% vim: tw=50 % 02/02/2023 10AM Momentum equation applied to \begin{center} \includegraphics[width=0.6\linewidth] {images/66cebd20a2e211ed.png} \end{center} \[ \ub{\cancel{\dfrac{}{t} \int_V \rho \bf{u} \dd V}}_{0 \text{ because steady}} = -\int_{\partial V} \rho \bf{u} (\bf{u} \cdot \bf{n}) + p \bf{n} \dd A + \ub{\cancel{\int_V \bf{f} \dd V}}_{ \text{neglect}} \] $p = p_a$ except near the impact, $\bf{u} \cdot \bf{n} = 0$ except at the ends. \myskip Component parallel to the diagonal plane imply \[ -\rho U^2 a \cos\beta + pU^a a_2 - pU^2 a_1 \tag{2} \] (1) and (2) implies $a_2 = a \frac{1 + \cos\beta}{2}$, $a_1 = a \frac{1 - \cos\beta}{2}$. \myskip Component perpendicular to plane \[ \half \rho U^2 a \sin \beta = \int_{\partial V} p \bf{n} \dd A = \int_{\partial V} (p - p_a) \bf{n} \dd A = \text{Force on wall} \] (because $p_a \int_{\partial V} \bf{n} \dd A = 0$ by divergence theorem). Also: Aerofoil lift \begin{center} \includegraphics[width=0.3\linewidth] {images/fbbd4464a2e311ed.png} \end{center} so sucked up. \myskip Barges in canals: \begin{center} \includegraphics[width=0.6\linewidth] {images/0c603d1ca2e411ed.png} \end{center} \subsection{Hydrostatic Pressure and Archimedes Principle} If $\bf{u} \equiv \bf{0}$ then Euler gives $0 = -\nabla p + \rho \bf{g} = -\nabla (p + \chi)$ \[ \implies p + \chi = \text{const} \implies p = p_0 - \rho gz \] \emph{hydrostatic pressure}. (here gravity is in the $z$ direction). \myskip Archimedes: Pressure force on a submerged body with $\bf{u} = \bf{0}$ \begin{align*} \text{Force} &= -\int p \bf{n} \dd A &&(\text{fluid on body}) \\ &= -\int (p_0 - \rho gz) \bf{n} \dd A \\ &= -\int \nabla (p_0 - \rho gz) \dd V \\ &= \rho_{\text{fluid}} \bf{g} \hat{\bf{z}} \\ \text{upthrust / buoyancy} &= \text{weight of fluid displaced} \end{align*} \begin{center} \includegraphics[width=0.6\linewidth] {images/776ac86aa2e511ed.png} \end{center} For $\bf{u} \neq \bf{0}$ and constant $\rho$ everywhere we can write $p = p_0 - \rho gz + p'$ \[ \implies \rho \Dfrac{\bf{u}}{t} = -\nabla p' \] (no $\bf{f} = \rho \bf{g}$). $p'$ is the \emph{dynamic} (\emph{modified}) pressure -- variation due to the motion after subtracting hydrostatic balance. Can ignore gravity if there are no density variations and no free surfaces. Free surface between air and water, $\rho_{\text{water}} \neq \rho_{\text{air}}$ hence gravity clearly has an effect $\to$ waves (Section 5). \subsection{Vorticity} Vorticity defined by $\bf{\omega} = \nabla \times \bf{u}$ (angular momentum by another name). \begin{example*} $\bf{u} = \Omega \times \bf{x}$, solid body rotation \begin{center} \includegraphics[width=0.3\linewidth] {images/2414ef9aa2e711ed.png} \end{center} $\implies \bf{\omega} = 2\bf{\Omega}$ (check) \end{example*} \begin{example*} $\bf{u} = (0, \gamma x, 0)$, simple shear \begin{center} \includegraphics[width=0.3\linewidth] {images/37de58b8a2e711ed.png} \end{center} $\implies \bf{\omega} = (0, 0, \gamma)$ \end{example*} \begin{example*} $\bf{u} = \left( 0, \frac{R}{2\pi r}, 0 \right)$ in cylindrical polars, ``line vortex'' \begin{center} \includegraphics[width=0.3\linewidth] {images/ed6bcd5aa2e711ed.png} \end{center} $\bf{\omega} = \bf{0}$ except at $r = 0$ \[ \int_{r < a} \bf{\omega} \cdot \hat{\bf{z}} \dd A = \oint_{r = a} \bf{u} \cdot \dd l = \int_0^{2\pi} \frac{R}{2\pi r} r \dd \theta = R \] $\implies \bf{\omega} = (0, 0, R \delta(r))$. \end{example*} \subsubsection{Interpretation of $\omega$ as 2 $\times$ average location rate} Consider a material line element $\delta l$ (i.e. one moving with the fluid). \begin{center} \includegraphics[width=0.6\linewidth] {images/6d607c80a2e911ed.png} \end{center} i.e. $\bf{\delta} \bf{l} \to \bf{\delta}\bf{l} + (\bf{\delta}\bf{l} \cdot \nabla) \bf{u} \delta t$ \[ \implies \boxed{\dfrac{}{t} \bf{\delta}\bf{l} = (\bf{\delta}\bf{l} \cdot \nabla) \bf{u}} \] Hence the tensor $\pfrac{u_i}{x_j}$ determines the rate of change of $\bf{\delta}\bf{l}$. We write \begin{align*} \pfrac{u_i}{x_j} &= \half \left( \pfrac{u_i}{x_j} + \pfrac{u_j}{x_i} \right) + \half \left( \pfrac{u_i}{x_j} - \pfrac{u_j}{x_i} \right) \\ &= e_{ij} + \half \eps_{ijk} \omega_k \end{align*} The local rotation of line elements due to the second term is $\half \eps_{jik} \omega_k \delta k_j = \half (\bf{\omega} \times \bf{\delta}\bf{l})_i = $ rotation at angular velocity $\half \bf{\omega}$. \myskip Local rotation due to first term, called the \emph{strain rate}, gives same angular velocity averaged over all orientations $\bf{\delta}\bf{l}$. $\ul{\bf{e}}$ is symmetric (hence diagonalisable) and traceless. Therefore $\nabla \cdot \bf{u} = 0$. \begin{center} \includegraphics[width=0.3\linewidth] {images/80d96c7ca2e911ed.png} \end{center} Note $\half \bf{\omega}$ gives the rate of rotation of blobs, not whether the blobs are going in circles!