% vim: tw=50 % 28/02/2023 10AM \subsubsection{Steady Translation of a Cylinder with Circulation} Work in frame moving steadily with the cylinder. From section 4.2, uniform flow past a cylinder with circulation $\kappa$ given by \[ \phi = U\cos\theta \left( r + \frac{a^2}{r} \right) + \frac{\kappa}{2\pi}\theta, \qquad \text{and on $r = a$}, u_r = 0, u_\theta = -2U \sin\theta + \frac{\kappa}{2\pi a} \] (For $\kappa > 4\pi Ua$, there is no streamline connecting the cylinder to $\infty$.) Use expression for pressure in potential flow (section 4.3) to deduce \[ -\half \rho \left( -2U \sin\theta + \frac{\kappa}{2\pi a} \right)^2 + p(a, \theta) = \half \rho U^2 + p_\infty \] Fluid force on the cylinder (per unit length) is $-\int_{r = a} p(a, \theta) \bf{n} \dd A$. \[ = -\int \left[ p_\infty + \half \rho U^2 - \half \rho \left( 4U^2 \sin^2 \theta - \frac{2U\kappa}{\pi a} \sin\theta + \frac{\kappa^2}{4\pi^2 a^2} \right) \right] (\cos\theta, \sin\theta) a \dd \theta \] The only term that doesn't integrate to $0$ is the $-\frac{2U\kappa}{\pi a} \sin\theta \times (0, \sin\theta)$ term. So it equals \[ = \left( 0, -\half \rho \cdot \frac{2U \kappa}{\pi a} \half 2\pi a \right) = (0, -\rho U\kappa) \] i.e. we get a \emph{lift} force (perpendicular to $\bf{U}$) -- down for $\kappa > 0$, up for $\kappa < 0$. Recall $\kappa = 2\pi Ua$: \begin{center} \includegraphics[width=0.6\linewidth] {images/2c3e7522b75211ed.png} \end{center} Can show (Sheet 3 Question 1) that uniform potential flow past \emph{any} 2D body with circulation $\kappa$ produces lift $-\rho U\kappa$. For example Aerofoils -- wings, propellors, wind turbines. \begin{center} \includegraphics[width=0.6\linewidth] {images/5c0ab8f6b75211ed.png} \end{center} Circulation is generated by the condition that the flow separates smoothly at the back (see handout). \subsection{Some Unsteady Potential Flows} \subsubsection{Free Oscillations in a $U$-tube Manometer} \begin{center} \includegraphics[width=0.6\linewidth] {images/22e858a2b75311ed.png} \end{center} Start from rest, displacement $\zeta(0) \neq 0$. $\implies$ irrotational $\implies$ potential. Assume long tubes of equal areas, and short, wide junction. At the bottom, \[ \Delta \phi = \int_L^R \bf{u} \cdot \dd \bf{x} \simeq 0 \] because $\dd \bf{x}$ is small (short) and $\bf{u}$ is small (wide). WLOG can take $\phi = 0$ at the base of both tubes. By mass conservation, $u$ is uniform and equals $\dot{\zeta}$. RHS \[ \phi = uz, \quad \pfrac{\phi}{t} = \dot{u} z \quad \left. \pfrac{\phi}{t} \right|_{h + \zeta} = \ddot{\zeta}(h + \zeta) \] (Note, this is not $\dfrac{}{t} (\phi(h + \zeta))$.) LHS \[ \phi = -uz \quad \pfrac{\phi}{t} = -\dot{u} z \quad \left. \pfrac{\phi}{t} \right|_{h - \zeta} = -\ddot{\zeta}(h - \zeta) \] Apply $\rho \pfrac{\phi}{t} + \half \rho u^2 + p + \chi$ independent of position. \[ p\ddot{z}(h + \cancel{\zeta}) + \cancel{\half \phi \dot{\zeta}^2} + \cancel{p_a} + \rho g(\cancel{h} + \zeta) = -\rho \ddot{\zeta}(h - \cancel{\zeta}) + \cancel{\half \rho \dot{\zeta}^2} + \cancel{p_a} + \rho g(\cancel{h} - \zeta) \] \[ \rho \ddot{\zeta}(2h) = -\rho g(2\zeta) \] implies SHM with frequency $\sqrt{\frac{g}{h}} = \omega$. But nonlinear if tubes have different areas. \subsubsection{Oscillation / Expansion / Collapse of a Bubble} Air is $15,000$ times more compressible than water (compare $\frac{1}{v} \pfrac{V}{\rho}$). Consider incompressible flow of fluid outside a bubble of radius $a(t)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/105985fab75611ed.png} \end{center} Neglect gravity. Spherical symmetry implies radial flow. $u \propto \frac{1}{r^2}$ by mass conservation. (implies $\bf{\omega} = \bf{0}$). $u = \dot{a}$ on $r = a$ implies $\bf{u} = \frac{a^2 \dot{a}}{r^2} \bf{e}_r = \nabla \phi$ with $\phi = -\frac{a^2 \dot{a}}{r}$ (source flow). \[ \pfrac{\phi}{t} = -\frac{a^2 \ddot{a} + 2a \dot{a}^2}{r} \qquad \left. \pfrac{\phi}{t} \right|_{r = a} = -a\ddot{a} - 2\dot{a}^2 \] (Not $\dfrac{}{t} \phi(a(t), t)$). So using $\rho \pfrac{\phi}{t} + \half \rho u^2 + p = f(t)$ ($\chi = 0$) at $r = a$, $r = \infty$ we obtain \[ \boxed{-\rho a\ddot{a} - \frac{3}{2} \rho \dot{a}^2 = p_\infty - p(a(t), t)} \] Multiply by $a^2 \dot{a}$ implies $\dfrac{}{t} \left( \half \rho a^3 \dot{a}^2 \right) = a^2 \dot{a}(p(a) - p_\infty)$. Interpret as / motivated by $\dot{KE}$ equals rate of working by the pressures at $a$ and $\infty$. (Note $4\pi a^2 \dot{a} = 4\pi r^2 ur$). Can integrate if $p(a, t)$ given as $F(a)$ ad $F(a)$ known from interior of bubble. For example under water explosion $p_a \gg p_\infty$, collapse of a void $p_a \ll p_\infty$.