(X) \mapsto g(\alpha)$. $(\operatorname{Im}(\phi) = \mathbb{Q}[\alpha])$. $\mathbb{Q}[X]$ is a PID hence $\operatorname{ker}(\phi) = (f)$ for some $f \in \mathbb{Q}[X]$. Then $f \neq 0$, since α an algebraic number. Upon multiplying f by a unit, may assume f is monic.

Definition. f is the minimal polynomial of α . By isomorphism theorem, $\mathbb{Q}[X]/(f) \cong \mathbb{Q}[\alpha] \leq \mathbb{C}$. Thus $\mathbb{Q}[\alpha]$ an integral domain, hence f irreducible in $\mathbb{Q}[X]$ (hence $\mathbb{Q}[\alpha]$ is a field).

Proposition 12.4. Let α be an algebraic integer, and $f \in \mathbb{Q}[X]$ its minimal polynomial. Then $f \in \mathbb{Z}[X]$ and $(f) = \ker(\theta)$, where $\theta : \mathbb{Z}[X] \to \mathbb{C}$ is the map $g(X) \mapsto g(\alpha)$.

Proof. Let $\lambda \in \mathbb{Q}^{\times}$ such that $\lambda f \in \mathbb{Z}[X]$ is primitive. Then $\lambda f(\alpha) = 0$, so $\lambda f \in \ker(\theta)$. Let $g \in \ker(\theta) \leq \mathbb{Z}[X]$. Then $g \in \ker(\phi)$ and hence $\lambda f \mid g$ in $\mathbb{Q}[X]$. Then by Lemma 11.4, $\lambda f \mid g$ in $\mathbb{Z}[X]$. Thus $\ker(\theta) = (\lambda f)$. Now α is an algebraic integer, hence there exists $g \in \ker(\theta)$ monic. Then $\lambda f \mid g$ in $\mathbb{Z}[X]$ hence $\lambda = \pm 1$. Hence $f \in \mathbb{Z}[X]$, and $(f) = \ker(\theta)$.

Let $\alpha \in \mathbb{C}$ an algebraic integer. Applying isomorphism theorem to θ gives $\mathbb{Z}[X]/(f) \cong \mathbb{Z}[\alpha]$. Examples: $i, \sqrt{2}, \frac{-1+\sqrt{3}}{2}, \sqrt[n]{p}$ have minimal polynomials $X^2+1, X^2-2, X^2+X+1, X^n-p$. Hence

$$\mathbb{Z}[X]/(X^2+1) \cong \mathbb{Z}[i], \qquad \mathbb{Z}[X]/(X^2-2) \cong \mathbb{Z}[\sqrt{2}]$$

etc.

Corollary 12.5. If α is an algebraic integer and $\alpha \in \mathbb{Q}$, then $\alpha \in \mathbb{Z}$.

Proof. Let α be an algebraic integer. Then minimal polynomial has coefficients in \mathbb{Z} . $\alpha \in \mathbb{Q}$ implies minimal polynomial is $X - \alpha$, and so $\alpha \in \mathbb{Z}$.

13. Noetherian Rings

We showed that any PID R satisfies the ascending chain condition (ACC): If $I_1 \subseteq I_2 \subseteq \cdots$ are ideals in R, then there exists $N \in \mathbb{N}$ such that $I_n = I_{n+1}$ for all $n \geq N$. More generally:

Lemma 13.1. Let R be a ring.

R satisfies ACC \iff All ideals in R are finitely generated

Proof. \leftarrow Let $I_1 \subseteq I_2 \subseteq \cdots$ be a chain of ideals and $I = \bigcup_{n \ge 1} I_n$, which is again an ideal. By assumption $I = (a_1, \ldots, a_n)$ for some $a_1, \ldots, a_m \in R$. These elements belong to a nested union, so there exists $N \in \mathbb{N}$ such that $a_1, \ldots, a_m \in I_N$. Then for $n \ge N$,

$$(a_1,\ldots,a_m) \subseteq I_N \subseteq I_N \subseteq I = (a_1,\ldots,a_m)$$

so $I_n = I_N$.

⇒ Assume $J \leq R$ not finitely generated. Choose $a_1 \in J$. Then $J \neq (a_1)$, so can choose $a_2 \in J \setminus (a_1)$. Then $J \neq (a_1, a_2)$, so choose $a_3 \in J \setminus (a_1, a_2)$. Continuing this process we obtain a chain of ideals

$$(a_1) \subsetneq (a_1, a_2) \subsetneq (a_1, a_2, a_3) \subsetneq \cdots$$

with strict inclusions, which contradicts ACC.

Definition (Noetherian Ring). A ring is called *Noetherian* if it satisfies the Ascending Chain Condition.

Start of lecture 18

Theorem (Hilbert's Basis Theorem). If R is a Noetherian ring, then R[X] is also Noetherian.

