% vim: tw=50 % 07/02/2023 10AM \subsubsection{The vorticity equation} Start with \[ \rho \left( \pfrac{\bf{u}}{t} + (\bf{u} \cdot \nabla) \bf{u} \right) = -\nabla p + \bf{f} \] Assume $\rho$ is constant and $\bf{f}$ is conservative (i.e. $\bf{f} = -\nabla \chi$). Earlier vector identity $(\bf{u} \cdot \nabla)\bf{u} = \nabla \left( \half u^2 \right) - \bf{u} \times \bf{w}$. Take curl: \[ \rho \left( \pfrac{\bf{w}}{t} = \nabla \times (\bf{u} \times \bf{w}) \right) = 0 \] Second vector identity: \begin{align*} (\nabla \times (\bf{u} \times \bf{w}))_i &= \eps_{ijk} \pfrac{}{x_j} (\eps_{klm} u_L w_m) \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \left( \pfrac{u_l}{x_j} w_m + u_l \pfrac{w_m}{x_j} \right) \\ &= (\bf{w} \cdot \nabla) \bf{u} - \bf{w}\ub{\cancel{(\nabla \cdot \bf{u})}}_{\text{incompressible}} + \bf{u} \ub{\cancel{(\nabla \cdot \bf{w})}}_{\nabla \cdot \nabla \times = 0} - (\bf{w} \cdot \nabla) \bf{u} \end{align*} \[ \implies \boxed{ \Dfrac{\bf{w}}{t} \equiv \pfrac{\bf{w}}{t} + (\bf{u} \cdot \nabla) \bf{w} = (\bf{w} \cdot \nabla) \bf{u}} \] \emph{Vorticity equation}. We call the $\pfrac{\bf{w}}{t}$ term the local derivative, the $(\bf{u} \cdot \nabla)\bf{w}$ term the advection of $\bf{w}$ and $\bf{w} \cdot \nabla)\bf{u}$ the ``vortex stretching''. \noindent i.e. moving with the fluid, $\bf{w}$ changes if $\bf{u}$ changes in the direction of $\bf{w}$. \subsubsection{Vortex stretching and the ``ballerina effect''} Compare \[ \dfrac{}{t} \bf{\delta l} = (\bf{\delta l} \cdot \nabla) \bf{u} \qquad \text{and} \qquad \Dfrac{\bf{w}}{t} = (\bf{w} \cdot \nabla)\bf{u} \] Moving with the fluid, $\bf{w}$ changes just like a material line element $\bf{\delta l}$ initially aligned with $\bf{w}$. In particular, if $\bf{\delta l}$ gets longer (stretching) then $\bf{w}$ gets bigger -- this is just conservation of angular momentum! For example, consinder a uniformly rotating fluid cylinder: \begin{center} \includegraphics[width=0.6\linewidth] {images/ff94cb46a6d211ed.png} \end{center} \begin{itemize} \item Mass conservation: $a_1^2 l_1 = a_2^2 l_2$ \item Angular momentum: $a_1^4 l_1 w_1 = a_2^4 l_2 w_2$ \end{itemize} Hence $w_2 = w_1 \frac{l_2}{l_1}$, i.e. $\bf{w}$ increases as fluid stretches in the direction of existing $\bf{w}$ -- called \emph{vortex stretching} or the ``ballerina effect''. \begin{example*} Amplification of bathtub vortex: \begin{center} \includegraphics[width=0.6\linewidth] {images/630df728a6d411ed.png} \end{center} \end{example*} \begin{example*} Hurricane / tornado: \begin{center} \includegraphics[width=0.6\linewidth] {images/ad1673f4a6d411ed.png} \end{center} \end{example*} \begin{example*} \begin{align*} \bf{u} &= \left( -\half \beta x, -\half \beta y, \beta z \right) + \Omega(t) (y, -x, 0) \\ \implies \bf{w} &= (0, 0, 2\Omega) \\ \pfrac{\bf{w}}{t} + (\bf{u} \cdot \nabla)\bf{w} &= (\bf{w} \cdot \nabla)\bf{u} \end{align*} $z$-component $2\dot{\Omega}+ 0 = (2\Omega)\beta$ implies $\Omega \propto e^{\beta t}$. \end{example*} \subsubsection*{Circulation} The \emph{circulation around a closed curve} $\Gamma$ is defined by $C(\Gamma) = \oint_\Gamma \bf{u} \cdot \dd \bf{l} = \int_S \bf{w} \cdot \dd \bf{S}$ \begin{center} \includegraphics[width=0.3\linewidth] {images/fc202760a6d411ed.png} \end{center} For example a line vortex $\bf{u} = \left( 0, \frac{\kappa}{2\pi r}, w \right)$ has circulation $\kappa$ for any circle $r = a$. \begin{note*}[Non-examinable] Kelvin's Circulation Theorem. If $\Gamma(t)$ is material curve, i.e. one moving with the fluid, then \[ \dfrac{}{t} [C(\Gamma)] = \oint_\Gamma \left( \Dfrac{\bf{u}}{t} \cdot \dd \bf{l} + \bf{u} \cdot \ub{(\bf{u} \cdot \nabla) \bf{\delta l}}_{\frac{}{t} \bf{\delta l}} \right) \stackrel{\text{exercise}}{=} 0 \] \end{note*} For example $C = \pi a^2 (2\Omega)$ above is constant for a material circle $a(t) = a(0) e^{-\half \beta t}$. \newpage \section{Introduction to Viscous Flow} Section 2 was about \emph{inviscid} flow. \begin{itemize} \item We neglected friction (viscous stresses) between layers of fluid or boundaries. \item Inviscid fluid exerts only a normal stress $-p \bf{n}$. \item Forces $-\nabla p + \bf{f}$ were balanced by inertia $\rho \Dfrac{\bf{u}}{t}$. \item If $\bf{f} = -\nabla \chi$ then energy and angular momentum are conserved. \end{itemize} \myskip With viscous flow, we will find: \begin{itemize} \item Velocity gradients give rise to visous stresses (friction) \item Fluids also exert tangential (shear) stresses on boundaries \item New term in equation of motion \item Dissipation of energy (non-examinabl) and diffusion of vorticity. \end{itemize} We will focus on simple case of \emph{2D parallel viscous flow} \[ \bf{u} = (u(y, t), 0, 0) \] -- the full treatment of viscosity is in Part II.