% vim: tw=50 % 09/02/2023 10AM \subsection{Plane Couette Flow and Viscosity} \begin{center} \includegraphics[width=0.6\linewidth] {images/513aa1e2a86211ed.png} \end{center} Steady flow between parallel plates driven only by the motion of the top plate. Find experimatelly for simple (Newtonian) fluids -- air, water, oild, syrup, glycerol -- that \begin{enumerate}[(i)] \item Fluid velocity is $U$ on the top plate and 0 on the bottom plate. \item The fluid velocity varies linearly between the top and bottom plates. \item Tangential force per unit area $\tau_3$ is\ldots \end{enumerate} TODO By considering a slab of fluid $a < y < b$ as a Couette Flow, for example \begin{center} \includegraphics[width=0.6\linewidth] {images/284242d2a86611ed.png} \end{center} deduce: The tangential shear stress exerted by the $+$ side on the $-$ side of a surface $y = \text{const}$ is \[\boxed{\tau_3 = \mu \pfrac{u}{n}} \] For example, the fluid exerts a shear stress $\mu \pfrac{u}{y}$ on the bottom plate and $-\mu \pfrac{u}{y}$ on the top plate ($\bf{n}$ into fluid) \subsection{2D Parallel Viscous Flow} Steady case with $\bf{f} = \bf{0}$ \begin{center} \includegraphics[width=0.6\linewidth] {images/fd57eef0a86511ed.png} \end{center} Steady $\implies$ no acceleration $\implies$ forces exerted by the surrounding fluid on the dashed rectangle must balance. \myskip In the $x$-direction \[ p(x) \delta y - p(x + \delta x) \delta y + \mu \left. \pfrac{u}{y} \right|_{y + \delta y} \delta x - \mu \left. \pfrac{u}{y} \right|_y \delta x = 0 \] Divide by $\delta x \delta y$ and take the limit: \[ -\pfrac{p}{x} + \mu \pfrac[2]{u}{y} = 0 \] and similarly in the $y$-direction \[ -\pfrac{p}{y} = 0 \] \subsubsection*{General Case} For 2D unsteady parallel viscous flow $\bf{u} = (u(y, t), 0, 0)$ with body force $\bf{f} = (f_x, f_y, 0)$ (Sheet 2 Question 1) \begin{equation*} \boxed{ \begin{aligned} p \pfrac{u}{t} &= -\pfrac{p}{x} + \mu \pfrac[2]{u}{y} + f_x \\ 0 &= -\pfrac{p}{y} + f_y \end{aligned} } \end{equation*} Note: $\bf{u}(u(y, t), 0, 0) \implies \nabla \cdot \bf{u} = 0$ and $(\bf{u} \cdot \nabla) \bf{u} = 0$. \subsubsection*{No-slip boundary condition} It has been verified experimentally (down to molecular scales) that at a rigid boundary viscous fluids satisfy a \emph{no slip boundary condition}: \begin{center} the tangential component of the fluid must equal that of the boundary. \end{center} Combined with the mass conserving kinematic boundary condition $\bf{u} = \bf{U}$ (contrast with $\bf{u} \cdot \bf{n} = \bf{U} \cdot \bf{n}$ only for inviscid fluids). \begin{example*}[Poiseuille Flow in a Channel] Steady flow in a channel driven by a pressure gradient. \begin{center} \includegraphics[width=0.6\linewidth] {images/f40bf32ca86611ed.png} \end{center} \[ \pfrac{p}{y} = 0 \implies p = p(x) \] Steady, so \[ \mu \pfrac[2]{u}{y} = \dfrac{p}{x} = -G \qquad \text{const} \] \[ u(0) = u(h) = 0 \] \[ \implies u = \frac{G}{2\mu}y(h - y) \] Flux (per unit width into page), $q = \int_0^h u \dd y = \frac{Gh^3}{12 \mu}$. \begin{center} \includegraphics[width=0.2\linewidth] {images/7c69c67ca86711ed.png} \end{center} Overall force balance $Gh - \mu \left. \pfrac{u}{y} \right|_0 + \mu \left. \pfrac{u}{y} \right|_h = 0$. ($Gh$ is pressure gradient, and the next two terms are the shear stress $R \to L$). \end{example*} \subsubsection*{Example Viscous Flow Down a Slope} \begin{center} \includegraphics[width=0.6\linewidth] {images/0fe97cdea86911ed.png} \end{center} Assume $p_{\text{air}}$ is uniform (because $p_{\text{air}} \ll p_{\text{syrup}}$). Shear stress exerted by the air is negligible (because $\mu_{\text{air}} \ll \mu_{\text{syrup}}$). Take coordinates parallel and perpendicular to the plane: \[ \bf{f} = (\rho g \sin \alpha, -\rho g \cos\alpha) \] perpendicular: \[ \pfrac{p}{y} = \rho g \cos\alpha, \quad p = p_a \text{ at y = h} \implies p = p_a + \rho g \cos\alpha (h - y) \implies \pfrac{p}{x} = 0 \] Parallel: \begin{align*} \mu \pfrac[2]{u}{y} &= -\rho g \sin\alpha \\ u(0) &= 0 &&\text{(no slip)} \\ \mu \left. \pfrac{u}{y} \right|_h &= 0 &&(\text{no shear stress from / on air}) \\ \implies u &= \frac{\rho g \sin\alpha}{2\mu} y(2h - y) \end{align*} \begin{center} \includegraphics[width=0.2\linewidth] {images/1d827f62a86911ed.png} \end{center}