% vim: tw=50 % 31/01/2023 09AM \subsection{Bernoulli's Equation for Steady Flow with Potential Forces} Euler equation \[ \rho \left( \pfrac{\bf{u}}{t} + (\bf{u} \cdot \nabla)\bf{u} \right) = -\nabla p + \bf{f} \] Steady $\equiv \pfrac{}{t} = 0$. Potential forces $\implies \bf{f} = -\nabla \chi$. Use vector identity \[ \boxed{\bf{u} \times (\nabla \times \bf{u}) = \nabla \left( \half u^2 \right) - (\bf{u} \cdot \nabla )\bf{u}} \] (check) (where $u = |\bf{u}|$). Introduce the \emph{vorticity} $\bf{w} = \nabla \times \bf{u}$. \myskip Euler equation reduces to \begin{align*} \rho \left( 0 + \nabla \left( \half u^2 \right) - \bf{u} \times \bf{w} \right) &= -\nabla \rho - \nabla \chi \\ \implies \nabla \left( \half \rho u^2 + p + \chi \right) &= \rho \bf{u} \times \bf{w} &&(\rho = \text{const}) \\ \implies \bf{u} \cdot \nabla \left( \half \rho u^2 + p + \chi \right) &= 0 \end{align*} $H = \half \rho u^2 + p + \chi$ is constant along streamlines. Bernoulli (1738). So $H = \text{const}$ implies $p$ low where $u$ is high and vice versa. \begin{center} \includegraphics[width=0.6\linewidth] {images/7eb5052ca15011ed.png} \end{center} See Question 9 on Sheet 1 for interpretation on conservation of energy. \subsubsection*{Applications of Steady Bernoulli} Emptying Tank \begin{center} \includegraphics[width=0.6\linewidth] {images/c8460dbaa15211ed.png} \end{center} \subsubsection*{Pitot Tube} To measure air speed. \begin{center} \includegraphics[width=0.6\linewidth] {images/0b0273d2a15311ed.png} \end{center} Mount facing into the flow \begin{center} \includegraphics[width=0.6\linewidth] {images/156d0724a15311ed.png} \end{center} Bernoulli along the streamline \begin{align*} \half \rho_{\text{air}} U^2 + p_0 &= 0 + p_1 \implies U \\ &= \left[ \frac{2(p_1 - p_0)}{\rho_{\text{air}}} \right]^{1/2} \end{align*} \subsubsection*{Venturi Meter} To measure flow rate in pipe without any moving parts. \begin{center} \includegraphics[width=0.6\linewidth] {images/017b36a4a15411ed.png} \end{center} Assume steady flow, uniform across a cross-section -- OK for gentle variation of $A$. Mass conservation \[ A_1 u_1 = A_2 u_2 = Q \] Bernoulli: \begin{align*} \half \rho u_1^2 + p_1 &= \half \rho u_2^2 + p_2 \\ \implies p_1 - p_2 &= \half \rho u_1^2 \left( \frac{A_1^2}{A_2^2} - 1 \right) > 0 \end{align*} Measure $h$ $\to$ \begin{align*} \rho gh &= p_1 - p_2 \\ \implies &~~u_1 \\ \implies Q &= \sqrt{2gh} \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \end{align*} (check) \begin{remark*}[Non-Examinable] Cannot use Bernoulli for sudden enlargement of pipe. See \begin{center} \includegraphics[width=0.6\linewidth] {images/8186e8aca15411ed.png} \end{center} Exercise: Assume that $p_{\text{jet}} \simeq p_{\text{still}}$ (because no sideways acceleration) and $p_{\text{jet}} \simeq p_0$. Apply the momentum integral equation to \begin{center} \includegraphics[width=0.6\linewidth] {images/e98622faa15511ed.png} \end{center} $\bf{f} = 0$, $\dfrac{}{t} \left( \int \rho \bf{u} \dd V \right) \simeq 0$ on average. Show \[ p_1 = p_0 + \rho u_1^2 \left( \frac{A_1}{A_0} - 1 \right) \left( \frac{A_1}{A_0} \right) \] \end{remark*} \subsubsection*{Water jet hitting an oblique wall} Two-dimensional version (neglect gravity). Assume steady. \begin{center} \includegraphics[width=0.6\linewidth] {images/88627590a15611ed.png} \end{center} Suppose that the small angle between the two sections is $\beta$. Bernoulli on surface streamline where $p = p_a$, constant implies speed is constant $=U$ along this streamline. \myskip So far from impact where flow is uniform, and $p = p_a$, (vorticity zero by section 2.5) have $u = U$ again. Mass conservation \[ \implies aU = a_1 + a_2 U \tag{1} \]