Proof. Assume $J \subseteq R[X]$ is not finitely generated. Choose $f_1 \in J$ of minimal degree. Then $(f_1) \subsetneq J$. Choose $f_2 \in J \setminus (f_1)$ of minimal degree. Then $(f_1, f_2) \subsetneq J$. Choose $f_3 \in J \setminus (f_1, f_2)$ of minimal degree and so on. We obtain a sequence f_1, f_2, \ldots with deg $f_i \leq \deg f_{i+1}$. Set $a_i :=$ leading coefficient of f_i . We obtain $(a_1) \subseteq (a_1, a_2) \subseteq \cdots$, a chain of ideals in R. Since R is Noetherian, there exists $m \in \mathbb{N}$ such that $a_{m+1} \in (a_1, \ldots, a_m)$. Let $a_{m+1} = \sum_{i=1}^m \lambda_i a_i, \lambda_i \in R$ and set

$$g = \sum_{i=1}^{m} \lambda_i f_i X^{\deg f_{m-1} - \deg f_i} \in (f_1, \dots, f_m)$$

Then deg $f_{m+1} = \deg g$ and they have the same leading coefficient a_{m+1} . Then $f_{m+1}-g \in J$ and deg $(f_{m+1}-g) < \deg f_{m+1}$. Hence by minimality of degree of f_{m+1} , we must have $f_{m+1}-g \in (f_1,\ldots,f_m)$. But $g \in (f_1,\ldots,f_m)$, hence $f_{m+1} \in (f_1,\ldots,f_m)$, contradiction. Thus J is finitely generated, so R[X] is Noetherian by Lemma 13.1.

Corollary. • Z[X₁,...,X_n] is Noetherian.
• F[X₁,...,X_n] Noetherian, F a field.

Examples

Let $R = \mathbb{C}[X_1, \ldots, X_n]$. Let $V \subseteq \mathbb{C}^n$ be a subset of the form

 $\{(a_1,\ldots,a_n) \mid f(a_1,\ldots,a_n) = 0, \forall f \in \mathcal{F}\}\$

where $\mathcal{F} \subset R$ is a possibly infinite set of polynomials. Let

$$I = \left\{ \sum_{i=1}^{m} \lambda_i f_i \mid m \in \mathbb{N}, \lambda_i \in R, f_i \in \mathcal{F} \right\}$$

Then $I \leq R$, so $I = (g_1, \ldots, g_r), g_i \in I$ (since R Noetherian). Thus

$$V = \{(a_1, \dots, a_n) \mid g_i(a_1, \dots, a_n) = 0, i = 1, \dots, n\}$$

i.e. V is defined by finitely many polymonials.

Lemma 13.2. Let R be a Noetherian ring and $I \leq R$. Then R/I is Noetherian.

Proof. Let $J'_1 \subseteq J'_2 \subseteq \cdots$ a chain of ideals in R/I. By the ideal correspondence we have $J'_i = J_i/I$ for some $J_1 \subseteq J_2 \subseteq \cdots$ a chain of ideals in R (containing I). R Noetherian implies there exists $N \in \mathbb{N}$ such that $J_n = J_{n+1}$ for all $n \geq N$, hence $J'_n = J_{n+1}$ for all $n \geq N$. Thus R/I is Noetherian.

Examples

- (i) $\mathbb{Z}[i] = \mathbb{Z}[X]/(X^2 + 1)$ is Noetherian.
- (ii) R[X] Noetherian implies R[X]/X is Noetherian.

Examples of non-Noetherian Rings

(i) $R = \mathbb{Z}[X_1, X_2, \ldots] = \bigcup_{n \ge 1} \mathbb{Z}[X_1, \ldots, X_n]$. i.e. polynomials in countably many variables. But $(X_1) \subseteq (X_1, X_2) \subsetneq (X_1, X_2, X_3) \subsetneq \cdots$ is an infinite ascending chain, so R is not Noetherian.

(ii) $R = \{ f \in \mathbb{Q}[X] : f(0) \in \mathbb{Z} \} \le \mathbb{Q}[X]$. But:

$$(X) \subsetneq \left(\frac{1}{2}X\right) \subsetneq \left(\frac{1}{4}X\right) \subsetneq \left(\frac{1}{8}X\right) \subsetneq \cdots$$

(each inclusion is strict because $2 \in R$ is not a unit).

Chapter III

Modules

Contents

14. Modules	61
15. Direct Sums and Free Module	66
16. The Structure Theorem and Applications	69
17. Modules over PID (non-examinable)	79

14. Modules

Definition (Module). Let R be a ring. A module over R is a triple $(M, +, \cdot)$ consisting of a set M and two operations

$$+: M \times M \to M, \quad \cdot: R \times M \to M$$

such that

(i) (M, +) is an abelian group, say with identity $0 (=0_M)$.

(ii) The operation \cdot satisfies:

$$\begin{aligned} (r_1 + r_2) \cdot m &= r_1 \cdot m + r_2 \cdot m & \forall r_1, r_2 \in R, m \in M \\ r \cdot (m_1 + m_2) &= r \cdot m_1 + r \cdot m_2 & \forall r \in R, m_1, m_2 \in M \\ r_1 \cdot (r_2 \cdot m) &= (r_1 \cdot r_2) \cdot m & \forall r_1, r_2 \in R, m \in M \\ 1_R \cdot m &= m & \forall m \in M \end{aligned}$$

Remark. Don't forget closure when checking +, \cdot well-defined.

Example. (i) Let R = F be a field. Then an *F*-module is *precisely the same* as a vector space over *F*.

(ii) $R = \mathbb{Z}$, a \mathbb{Z} -module is *precisely the same* as an abelian group, where $\cdot : \mathbb{Z} \times A \to A$ maps

$$(n,a) \mapsto \begin{cases} \overbrace{a+a+\dots+a}^{n \text{ copies}} & n > 0\\ 0 & n = 0\\ -(\underbrace{a+a+\dots+a}_{n \text{ copies}}) & n < 0 \end{cases}$$

(iii) F a field, V a vector space over F and $\alpha:U\to V$ a linear map. We can make V an F[X]-module via

$$\cdot : F[X] \times V \to V \qquad (fv) \mapsto (f(\alpha)(v))$$

for example $(X^2 + !) \cdot v = (\alpha^2 + 1_V)(v)$.

