% vim: tw=50 % 16/02/2023 10AM \begin{enumerate}[(1)] \setcounter{enumi}{4} \item Add a stationary boundary \begin{center} \includegraphics[width=0.6\linewidth] {images/b90a747aade211ed.png} \end{center} Compare either timescales $\frac{\nu}{h^2}$ and $\frac{1}{\omega}$ or lengthscales $\left( \frac{\nu}{\omega} \right)^{\half}$ and $h$. Then dimensionless parameter $S = \frac{\omega h^2}{\nu}$ (Stokes number). $s \gg 1$ looks like (4) with $\delta \sim \left( \frac{\nu}{\omega} \right)^{\half} \ll h$, $s \gg 1$ looks like Couette flow (linear profile) with amplitude $U(t)$. \end{enumerate} These examples illustrate that the inviscid solution ($\nu \equiv 0$, $\implies u = 0$ and slip at boundary) is \emph{not} uniformly the same as the limit of ``small'' viscosity (smallness means $\nu \ll \frac{h^2}{t}$ or $\ll \omega h^2$) but the viscous effects only felt in thin boundary layers $\delta \ll h$. \subsection{The Navier-Stokes Equation} In Part II it is shown that $\bf{\tau}(\bf{x}, t; \bf{n}) = -p \bf{n} + \mu [(\bf{n} \cdot \nabla) \bf{u} + (\nabla \bf{u}) \cdot \bf{n})]$ and hence the flow satisfies the Navier-Stokes equation \begin{equation*} \boxed{ \begin{aligned} \rho \Dfrac{\bf{u}}{t} &= -\nabla p + \mu \nabla^2 \bf{u} + \bf{f} \\ \nabla \cdot \bf{u} &= 0 \end{aligned} } \end{equation*} This reduces to the Euler equation if $\mu = 0$ and to the parallel viscous flow equations if $\bf{u} = (u(y, t), 0, 0)$. When is viscosity important? \subsubsection*{The Reynolds Number} Suppose a flow has a characteristic lengthscale $L$ and velocity scale $U$. For example \begin{center} \includegraphics[width=0.6\linewidth] {images/7d3ee2daade411ed.png} \end{center} Assume the characteristic timescale $T$ is $\frac{L}{U}$ (or steady) and let the characteristic scale of the pressure difference be denoted by $P$ (to be found). Estimate the scale of the terms in the Navier-Stokes Equation: \begin{center} \begin{tabular}{ccccccc} $\pfrac{\bf{u}}{t}$ & $+$ & $\bf{u} \cdot \nabla \bf{u}$ & $=$ & $-\frac{1}{\rho} \nabla p$ & $+$ & $\nu \nabla^2 \bf{u}$ \\ $\sim \frac{U}{L / U}$ & & $\sim \frac{U^2}{L}$ & & $\sim \frac{p}{\rho L}$ & & $\sim \frac{\nu}{U}L^2$ \\ $1$ & $:$ & $1$ & $:$ & $\frac{p}{\rho U^2}$ & $:$ & $\frac{\nu}{LU} \equiv \frac{1}{R_e}$ \end{tabular} \end{center} The Reynolds number $\boxed{R_e \equiv \frac{UL}{\nu}}$ is a dimensionless parameter describing the relative importance of inertia and viscosity: \[ \frac{\rho \Dfrac{\bf{u}}{t}}{\mu \nabla^2 \bf{u}} \sim R_e \] If $R_e \ll 1$ then expect $\rho \Dfrac{\bf{u}}{t} \ll \mu\nabla^2 \bf{u}$, inertia negligible, and can approximate the N-S equation by the Stokes equations \begin{equation*} \boxed{ \begin{aligned} 0 &= -\nabla p + \mu \nabla^2 \bf{u} + \bf{f} \\ \nabla \cdot \bf{u} &= 0 \end{aligned} } \end{equation*} Scaling for pressure $p \sim \frac{\mu U}{L}$ like viscous stress. \myskip If $R_e \gg 1$ expect $\mu \nabla^2 \bf{u} \ll \rho \Dfrac{\bf{u}}{t}$ and viscosity negligible (except perhaps in thin boundary layers at rigit boundaries). Approximate the N-S equation by the Euler equation $\rho \Dfrac{\bf{u}}{t} = -\nabla p + \bf{f}$ ouside the boundary layer. Pressure scaling $P \sim pU^2$ like Bernoulli. \myskip How thin are the boundary layers? For example \begin{center} \includegraphics[width=0.6\linewidth] {images/008b1eb8ade711ed.png} \end{center} On timescale $\frac{L}{U}$ viscous diffusion affects the velocity over a distance $\delta \sim \left( \nu \frac{L}{U} \right)^{\half}$ or $\frac{\delta}{L} \sim \left( \frac{\nu}{LU} \right)^{\half} = \frac{1}{R_e^{\half}}$. \subsection{Stagnation Point Flow: An Illustrative Example} Consider the 2D inviscid incompressible flow $\bf{u} = (Ex, -Ey)$ in $y > 0$, $\psi = Exy$ and $p = p_0 - \half \rho E^2 (x^2 + y^2)$ (Bernoulli) \begin{center} \includegraphics[width=0.6\linewidth] {images/783575d0ade711ed.png} \end{center} Solves $\rho (\bf{u} \cdot \nabla) \bf{u} = -\nabla p$, $v = 0$ on $y = 0$. Also satisfies the N-S equation, but not the viscous no-slip boundary condition $u = 0$ if $y = 0$ is a rigid boundary. Fortunately, and unusually, there is an exact solution for this case! \myskip Try / guess $\psi = Ex f(y)$ $\implies \bf{u} = (Ex f', -Ef)$. Want $f(0) = f'(0) = 0$ and $f(y) \approx y$ as $y \to \infty$. Substitute into $(\bf{u} \cdot \nabla)\bf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \bf{u}$, $x$-component: \begin{align*} \left(Ex f' \pfrac{}{x} - E f \pfrac{}{y}\right)Ex f' &= -\frac{1}{\rho} \pfrac{\phi}{x} + \nu \left( \pfrac[2]{}{x} + \pfrac[2]{}{y} \right) (Ex f') \\ \implies E^2 x (f'^2 - ff'') &= -\frac{1}{\rho} \pfrac{p}{x} + \nu Exf''' \tag{1} \end{align*} Similarly, $y$-component: \[ E^2 f'f = -\frac{1}{\rho} \pfrac{\phi}{y} - \nu E f'' \tag{2} \] \[ \pfrac{}{x} (2) \implies \frac{\partial^2 p}{\partial x \partial y} = 0 \implies p = X_{(x)} + Y_{(y)} \] \[ (1) \implies \pfrac{p}{x} \propto x \] $f' \to 1$ as $y \to \infty$ $\implies X(x) = p_0 - \half \rho E^2 x^2$ \[ \implies f'^2 - ff'' = 1 + \frac{\nu}{E} f''' \] Rescale $f(y) = \delta F(\eta)$ where $\eta = \frac{y}{\delta}$ and $\delta = \left( \frac{\nu}{E} \right)^{\half}$. So $F''' = F'^2 - FF'' - 1$, $F(0) = F'(0) = 0$, $F' \to 1$ as $\eta \to \infty$. Solve numerically: \begin{center} \includegraphics[width=0.6\linewidth] {images/0093cea8ade911ed.png} \end{center} For $\eta \gtrsim 2$, $F' \approx 1$, $F \approx \eta - 0.6$. $y \gtrsim w \sqrt{\frac{\nu}{E}}$, $u \approx Ex$, $v \approx -E(y - 0.65)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/2f92a396ade911ed.png} \end{center}