% vim: tw=50 % 26/01/2023 10AM \newpage \section{Dynamics of Inviscid Flow} \subsection{Surface and Volume Forces} Two types of force act on a fluid (liquid / gases) \begin{enumerate}[(i)] \item Those proportional to the volume, like gravity \item Those proportional to the area, like \emph{pressure} or \emph{viscous stress} (friction between moving fluid and neighbouring material, whether a boundary or other fluid). \end{enumerate} \subsubsection*{(i) Volume / body forces} We denote the force on a small volume element $\bf{f}(\bf{x}, t) \delta V$. $\bf{f}$ is often \emph{conservative} with potential energy / unit volume $\chi$ and $\bf{f} = -\nabla \chi$. The most common case for us $\bf{f} \delta V = \rho \bf{g} \delta V$ with $\chi = \rho gz$ if $\bf{g} = (0, 0, -g)$. \subsubsection*{(ii) Surface Forces} Consider a small element of area $\bf{n} \delta A$ \begin{center} \includegraphics[width=0.2\linewidth] {images/ebb5142e9d6211ed.png} \end{center} Denote the surface force exerted \emph{by the $+$ side on the $-$ side} by $\bf{\tau}(\bf{x}, t; \bf{n}) \delta A$ where $\bf{\tau}$ is the \emph{stress} acting on the area element. (A stress is a force per unit area). Note, the stress $\bf{\tau}$ depends on the orientation $\bf{n}$. For example, by Newton III, the surface force exerted by the $-$ side on the $+$ side is \[ -\bf{\tau}(\bf{x}, t; \bf{n}) = \bf{\tau}(\bf{x}, t, -\bf{n}) \] We defer any discussion of viscous stresses (friction) to Chapter 3. \myskip In many phenomena, the viscous stresses are negligible and the fluid behaves as if it is \emph{inviscid} (frictionless). For example it takes over an hour to slow down a $10\mathsf{cm}$ layer of water, $10^{-3}$ effect when pouring tea. \myskip For \emph{inviscid (frictionless) fluids}, the stress $\bf{\tau}$ acting across $\bf{n}\delta A$ has no tangential component and has magnitude independent of the orientation: \[ \bf{\tau}(\bf{x}, t; \bf{n}) = -p(\bf{x}, t)\bf{n} \] where $p$ is the pressure. Note the $-$ sign! The $+$ side pushes on the $-$ side in the direction $-\bf{n}$: \begin{center} \includegraphics[width=0.3\linewidth] {images/b114cd269d6411ed.png} \end{center} \subsection{The Euler Momentum Equation} (Inviscid for the rest of the section) Consider an arbitrary volume $V$, fixed in space, bounded by surface $\delta V$ with an outward normal $\bf{n}$. The momentum $\int_V p\bf{u} \dd V$ inside $V$ can change due to \begin{enumerate} \item Flow of momentum across the boundary $\partial V$. \item Volume / body forces. \item Surface forces. \begin{center} \includegraphics[width=0.3\linewidth] {images/faca80b49d6411ed.png} \end{center} Volume out across $\delta A$ in time $\delta t$ is $\bf{n} \delta A \cdot \bf{u} \delta t$, so momentum out across $\delta A$ in time $\delta t$ is $\rho \bf{u} (\bf{u} \cdot \bf{n} \delta A \delta t)$. Hence \[ \boxed{\dfrac{}{t} \int_V \rho \bf{u} \dd V = -\int_{\partial V} \rho \bf{u}(\bf{u} \cdot \bf{n}) \dd A + \int_{\partial V} (-p \bf{n}) \dd A + \int_V \bf{f} \dd V} \] (Momentum integral equation). $\rho u_i u_j$ is the momentum flux (tensor). Or in components: \[ \dfrac{}{t} \int_V \rho u_i \dd V = -\int_{\partial V} (\rho u_i u_j) n_j \dd A - \int_{\partial A} p n_i \dd A + \int f_i \dd V \] \[ \int_V \pfrac{}{t} (\rho u_i) \dd V = -\int_V \pfrac{}{x_j} (\rho u_i u_j) \dd V - \int_V \pfrac{p}{x_i} \dd V + \int_V f_i \dd V \] Since $V$ is arbitrary, \[ \pfrac{}{t} (\rho u_i) + \pfrac{}{x_j} (\rho u_i u_j) = -\pfrac{p}{x_i} + f_i \] \[ LHS = u_i \left( \pfrac{\rho}{t} + \pfrac{}{x_j} (\rho u_j) \right) + \rho \pfrac{u_i}{t} + \rho u_j \pfrac{u_i}{x_j} \] But $\pfrac{\rho}{t} + \pfrac{}{x_j} (\rho u_j) = 0$ by mass conservation. So \[ LHS = \rho \left( \pfrac{}{t} + \bf{u} \cdot \nabla \right) u_i \] Therefore \[ \boxed{\rho \Dfrac{\bf{u}}{t} = -\nabla p + \bf{f}} \] Euler momentum equation. \end{enumerate} A fluid accelerates due to the difference in pressure on either side and to the volume force. \subsubsection*{Dynamic boundary condition} The stress $\bf{\tau}$ exerted on the fluid by the boundary is $p\bf{n}$ (the stress exerted on the boundary by the fluid is $p\bf{n}$). \begin{center} \includegraphics[width=0.2\linewidth] {images/dd2e06b89d6711ed.png} \end{center} \subsubsection*{Application of momentum integral equation} Bent hose pipe: \begin{center} \includegraphics[width=0.6\linewidth] {images/fe0b56ba9d6711ed.png} \end{center} Assume steady uniform flow $U$ in and out with same cross-sectional area $A$. Neglect gravity. ($\bf{f} = \bf{0}$). \[ \int_{\text{walls}} + \int_{\text{ends}} [\rho \bf{u} (\bf{u} \cdot \bf{n}) + p \bf{n}] \dd A = 0 \] by steady momentum integral equation. \begin{align*} \int_{\text{walls}} [\rho \bf{u} (\bf{u} \cdot \bf{n}) + p\bf{n}] \dd A &= \int_{\text{walls}} p\bf{n} \dd A &&(\text{$\bf{u} \cdot \bf{n} = 0$ by the kinematic boundary condition}) \\ &= \text{Force by the fluid on the pipe} \\ \int_{\text{ends}} [\rho \bf{u} (\bf{u} \cdot \bf{n}) + p\bf{n}] \dd A &= A(p_1 \bf{n}_1 + \rho(-U \bf{n}_1) (-U) + p_2 \bf{n}_2 + \rho(U \bf{n}_2)U) \end{align*} $p_1 = p_2$ (see next section). \[ \text{Force on pipe} = -A (p + pU^2)(\bf{n}_1 + \bf{n}_2) \] \begin{center} \includegraphics[width=0.3\linewidth] {images/0f074c709d6911ed.png} \end{center} $pU^2$ contribution comes from charge in momentum flux: momentum in goes to momentum out due to force from wall.