Note. Different choices of α make V into different F[X]-modules. Sometimes we'll write $V = V_{\alpha}$ to make this clear.

Examples

General construction.

- (i) For any ring R, R^n is an R-module via $r \cdot (r_1, \ldots, r_n) = (r_1, \ldots, rr_n)$. In particular, taking n = 1, R is an R-module.
- (ii) If $I \leq R$, then I is an R-module (restrict the usual multiplication on R) and R/I is an R-module via

$$r \cdot (s+I) = rs + I$$

(iii) $\phi: R \to S$ a ring homomorphism, then any S-module M may be regarded as an R-module:

$$R \times M \to M$$
 $(r,m) \mapsto \phi(r) \cdot m$

In particular, if $R \leq S$ then any S-module may be viewed as an R-module.

Start of

lecture 19

Definition. M an R-module. $N \subset M$ is an R-submodule (written $N \leq M$) if it is a subgroup of (M, +) and $r \cdot n \in N$ for all $r \in R$, $n \in N$.

Examples

- (i) A subset of R is an R-submodule *precisely* when it is an ideal.
- (ii) When R = F is a field, module \equiv vector space, submodule \equiv vector subspace.

Definition. If $N \leq M$ an *R*-submodule, the quotient M/N is the quotient of groups under + with

 $r \cdot (m+N) = rm + N$

This is well-defined, and makes M/N an R-module.

Definition. Let M, N be *R*-modules. A function $f : M \to N$ is an *R*-module homomorphism if it is a homomorphism of abelian groups and

 $f(r \cdot m) = r \cdot f(m) \qquad \forall r \in R, m \in M$

Theorem (First isomorphism theorem). Let $f: M \to N$ be an *R*-module homomorphism. Then

- $\ker(f) := \{m \in M \mid f(m) = 0\} \le M$
- $\operatorname{Im}(f) := \{f(m) \in N \mid m \in M\} \le N$

and $M/\ker(f) \cong \operatorname{Im}(f)$.

Proof. Similar to before.

Theorem (Second isomorphism theorem). Let $A,B\leq M$ be submodules. Then $A+B=\{a+b\mid a\in A,b\in B\}\leq M$ $A\cap B\leq M$

and

$$A/(A \cap B) \cong (A+B)/B$$

Proof. Apply first isomorphism theorem to the composite $A \hookrightarrow M \hookrightarrow M/B$.

For third isomorphism theorem, note that there exists bijection

{submodules of M/N} \leftrightarrow {submodules of M containing N}

Theorem (Third isomorphism theorem). If $N \le L \le M$ are *R*-submodules of *M*, then $\frac{M/N}{L/N} \cong M/L$

In particular, these apply to vector spaces (compare with results from Linear Algebra).

Let M be an R-module. If $m \in M$, write $R_m = \{rm \in M \mid r \in R\}$ – submodule generated by m. If $A, B \leq M$, write

$$A + B = \{a + b \mid a \in A, b \in B\} \le M$$

Definition. • *M* is cyclic if there exists $m \in M$ such that $M = R_m$.

• M is finitely generated if there exists $m_1, \ldots, m_n \in M$ such that

$$M = R_{m_1} + R_{m_2} + \dots + R_{m_n}$$

Lemma 14.1. *M* is cyclic if and only if $M \cong R/I$ for some $I \trianglelefteq R$.

- *Proof.* \Rightarrow Suppose $M = R_m$. Then there is a surjective *R*-module homomorphism $R \to M, r \mapsto rm$. Its kernel is an *R*-submodule of *R*, i.e. an ideal. Then first isomorphism theorem gives $R/I \cong M$.
 - $\leftarrow R/I$ is generated as an *R*-module by $1_R + I$.

Lemma 14.2. *M* finitely generated if and only if there exists a surjective *R*-module homomorphism $f : \mathbb{R}^n \to M$ for some *n*.

- *Proof.* \Rightarrow If $M = R_{m_1} + R_{m_2} + \dots + R_{m_n}$ define $f : R^n \to M, (r_1, \dots, r_n) \mapsto \sum_{i=1}^n r_i m_i$ a surjective *R*-module homomorphism.
 - \leftarrow Let $e_i = (0, \dots, 1, \dots, 0) \in \mathbb{R}^n$. (1 is in the *i*-th place). Given f, let $m_i := f(e_i) \in M$. Then any $m \in M$ is of the form

$$f(r_1, \dots, r_n) = f\left(\sum_{i=1}^n r_i e_i\right)$$
$$= \sum_{i=1}^n r_i f(e_i)$$
$$= \sum_{i=1}^n r_i m_i$$

Thus $M = Rm_1 + \cdots + Rm_n$.

Corollary 14.3. Let $N \leq M$ be an *R*-submodule. If *M* is finitely generated, then M/N is finitely generated.

Proof. Let $f : \mathbb{R}^n \to M$ be a surjective \mathbb{R} -module homomorphism. Then $\mathbb{R}^n \to M \to M/N$ is a surjective \mathbb{R} -module homomorphism.

Example (Counter-example). A submodule of a finitely generated module need not be finitely generated. Let R be a non-Noetherian ring and $I \leq R$ a non-finitely generated ideal. Then R is a finitely generated R-module and I is a submodule which is not finitely generated.

Remark. A submodule of a finitely generated module over a Noetherian ring is finitely generated (Examples Sheet 4).

