% vim: tw=50 % 14/02/2023 10AM \subsubsection*{Boundary Conditions at an Interface} Consider two fluids in parallel viscous flow \begin{center} \includegraphics[width=0.6\linewidth] {images/6d3a397eac5011ed.png} \end{center} At $y = h$, $u_1 = u_2$ by no-slip. By continuity of stress, \begin{align*} \mu_1 \pfrac{u_1}{y} &= \mu_2 \pfrac{u_2}{y} \\ p_1 &= p_2 \end{align*} \subsection{Unsteady Parallel Viscous Flow and Viscous Diffusion} \begin{example*}[Impulsively started flat plate] Consider a semi-infinite fluid domain $y > 0$, initially at rest, no applied pressure gradient and $\bf{f} = \bf{0}$. At $t = 0$, the boundary at $y = 0$ starts to move with velocity $(U, 0)$ \begin{center} \includegraphics[width=0.6\linewidth] {images/c8804a1cac5011ed.png} \end{center} \begin{align*} \rho \pfrac{u}{t} &= -\ub{\pfrac{p}{x}}_{0} + \mu \pfrac[2]{u}{y} + \ub{f_x}_{0} \\ u &= 0 &&(t = 0, y \to \infty) \\ u &= U &&\text{at } y = 0, t > 0 (\text{no-slip}) \end{align*} Hence the velocity satisfies the \emph{diffusion equation} \[ \pfrac{u}{t} = \nu \pfrac[2]{u}{y} \] where the kenimatic velocity $\nu = \frac{\mu}{\rho}$ can be thought of as a diffusivity for momentum (or vorticity -- see later). \myskip For other solutions of the diffusion equation see Methods (for example separation of variables, Fourier Transforms, Green's functions etc) and Sheet 2 Questions 4 and 5. Here there is no externally imposed length scale for $y$ since $0 < y < \infty$. But we need a lengthscale! Can find a similarity solution using a scaling argument (see IA DEs, IA D\&R). \[ \pfrac{u}{t} = \nu \pfrac[2]{u}{y} \] suggests $\frac{u}{t} \sim \nu \frac{u}{y^2}$. $u(0) = U$ suggests $u \sim U$. Hence $y \sim (\nu t)^{\half}$. Try $u = U f(\eta)$ where $\eta = \frac{y}{(\eta t)^{\half}} \implies \pfrac{\eta}{t} = -\half \frac{\eta}{t}$ \[ \implies -\half \eta f' = f'' \implies -\half \eta = \frac{f''}{f'} \] \[ \implies -\frac{1}{4} \eta^2 = \ln f' + \text{constant} \implies f = A + B \int_\eta^\infty e^{-\frac{1}{4} \eta'^2} \dd \eta' \] $f(\infty) = 0$, $f(0) = 1$ implies $A = )$, $B = \frac{1}{\sqrt{\pi}}$ hence $u = U \erfc \left( \frac{y}{2\sqrt{\nu t}} \right)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/fe8711d4ac5211ed.png} \end{center} same shape -- self-similar -- but with width $\uparrow$ as $(\nu t)^{\half}$. \end{example*} \subsubsection*{Comments and Variations} \begin{enumerate}[(1)] \item Pure dimensional analysis would also allow $\frac{y}{ut}$ or $\frac{yU}{\nu}$ as dimensionless groups, but the equations show these are not relevant -- the equations and scaling arguments are better! \item Kinematic and dynamic viscosity \begin{center} \begin{tabular}{c|c|c|c} & $\rho$ & $\mu$ & $\nu$ \\ \hline Water & $10^3 \mathsf{kgm^{-3}}$ & $10^{-3} p_{\text{as}}$ & $10^{-6} \mathsf{m^2 s^{-1}}$ \\ Water & $10^3 \mathsf{kgm^{-3}}$ & $10^{-3} p_{\text{as}}$ & $10^{-6} \mathsf{m^2 s^{-1}}$ \\ Water & $10^3 \mathsf{kgm^{-3}}$ & $10^{-3} p_{\text{as}}$ & $10^{-6} \mathsf{m^2 s^{-1}}$ \\ \end{tabular} \end{center} \begin{enumerate}[(a)] \item $\nu_{\text{air}} \approx 20\nu_{\text{water}}$ so motion spreads further / faster in air. \item Sheer stress exerted by fluid on the plate \[ \tau_s = \mu \pfrac{u}{y} = -\frac{\mu U}{(\nu t)^{\half}} f'(0) = -\frac{\mu Uj}{\sqrt{\pi \nu t}} \] \[ \left. \frac{\mu}{\sqrt{\nu}} \right|_{\text{water}} \approx 200 \left. \frac{\mu}{\sqrt{\nu}} \right|_{\text{air}} \] so water exerts a much bigger stress. \end{enumerate} \item Now add a stationary boundary at $y = h$ \begin{center} \includegraphics[width=0.6\linewidth] {images/5efbd2f0ac5511ed.png} \end{center} Have 2 relevant length scales $h$ and $(\nu t)^{\half}$. If $h \gg (\nu t)^{\half}$ expect boundary to have little (exponentially small) effect on the previous solution. As $t \to \infty$ expect to approach steady Couette flow (linear profile). Deviations from this steady state decay like $e^{-kt}$ with $k \propto \frac{\nu}{h^2}$ and are small for $\nu t \gg h^2$ (Example Sheet 2, Question 5) $\implies$ Characteristic timescale $T = \frac{h^2}{\nu}$ for diffusion accross the cell. For example $h = 10\mathsf{cm}$, $T = 0.07\mathsf{s}$ for golden syrup, but $3\mathsf{hrs}$ for water. $t \ll T$ effects of viscosity ar econfined to a ``boundary layers'' $\delta \sim (\nu t)^{\half}$. $t \gg T$ almost steady, viscosity dominant everywhere. \item Simple oscillating boundary (Example Sheet 2 Question 4) \begin{center} \includegraphics[width=0.4\linewidth] {images/b3835c24ac5711ed.png} \end{center} Imposed timescale $\frac{1}{\omega}$ during which velocity variation can diffuse $\left( \frac{\nu}{m} \right)^{\half}$ \begin{center} \includegraphics[width=0.6\linewidth] {images/d08e7b5aac5711ed.png} \end{center} \end{enumerate}