% vim: tw=50 % 09/03/2023 10AM \subsection{Rotating Fluid Dynamics} Introduction: We live on a rotating Earth ($\Omega = \frac{2\pi}{86400\mathsf{s}} \simeq 10^{-4} \mathsf{s^{-1}}$) and the rotation has a huge effect on the large-scale motion of the oceans and atmosphere, hence climate. Moreover, the ocean and atmosphere are thin ($\simeq 4\mathsf{km}$, $\simeq 10\mathsf{km}$) compared to the Earth's radius ($R \simeq 6000 \mathsf{km}$). Rotation of the Earth $\implies$ speed $R\Omega$ at the equation $\simeq 500\mathsf{ms^{-1}}$ $\gg$ winds relative to Earth. So sensible to work in a rotating frame. \subsubsection{Euler Equations in a Rotating Frame} Assume $\rho$ uniform and $\nabla \cdot \bf{u} = 0$ -- good for ocean, can make so for atmosphere by a fix. Acceleration of a fluid particle in a rotating frame is \[ \Dfrac{\bf{u}}{t} + 2\bf{\Omega} \times \bf{u} + \bf{\Omega} \times (\bf{\Omega} \times \bf{x}) \] ($2\bf{\Omega} \times \bf{u}$ is Coriolis force and $\bf{\Omega} \times (\bf{\Omega} \times \bf{x})$ is centrifugal force). Now $\rho\bf{\Omega} \times (\bf{\Omega} \times \bf{x}) = \nabla \left( \half \rho |\bf{\Omega} \times \bf{x}|^2 \right)$ so can combine with $\rho\bf{g} = -\nabla \chi$ and treat them as an ``effective'' $\bf{g}$ with an effective definition ``vertical'', which is normal to the surface of the spheroidal Earth (Or note $\frac{|\bf{\Omega} \times (\bf{\Omega} \times \bf{x})|}{g} \simeq \frac{1}{300} \ll 1$). Hence \[ \boxed{\rho \Dfrac{y}{t} + 2\rho \bf{\Omega} \times \bf{u} = -\nabla p + \rho \bf{g}} \] \[ \nabla \times (2\bf{\Omega} \times \bf{u}) = 2\bf{\Omega} \cancel{\nabla \cdot \bf{u}} - 2\bf{\Omega} \cdot \nabla \bf{u} \] Hence the voriticty equation becomes \[ \Dfrac{\bf{\omega}}{t} = (\bf{\omega} + 2\bf{\Omega}) \cdot \nabla \bf{u} \] The vortex stretching term now involves the \emph{total / absolute vorticity} \[ \nabla \times (\bf{u} + \bf{\Omega} \times \bf{x}) = \bf{w} + 2\bf{\Omega} \] ($\bf{w}$ is relative vorticity and $2\bf{\Omega}$ is planetary voriticity). \subsubsection*{The Rossby Number} Suppose we have a flow with a characteristic lengthscale $L$ and velocity scale $U$ and timescale $T = \frac{L}{U}$: \begin{align*} \rho (\bf{u} \cdot \nabla) \bf{u} &\sim \frac{\rho U^2}{L} \\ 2\rho \bf{\Omega} \times \bf{u} &\sim \rho \Omega U \end{align*} The ratio \[ \frac{\rho U^2 / L}{\rho U \Omega} = \boxed{\frac{U}{\Omega L} \equiv R_0} \] is the \emph{Rossby number} describes the relative importance of inertia and Coriolis effects. \begin{itemize} \item For example Weather system $L \sim 1000 \mathsf{km}$, $U \sim 10\mathsf{ms^{-1}}$, $T\ sim 10^5 \mathsf{s} = 1 \mathsf{day}$. \[ \implies R_0 \sim 10^{-1} \] so Coriolis terms dominate. \item Another example would be emptying bathtub. Near the