Lemma 14.4. Let R be an integral domain. Then

every submodule of a cyclic R-submodule is cyclic $\iff R$ is a PID

- *Proof.* \Rightarrow R is a cyclic R-module. Saying its submodules are cyclic precisely means that every ideal is principal.
 - ⇐ If M is a cyclic R-module, then $M \cong R/I$, $I \trianglelefteq R$ by Lemma 14.1. Any submodule of R/I is of the form J/I for some ideal $J \trianglelefteq R$ and $I \le J$. R a PID implies J principal hence J/I is cyclic.

Definition. Let M be an R-module.

- (i) An element $m \in M$ is torsion if there exists $0 \neq r \in R$ with rm = 0.
- (ii) M is a torsion module if every $m \in M$ is torsion.
- (iii) M is torsion free if every $0 \neq m \in M$ is not torsion.

Example. • The torsion elements in a \mathbb{Z} -module (= abelian group) are the elements of finite order.

• Any *F*-module (= vector space) is torsion free.

Start of lecture 20

15. Direct Sums and Free Module

Definition. Let M_1, \ldots, M_n be *R*-modules. The direct sum

$$M_1 \oplus M_2 \oplus \cdots \oplus M_n$$

is the set $M_1 \times \cdots \times M_n$ with operations

$$(m_1, \dots, m_n) + (m'_1, \dots, m'_n) = (m_1 + m'_1, \dots, m_n + m'_n)$$
$$r(m_1, \dots, m_n) = (rm_1, \dots, rm_n) \qquad (r \in R)$$

Example. $R^n = R \oplus \cdots \oplus R$.

Lemma 15.1. If $M = \bigoplus_{i=1}^{n} M_i$ and $N_i \leq M_i$ for all *i*, then setting $N = \bigoplus_{i=1}^{n} N_i \leq M$, we have

$$M/N \cong \bigoplus_{i=1}^n M_i/N_i$$

Proof. Apply first isomorphism theorem to the surjective *R*-module homomorphism

$$M \to \bigoplus_{i=1}^{n} M_i / N_i$$
$$(m_1, \dots, m_n) \mapsto (m_1 + N_1, \dots, m_n + N_n)$$

with kernel $N = \bigoplus_{i=1}^{n} N_i$.

Definition. Let $m_1, \ldots, m_n \in M$. The set $\{m_1, \ldots, m_n\}$ is independent if

$$\sum_{i=1}^{n} r_i m_i = 0 \implies r_1 = r_2 = \dots = r_n = 0$$

Definition. A subset $S \subset M$ generates M freely if

- (i) S generates M, i.e. $\forall m \in M, m = \sum_{i=1}^{n} r_i s_i$ for some $r_i \in R, s_i \in S$.
- (ii) Any function $\psi : S \to N$ where N is an R-module, extends to an R-module homomorphism $\theta : M \to N$. (Such an extension is unique by (i)).

An *R*-module which is freely generated by some subset $S \subset M$ is called *free* and *S* is called a *free basis*.

Proposition 15.2. For a subset $S = \{m_1, \ldots, m_n\} \subset M$, the following are equivalent:

- (i) S generates M freely.
- (ii) S generates M and S is independent.
- (iii) Every element of M can be written uniquely as

$$r_1m_1 + \cdots + r_nm_n$$

for some $r_1, \ldots, r_n \in R$.

(iv) The *R*-module homomorphism

$$R^n \to M$$

 $(r_1, \dots, r_n) \mapsto \sum_{i=1}^n r_i m_i$

is an isomorphism.

(f) roof \Rightarrow (ii) Let S generate M freely. If S is not independent, then $\exists r_1, \ldots, r_n \in R$ with $\sum r_i m_i = 0$ and some $r_j \neq 0$. Define $\psi : S \to R$

$$m_i \mapsto \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

extends to *R*-module homomorphism $M \to R$. Then

$$0 = \theta(0)$$

= $\theta\left(\sum r_i m_i\right)$
= $\sum r_i \theta(m_i)$
= r_i

Thus S is independent. The rest are exercises.

Example. A is non-trivial finite abelian group. Then A is not a free \mathbb{Z} -module.

Example. The set $\{2,3\}$ generates \mathbb{Z} as a \mathbb{Z} -module, but they are not independent since

$$(3) \cdot 2 + (-2) \cdot 3 = 0$$

Furthermore, no subset of $\{2,3\}$ is a free basis, since $\{2\}$ and $\{3\}$ do not generate.

Proposition 15.3 (Invariance of dimension). Let R be a non-zero ring. If $R^m \cong R^n$ as R-modules then m = n.

Proof. First, we introduce a general construction. Let $I \leq R$ and M an R-module. Define

$$IM = \left\{ \sum a_i m_i : a_i \in I, m_i \in M \right\} \le M$$

The quotient M/IM is an R/I-module via

$$(r+I)(m+IM) = rm + IM$$

Well-defined: if $b \in I$ then

$$b \cdot (m + IM) = bm + IM = 0 + IM$$

Suppose $\mathbb{R}^m \cong \mathbb{R}^n$. Choose $I \leq \mathbb{R}$ maximal ideal (user Zorn's Lemma and Example Sheet 2 Question 4). By the above, we get an isomorphism of \mathbb{R}/i module

$$(R/I)^m \cong R^m/IR^m \cong R^n/IR^n \cong (R/I)^n$$

But $I \trianglelefteq R$ is maximal hence R/I is a field. So m = n by invariance of dimension for vector spaces.

16. The Structure Theorem and Applications

Until further notice: R is always a Euclidean domain, $\phi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ Euclidean function. Let A be an $m \times n$ matrix with entries in R.

Definition. The elementary row operations are:

(ER1) Add λ times *i*-th row to *j*-th row ($\lambda \in R, i \neq j$).

