% vim: tw=50 % 14/03/2023 10AM \noindent Assume the initial conditions are such that $u, v$ independent of $z$ $\implies$ remain so. \subsubsection*{Mass conservation} Consider a cylindrical volume \begin{center} \includegraphics[width=0.6\linewidth] {images/e402c236c25011ed.png} \end{center} \[ \dfrac{}{t} \int_A \rho h \dd A + \int_{\partial A} \rho h \bf{u}_H \cdot \bf{n} \dd s = 0 \] \[ \implies \int_A \pfrac{h}{t} + \nabla_H \cdot (h\bf{u}_H) =\dd A = 0 \] \[ \implies \pfrac{h}{t} + \pfrac{}{x} (hu) + \pfrac{}{y} (hv) = 0 \] or \[ \boxed{\Dfrac{h}{t} = -h \left( \pfrac{u}{x} + \pfrac{v}{y} \right)} \] \subsubsection*{Geostrophic balance} If $R_0 \equiv \frac{U}{\Omega L} \ll 1$ ($\implies \bf{u} \cdot \nabla \bf{u} \ll 2\bf{\Omega} \times \bf{u}$) and steady ($\pfrac{}{t} = 0$) then (1) and (2) \begin{align*} \implies -fv &= -\frac{1}{\rho} \pfrac{p}{x} = -g \pfrac{h}{x} \\ +fu &= -\frac{1}{\rho} \pfrac{p}{y} = -g \pfrac{h}{y} \end{align*} $\implies$ flow given by 2D stream-function $\psi = -\frac{p}{\rho f} = -\frac{gh}{f}$, i.e. pressure / height contours are streamlines. Hence winds blow parallel to isobars not perpendicular! $\rho(f\bf{e}_z) \times \bf{u} = -\nabla_H p$ is called \emph{geostrophic balance}. Note, if given $h(x, y)$ can calculate steady flow, but no equation for $h$ or $\pfrac{h}{t}$. \subsubsection*{Potential Vorticity} Recall \begin{align*} \Dfrac{}{t} (\zeta + f) &= -(\zeta + f) \left( \pfrac{u}{x} + \pfrac{v}{y} \right) \tag{v} \\ \Dfrac{}{t} h &= -h \left( \pfrac{u}{x} + \pfrac{v}{y} \right) \tag{m} \end{align*} \[ \implies \boxed{\Dfrac{}{t} \left( \frac{\zeta + f}{h} = 0 \right)} \tag{$\rho v$} \] $\boxed{\frac{\zeta + f}{h}}$ is called the \emph{potential vorticity}. PV is conserved for a material cylinder; the total vorticity $\zeta + f$ is $\propto$ the height of cylinder because vertical stretching $\to$ smaller radius $\to$ spins faster. PV is useful because $\nabla \times (\text{momentum})$ eliminates the largest terms $\nabla p$ and $2\rho \bf{\Omega} \times \bf{u}$ of nearly geostrophic balance and reveals how the smaller terms give the evolution of $h$ with time. \subsubsection*{Linearised Evolution} Suppose $h = h_0 + \eta(x, y, t)$, $|\eta| \ll h_0$, $|\nabla \eta| \ll \frac{H}{L} \ll 1$. Linearised equations are \begin{align*} \pfrac{u}{t} - fv &= -g \pfrac{\eta}{x} \tag{1} \\ \pfrac{v}{t} + fu &= -g \pfrac{\eta}{y} \tag{2} \\ \pfrac{\eta}{t} + h_0 \left( \pfrac{u}{x} + \pfrac{v}{y} \right) \tag{m} \end{align*} and \[ \pfrac{}{t} \left( \frac{f}{h_0} \frac{1( + \zeta / f)}{(1 + \eta / h_0)} \right) = 0 \implies \frac{\zeta}{f} - \frac{\eta}{h_0}(+ O(z)) \] is constant, i.e. $\zeta h_0 - \eta f = $ initial value $\zeta_0 h_0 - \eta_0 f$. (pv). Now $h_0 \left( \pfrac{(1)}{x} + \pfrac{(2)}{y} \right) - \pfrac{(m)}{t}$ \[ \implies -\pfrac[2]{\eta}{t} + gh_0 \nabla^2 \eta - h_0 f\zeta = 0 .\] Comine with (pv) $\implies$ \[ \boxed{\pfrac[2]{\eta}{t} - c^2 \nabla^2 \eta + f^2 \eta = f^2\eta_0 - h_0 f\zeta_0} \] $c = \sqrt{gh_0} = \text{shallow-water wave speed}$. \begin{example*} $\eta_0 = \eps \sgn(x)$, $\bf{u}_0 = \bf{0} \implies \zeta_0 = 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/86787102c25411ed.png} \end{center} Without rotation ($f = $) just have $\pfrac[2]{\eta}{t} = c^2 \pfrac[2]{\eta}{x}$ with d'Alembert solution \begin{center} \includegraphics[width=0.6\linewidth] {images/7c5a2f98c25511ed.png} \end{center} With rotation, the final steady state solves \[ \pfrac[2]{\eta_\infty}{x} - \frac{f^2}{c^2} \eta_\infty = -\frac{f^2}{c^2} \eps \sgn(x) \] \[ \implies \eta_\infty = \eps \sgn(x) (1 - e^{-|x| f / c}) \] \[ \implies u_\infty = -\frac{g}{f} \pfrac{\eta_\infty}{y} = 0 \] \[ v_\infty = \frac{g}{f} \pfrac{\eta_\infty}{x} = \eps \frac{g}{c} e^{-|x| f / c} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/03519d7ec25611ed.png} \end{center} Completely different! \end{example*}