plughole $L \sim 30 \mathsf{cm}$, $U \sim 3 \mathsf{cms^{-1}}$, $T \sim 10\mathsf{s}$ \[ \implies R_0 \sim 10^3 \] so Coriolis effects are a tiny perturbation. $R_0 \ll 1$ also implies $\bf{\omega} \lesssim \frac{U}{L} \ll \bf{\Omega}$, so relative vorticity $\ll$ planetary. \end{itemize} \subsubsection*{Rotating Flow in a Shallow Layer} \begin{center} \includegraphics[width=0.6\linewidth] {images/8e32d65ebe6611ed.png} \end{center} Consider flows with horizontal lengthscale $L$ such that $H \ll L \ll R$. For example $100\mathsf{km}$ to $1000 \mathsf{km}$. Take local cartesian coordinates $x$ eastwards, $y$ northwards and $z$ upwards, and $\bf{u} = (u, v, w)$. If $\ol{\theta}$ is the latitude ($\subset [-\pi/2, \pi/2]$) then $\bf{\Omega} = (0, \cos \ol{\theta} \Omega, \sin\ol{\theta} \Omega)$ and $2 \bf{\Omega} \times \bf{u} = 2\Omega (\cos\ol{\theta} w - \sin\ol{\theta} v, \sin \ol{\theta} u, -\cos\ol{\theta} u)$. We make 3 good approximations: \begin{enumerate}[(1)] \item For $|\bf{u}| \sim 10\mathsf{ms^{-1}}$, $\frac{\Omega u}{g} \sim \frac{10^{-4} 10}{10} = 10^{-4} \ll 1$ so we can neglect $-\cos\ol{\theta} u$ in the vertical equation. \item For $L \gg H$, \[ \pfrac{w}{z} = -\pfrac{u}{x} - \pfrac{v}{y} \] suggests $\frac{w}{H} \sim \frac{u, v}{L} \implies w \sim \frac{H}{L} (u, v) \ll u, v$ so the flow is dominantly horizontal. (cf velocities in shallow water waves). Hence: \begin{enumerate}[(i)] \item Neglect $\cos\ol{\theta} w$ in the $x$-direction (except near the equator) \item Neglect the vertical acceleration $\rho \Dfrac{w}{t}$ so the vertical force balance is hydrostatic. \end{enumerate} \end{enumerate} Hence \begin{equation*} \boxed{ \begin{aligned} \Dfrac{u}{t} - fv &= -\frac{1}{\rho} \pfrac{p}{x} &&\text{(1)} \\ \Dfrac{v}{t} + fu &= -\frac{1}{\rho} \Dfrac{p}{y} &&\text{(2)} \\ 0 &= -\frac{1}{\rho} \pfrac{p}{z} - g \\ \pfrac{u}{x} + \pfrac{v}{y} + \pfrac{w}{z} &= 0 \end{aligned} } \end{equation*} where $f = 2\Omega \sin\ol{\theta}$ is the \emph{Coriolis parameter} (only the vertical component of $\bf{\Omega}$ matters). Also, $\pfrac{w}{z} \sim \frac{w}{H} \gg \pfrac{w}{x}, \pfrac{w}{x} \sim \frac{w}{L}$ so the vertical component of the vorticity equation becomes \begin{equation*} \boxed{ \begin{aligned} \Dfrac{\zeta}{t} &= (\zeta + f) \pfrac{w}{z} \\ &= -(\zeta + f) \left( \pfrac{u}{x} + \pfrac{v}{y} \right) \end{aligned} } \end{equation*} where $\boxed{\zeta = \omega_2}$. Consider a flow in a shallow layer of thickness $h(x, y, t)$: \begin{center} \includegraphics[width=0.6\linewidth] {images/1f247368be6a11ed.png} \end{center} \begin{align*} \pfrac{p}{z} = \rho g &\implies p = p_0 + \rho g(h - z) \\ &\implies \nabla_H p = \rho g \nabla_H h \end{align*} is independent of $z$ ($\nabla_H \equiv \left( \pfrac{}{x}, \pfrac{}{y} \right)$)