(ER2) Swapping i-th and j-th rows.

(ER3) Multiply *i*-th row by $u \in \mathbb{R}^{\times}$.

Each of these can be realised by left multiplication by an $m \times m$ invertible matrix:

In particular, these operations are reversible. Similarly, we can define elementary column operations (EC1-3) – realised b right multiplication by an invertible $n \times n$ matrix.

Definition (Equivalent matrices). Two $m \times n$ matrices A and B are equivalent if there exists a sequence of elementary row and column operations taking A to B. If they are equivalent, then there exists (invertible) P, Q such that B = QAP.

Let R be a Euclidean domain and $\phi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ a Euclidean function.

lecture 21

Start of

Theorem 16.1 (Smith Normal-form). An $m \times n$ matrix $A = (a_{ij})$ over a Euclidean Domain R is equivalent to a diagonal matrix

 $\begin{pmatrix} d_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$

where $d_i \neq 0$ and $d_1 \mid d_2 \mid \cdots \mid d_t$. The d_i are called *invariant factors*. We will show they are unique up to associates.

Proof. If A = 0 then done. Otherwise upon swapping rows and columns, may assume $a_{11} \neq 0$. We will reduce $\phi(a_{11})$ as much as possible via the following algorithm.

- (Step 1) If $a_{11} | a_{1j}$ for some $j \ge 2$, then write $a_{ij} = qa_{11} + r$, $q_1r \in R$, $\phi(r) < \phi(a_{11})$. Subtracting q times column 1 from j, and swapping these columns makes the top left entry r.
- (Step 2) If $a_{11} \nmid a_{i1}$ for some $i \geq 2$ then repeat above process with row operations.

Steps 1 and 2 decrease $\phi(a_{11})$, so can repeat finitely many times until $a_{11} \mid a_{1j}$ for all $j \geq 2$ and $a_{11} \mid a_{i1}$ for all $i \geq 2$. Subtracting multiples of first row / column from others gives

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0\\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix}$$

where A' is a $(m-1) \times (n-1)$ matrix.

(Step 3) If $a_{11} \nmid a_{ij}$ for some $i, j \ge 2$, then add *i*-th row to first row, and perform column operations as in Step 1 to decrease $\phi(a_{11})$. Then restart algorithm. Hence after finitely many steps we get

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & A' \\ 0 & & & \end{pmatrix}$$

with $a_{11} = d_1$ say such that $d_1 \mid a_{ij}$ for all i, j.

Applying the same method to A' gives the result.

For uniqueness of invariant factors - introduce minors of A.

Definition. A $k \times k$ minor of A is the determinant of a $k \times k$ submatrix of A (i.e. a matrix formed by deleting m - k rows and n - k columns).

Definition. The k-th Fitting ideal $\operatorname{Fit}_k(A) \leq R$ is the ideal generated by the $k \times k$ minors of A.

Lemma 16.2. If A and B are equivalent matrices, then $\operatorname{Fit}_k(A) = \operatorname{Fit}_k(B)$ for all k.

Proof. We show that (ER1-3) don't change $Fit_k(A)$. Same proof works for EC1-3.

- (ER1) Add λ times *j*-th row to *i*-th row, so A becomes A'. Let C be a $k \times k$ submatrix of A and C' the corresponding submatrix of A'.
 - If we did not choose the *i*-th row, then C = C' so det $C = \det C'$.
 - If we choose both of the rows i and j, then C and C' differ by row operation, hence det $C = \det C'$.
 - If we chose the *i*-th row but not the *j*-th row, then by expanding along the *i*-th row,

$$\det(C') = \det(C) \pm \lambda \det(D)$$

where D is another $R \times R$ submatrix of A (Choose *j*-th row instead of *i*-th row). Thus $\det(C') \in \operatorname{Fit}_k(A)$.

Hence $\operatorname{Fit}_k(A') \subset \operatorname{Fit}_k(A)$. Since (ER1) is reversible we get \supset as well by same argument, hence equality. (ER2) and (ER3) are similar but easier.

Now if A has SNF diag $(d_1, \ldots, d_t, 0, \ldots, 0), d_1 \mid d_2 \mid \cdots \mid d_t$, then Fit_k $(A) = (d_1 d_2 \cdots d_k) \leq R, k = 1, \ldots, t$. Thus the products $d_1 \cdots d_k$ (up to associate) depends only on A.

Example. Consider the matrix

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

over \mathbb{Z} .

$$\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \stackrel{c_1 \to c_1 + c_2}{\longrightarrow} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \stackrel{c_2 \to c_1 + c_2}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix} \stackrel{R_2 \to R_2 - 3R_1}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

But also $(d_1) = (2, -1, 1, 2) = (1)$ so $d_1 = \pm 1$, $(d_1d_1) = (\det A) = (5)$ so $d_2 = \pm 5$.

We will use SNF to prove the structure theorem. First some preparation.

Lemma 16.3. R a Euclidean Domain. Any submodule of R^m is generated by at most m elements.

Remark. m = 1 was Lemma 14.4.

Proof. Let $N \leq R^m$. Consider the ideal

$$I = \{r_1 \in R \mid \exists r_2, \dots, r_m \in R, (r_1, \dots, r_n) \in N\} \leq R$$

Since ED implies PID, we have I = (a) for some $a \in R$. Choose some $n = (a, a_2, \ldots, a_m) \in N$. For $(r_1, \ldots, r_m) \in N$, we have $r_1 = ra$ for some $r \in R$, so

 $(r_1, r_2, \dots, r_m) - rn = (0, r_2 - ra_2, \dots, r_m - ra_m)$

which lies in $N' := N \cap (0 \oplus R^{m-1}) \le R^{m-1}$, hence N = Rn + N'. By induction, N' is generated by n_2, \ldots, n_m , hence $\{n, n_2, \ldots, n_m\}$ generates N.

Start of lecture 22

Lemma 16.4. R an PID. Any submodule of R^m is finitely generated.

Proof. Example Sheet 4.

Theorem 16.5. Let R be a Euclidean Domain and $N \leq R^m$. There is a free basis x_1, \ldots, x_m for R^m such that N is generated by d_1x_1, \ldots, d_tx_t for some $t \leq m$ and $d_1, \ldots, d_t \in R$ with $d_1 \mid d_2 \mid \cdots \mid d_t$.

Proof. By Lemma 16.3 we have $N = Ry_1 + \cdots + Ry_n$ for some $n \le m$. Each y_i belongs to R^m , so we can form an $m \times n$ matrix

$$A = (y_1|y_2|\cdots|y_n)$$

By Theorem 16.1, A is equivalent to

$$A' = diag(d_1, ..., d_t, 0, ..., 0)$$

A' obtained from A by elementary row and column operations. Each row operation changes our choice of free basis for R^m and each column operation changes our set of generators for N. Thus, after changing free basis of R^m to x_1, \ldots, x_m (say), the submodule N is generated by $d_1x_1, d_2x_2, \ldots, d_tx_t$ as claimed.

Theorem (Structure Theorem). Let R be a Euclidean Domain and M a finitely generated R-module. Then

$$M \cong R/(d_1) \oplus R/(d_2) \oplus \cdots \oplus R/(d_t) \oplus \underbrace{R \oplus \cdots \oplus R}_{k \text{ copies}}$$

for some $0 \neq d_1 \in R$ with $d_1 \mid d_1 \mid \cdots \mid d_t$ and $k \geq 0$. The d_i are called *invariant factors*.

Proof. Since M is finitely generated, there exists a surjective R-module homomorphism $\phi: \mathbb{R}^m \to M$ for some m (Lemma 14.1). By first isomorphism theorem, $M \cong \mathbb{R}^m / \ker(\phi)$. By Theorem 16.4, there exists a free basis x_1, \ldots, x_m for \mathbb{R}^m such that $\ker(\phi)$ is generated by d_1x_1, \ldots, d_tx_t with $d_1 \mid d_2 \mid \cdots \mid d_t$. Then

$$M \cong \frac{R \oplus R \oplus \dots \oplus R \oplus R \oplus \dots \oplus R}{d_1 R \oplus d_2 R \oplus \dots \oplus d_t R \oplus 0 \oplus \dots \oplus 0}$$
$$\cong R/(d_1) \oplus R/(d_2) \oplus \dots \oplus R/(d_t) \oplus R \oplus \dots \oplus R \qquad \text{(by Lemma 15.1)} \qquad \Box$$

Remark. After deleting these d_i which are units, the module M uniquely determines the d_i (up to associates). Proof omitted.

Corollary 16.6. Let R be a Euclidean Domain. Then any finitely generated torsion-free R-module is free.

Proof. M torsion-free \implies no submodules of the form R/(d) with $d \neq 0$. Thus $M \cong R^m$ for some m.

Example. $R = \mathbb{Z}$. Consider the abelian group G generated by a and b subject to the relations 2a + b = 0, -a + 2b = 0. Then $G \cong \mathbb{Z}^2/N$, where N is generated by (2, 1), (-1, 2).

$A = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$	has SNF	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\5 \end{pmatrix}$

Thus can change basis for \mathbb{Z}^2 such that N is generated by (1,0) and (0,5). Thus

$$G \cong \mathbb{Z}^2/N \cong \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z} \oplus 5\mathbb{Z}} \cong \mathbb{Z}/5\mathbb{Z}$$

More generally:

Theorem (Structure theorem for finitely generated abelian groups). Any finitely generate abelian group G is isomorphic to

$$\mathbb{Z}/d_1\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}/d_t\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}$$

where $d_1 \mid d_2 \mid \cdots \mid d_t$ and $r \geq 0$.

Proof. Take $R = \mathbb{Z}$ in structure theorem.

Remark. The special case G is finite (so r = 0) was quoted as Theorem 6.4.

In Section 6, we saw that any finite abelian group can be written as a product of C_{p^i} 's where p is prime. To generalise this we need:

Lemma 16.7. Let R be a PID and $a, b \in R$ with gcd(a, b) = 1. Then

 $R/(ab) \cong R/(a) \oplus R/(b)$

as *R*-modules. (Case $R = \mathbb{Z}$ was Lemma 6.2).

Proof. $R ext{ a PID } \implies (a,b) = (d)$ for some $d \in R$. But gcd(a,b) = 1 hence d a unit. So there exists $r, s \in R$ such that ra + sb = 1. Define an R-module homomorphism

 $\psi: R \to R/(a) \oplus R/(b)$ $x \mapsto (x + (a), x + (b))$

Then $\psi(sb) = (1 + (a), 0 + (b)), \ \psi(ra) = (0 + (a), 1 + (b)).$ Thus

$$\psi(sbx + ray) = (x + (a), y + (b))$$

for any $x, y \in R$, so ψ is surjective. Clearly $(ab) \leq \ker(\psi)$. Conversely, if $x \in \ker(\psi)$, then $x \in (a) \cap (b)$ and

$$x = x(ra + sb)$$

= $\underbrace{r(ax)}_{\in (ab)} + \underbrace{s(xb)}_{\in (ab)}$
 $\in (ab)$

Thus ker(ψ) = (ab). Then by the First Isomorphism Theorem for rings, $R/(ab) \cong R/(a) \oplus R/(b)$.

Start of lecture 23

Theorem (Primary decomposition theorem). Let R be a Euclidean Domain and M a finitely generated R-module. Then

$$M \cong R/(p_1^{n_1}) \oplus \cdots \oplus R/(p_k^{n_k}) \oplus R^m$$

(as *R*-modules) where p_1, \ldots, p_k are primes (not necessarily distinct) and $m \ge 0$.

Proof. By the structure theorem

$$M \cong R/(d_1) \oplus \cdots \oplus R/(d_t) \oplus R^m$$

So it suffices to consider $M \cong R/(d_i)$, $d_i = u p_1^{a_1} \cdots p_r^{a_r}$ where u is a unit and p_1, \ldots, p_r are distinct (non-associate) primes. Lemma 16.6 implies

$$R/(d_i) \cong R/(p_1^{a_1}) \oplus \dots \oplus R/(p_r^{a_r}) \qquad \Box$$

Let V be a vector space over a field F. Let $\alpha : V \to V$ be a linear map and let V_{α} denote the F[X]-module V where $F[X] \times V \to V$ is given by $(f(X), v) \mapsto f(\alpha)(v)$.

Lemma 16.8. If V finite dimensional, then V_{α} is a finitely generated F[X]-module.

Proof. If v_1, \ldots, v_n generate V as an F-vector space, then they generate V_α as an F[X]-module since $F \leq F[X]$.

Examples

(i) Suppose $V_{\alpha} \cong F[X]/(X^n)$ as F[X]-module. Then $1, X, X^2, \ldots, X^{n-1}$ is a basis for $F[X]/(X^n)$ as an F-vector space, and with respect to this basis α has matrix

$$(*) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

(ii) Suppose $V_{\alpha} \cong F[X]/(X-\lambda)^n$ as F[X]-modules. Then with respect to basis 1, $(X-\lambda), (X-\lambda)^2, \ldots, (X-\lambda)^{n-1}, \alpha - \lambda$ id has matrix (*), thus α has matrix

λ	0		•••	0	0)
1	λ	0	• • •	0	0
0	1	λ	•••	0	0
:	÷	÷	·	÷	:
$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	0	0		λ	0
$\sqrt{0}$	0			1	λ)

(iii) Suppose $V_{\alpha} \cong F[X]/(f(X))$ where $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$, then with respect to basis $1, X, X^2, \ldots, X^{n-1}$, α has matrix

 $\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$

This is called the companion matrix C(f) of the monic polynomial f.

Theorem 16.9 (Rational canonical form). Let $\alpha : V \to V$ be an endomorphism of a finite dimensional *F*-vector space, where *F* is a field. Then F[X]-module V_{α} decomposes as

$$V_{\alpha} \cong F[X]/(f_1) \oplus \cdots \oplus F[X]/(f_t)$$

where $f_i \in F[X]$ monic and $f_1 | f_2 | \cdots | f_t$. Moreover, with respect to a suitable basis for V (as an F vector space), α has matrix

$$\begin{pmatrix} C(f_1) & 0 & \cdots & 0 \\ 0 & C(f_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C(f_t) \end{pmatrix}$$
(**)

Proof. By Lemma 16.7, V_{α} is a finitely generated F[X]-module. Since F[X] is a Euclidean Domain, structure theorem implies

$$V_{\alpha} \cong F[X]/(f_1) \oplus \cdots \oplus F[X]/(f_t) \oplus F[X]^m$$

with $f_1 | f_2 | \cdots | f_t$. Since V is finite dimensional as an F vector space, m = 0. Upon multiplying f_i by a unit we may assume f_i is monic.

Remark. (i) If α is represented by an $n \times n$ matrix A, then the theorem says that A is similar to (**).

- (ii) The minimal polynomial of α is f_t .
- (iii) The characteristic polynomial of α is $\prod_{i=1}^{t} f_i$.

The last two properties show that the minimal polynomial divides the characteristic polynomial, which is the Cayley-Hamilton Theorem.

Example. If dim V = 2, then $\sum \deg f_i = 2$. So

$$V_{\alpha} = F[X]/(X - \lambda) \oplus F[X]/(X - \lambda)$$

or

$$V_{\alpha} \cong F[X]/(f)$$

where f is the characteristic polynomial of α .

Corollary 16.10. Let $A, B \in GL_2(F)$ non-scalar. Then

A and B are similar (= conjugate) \iff they have the same characteristic polynomial

Proof. \Rightarrow Linear algebra.

 \Leftarrow By the last example, A and B are similar to C(f).

Definition. The annihilator of an R module M is

$$\operatorname{Ann}_{R}(M) = \{ r \in R \mid rm = 0 \forall m \in M \} \leq R$$

Example. (i) $I \leq R$, then $\operatorname{Ann}_R(R/I) = I$.

- (ii) If A is a finite abelian group, then $\operatorname{Ann}_{\mathbb{Z}}(A) = (e)$ where e is the exponent of A.
- (iii) If V_{α} as above, then $\operatorname{Ann}_{F[X]}(V_{\alpha})$ is the ideal generated by the minimal polynomial of α .

Start of lecture 24

Lemma 16.11. The primes in $\mathbb{C}[X]$ (up to associates) are the polynomials $X - \lambda$, for some $\lambda \in \mathbb{C}$.

Proof. By the fundamental theorem of algebra, any non-constant polynomial in $\mathbb{C}[X]$ has a root in \mathbb{C} , so a factor $X - \lambda$. Hence, the irreducibles have degree 1.

Theorem 16.12 (Jordan Normal form). Let $\alpha : V \to V$ be an endomorphism of a finite dimensional \mathbb{C} -vector space. Let V_{α} be V regarded as a $\mathbb{C}[X]$ -module with X acting as α . There is an isomorphism of $\mathbb{C}[X]$ -modules

$$V_{\alpha} \cong \mathbb{C}[X]/((X - \lambda_1)^{n_1}) \oplus \cdots \oplus \mathbb{C}[X]/((X - \lambda_t)^{n_t})$$

where $\lambda_1, \ldots, \lambda_t \in \mathbb{C}$ (not necessarily distinct). In particular there exists a basis for V such that α has matrix

J	$\lambda_{n_1}(\lambda_1)$	0	• • •	0
	0	$J_{n_2}(\lambda_2)$)	0
	÷	÷	·	:
	0	0	• • •	0/
	$(\lambda$	0 0	••• (0 0

where

$$J_n(\lambda) = \begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 & 0 \\ 1 & \lambda & 0 & \cdots & 0 & 0 \\ 0 & 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & 0 & \cdots & 1 & \lambda \end{pmatrix}$$

Proof. $\mathbb{C}[X]$ is a Euclidean Domain and V_{α} is finitely generated by Lemma 16.7. We apply the primary decomposition, noting that the primes in $\mathbb{C}[X]$ are as in Lemma 16.10. V finite dimensional implies we get no copies of $\mathbb{C}[X]$. $J_n(\lambda)$ represents multiplying by X on $\mathbb{C}[X]/(X-\lambda)^n$ with respect to the basis $1, X - \lambda, (X - \lambda^2, \dots, (X - \lambda)^{n-1})$. \Box

Remark. (i) If α represented by matrix A, then the theorem says that A is similar to a matrix in JNF.

- (ii) The Jordan blocks are uniquely determined up to reordering. Can be proved by considering the dimensions of the generalised eigenspace $\ker((\alpha - \lambda id)^m)$, m = 1, 2, 3, ... (omitted).
- (iii) The minimal polynomial of α is $\prod_{\lambda} (X \lambda)^{c_{\lambda}}$ where c_{λ} is the size of the largest λ -block.
- (iv) The characteristic polynomial of α is $\prod_{\lambda} (X \lambda)^{a_{\lambda}}$ where a_{λ} is the sum of the sizes of λ -blocks.
- (v) The number of λ blocks is the dimension of the λ -eigenspace.

17. Modules over PID (non-examinable)

The structure theorem holds for PID's. We illustrate some ideas which go into the proof.

Theorem 17.1. Let R be a PID. Then any finitely generated torsion-free R-module is free. (For R a Euclidean Domain, this is Corollary 16.5).

Lemma 17.2. Let R be a PID and M an R-module. Let $r_1, r_2 \in R$ not both zero and let $d = \text{gcd}(r_1, r_2)$.

(i) There exists $A \in SL_2(R)$ such that

$$A\begin{pmatrix}r_1\\r_2\end{pmatrix} = \begin{pmatrix}\alpha\\0\end{pmatrix}$$

(ii) If $x_1, x_2 \in M$ then there exists $x'_1, x_2 \in M$ such that $Rx_1 + Rx_2 = Rx'_1 + x'_2$ and $r_1x_1 + r_2x_2 = dx'_1 + 0x'_2$.

Proof. R a PID implies $(r_1, r_2) = (d)$, hence there exists $\alpha, \beta \in R$ such that $\alpha r_1 + \beta r_2 = d$. Write $r_1 = s_1 d$, $r_2 = s_2 d$ for some $s_1, s_2 \in R$. Then $\alpha s_1 + \beta s_2 = 1$.

(i)

$$\underbrace{\begin{pmatrix} \alpha & \beta \\ -s_2 & s_1 \end{pmatrix}}_{\det = \alpha s_1 + \beta s_2 = 1} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$$

(ii) Let $x'_1 = s_1x_1 + s_2x_2$, $x'_2 = -\beta x_1 + \alpha x_2$. Then $Rx'_1 + Rx'_2 \subseteq Rx_1 + Rx_2$. To prove the reverse inclusion we solve for x_1 and x_2 in terms of x'_1 and x'_2 . This is possible since

$$\det \begin{pmatrix} s_1 & s_2 \\ -\beta & \alpha \end{pmatrix} = \alpha s_1 + \beta s_2 = 1$$

Finally

$$r_1 x_1 + r_2 x_2 = d(s_1 x_1 + s_2 x_2) = dx'_1$$

Proof of Theorem 17.1. Let $M = Rx_1 + Rx_n$ with n as small as possible. If x_1, \ldots, x_n are independent then M is free, and we're done. Otherwise, $\exists r_1, \ldots, r_n \in R$ not all zero with $\sum_{r=1}^n r_i x_i = 0$. WLOG $r_1 \neq 0$. Lemma 17.2 (ii) shows that after replacing x_1 and x_2 by suitable x'_1 and x'_2 , we may assume $r_1 \neq 0$ and $r_2 = 0$. Repeating this process (changing x_1 and x_3 , then x_1 and x_4 and so on), we may assume $r_1 \neq 0$, $r_2 = 0, \ldots, r_n = 0$. Now $r_1 x_1 = 0 \implies x_1 = 0$ (since M is torsion free). Thus, $M = Rx_2 + \cdots + Rx_n$, which contradicts our choice of n.