% vim: tw=50 % 23/02/2023 10AM \begin{itemize} \item[] For example $\phi = \frac{q}{2\pi} \ln r$ implies $\bf{u} = \frac{q}{2\pi r} \bf{e}_r$, radial flow $u_r \propto \frac{1}{r}$. Flux across any circle $r = a$ is $2\pi a u_r$ = q (indepdendent of $a$). Called a \emph{2D point source} of strength $q$ (line source in 3D). For example $\phi = \frac{\kappa}{2\pi}\theta$ implies $\bf{u} = \nabla \phi = \frac{\kappa}{2\pi r}\bf{e}_\theta$ circular flow $\propto \frac{1}{r}$. Circulation $\oint \bf{u} \dd \bf{dl}$ around a circle $r = a$ is $2\pi a \frac{\kappa}{2\pi a} = \kappa$ independent of $a$ -- see section 2.5. A \emph{point vortex} of circulation (strength) $\kappa$. (line vortex in 3D). \\ eg $\phi = U r\cos\theta$ uniform flow again \\ eg $\phi = \frac{U\cos\theta}{r}$ 2D dipole \\ eg Uniform flow past a cylinder with circulation $\kappa$: \[ \nabla^2 \phi = 0 \text{ in $r > a$} \qquad \phi \to Ur\cos\theta \text{ as $r \to \infty$} \] \[ \dfrac{\phi}{r} = 0 \text{ on $r = 0$} \qquad \oint \bf{u} \cdot \bf{dl} = [\phi]_{r = a} = \kappa \] -- condition needed to get a unique solution. \[ \implies \phi = U\cos\theta \left( r + \frac{a^2}{r} \right) + \frac{\kappa}{2\pi} \theta \] \[ \implies \bf{u} = \nabla \phi = \left( \pfrac{\phi}{r}, \frac{1}{r} \pfrac{\phi}{\theta} \right) \] \[ = \left( U\cos\theta \left( 1 - \frac{a^2}{r^2} \right), -U\sin\theta \left( 1 + \frac{a^2}{r^2} \right) + \frac{\kappa}{2\pi r} \right) \] \begin{center} \includegraphics[width=0.8\linewidth] {images/4c3887e2b36411ed.png} \end{center} For the right diagram: this is like a tennis ball with top spin (consider change of reference frame). \end{itemize} \subsection{Pressure in Potential Flow with Potential Forces} Non-linear equation of motion has been reduced to linear Laplace for the kinematics. But still have non-linearity in the dynamic boundary condition (pressure). Momentum equation: \[ \rho \left( \pfrac{\bf{u}}{t} + (\bf{u} \cdot \nabla)\bf{u} \right) = -\nabla p + \bf{f} \] Potential forces $\bf{f} = -\nabla \chi$. Previous identity: \[ (\bf{u} \cdot \nabla)\bf{u} = \nabla \left( \half u^2 \right) - \bf{u} \times \bf{\omega} \] ($\bf{u} \times \bf{\omega}$ is zero because irrotational flow). Potential flow \[ \pfrac{\bf{u}}{t} = \nabla \pfrac{\phi}{t} \] Thus the momentum equation reduces to \[ \nabla \left( \rho \pfrac{\phi}{t} + \half \rho u^2 + p + \chi \right) = 0 \] \[ \implies \boxed{\rho \pfrac{\phi}{t} + \half \rho u^2 + p + \chi = f(t), \qquad \text{independent of $\bf{x}$}} \] ``unsteady Bernoulli''. Notes: \begin{enumerate}[(1)] \item $f(t)$ is actually irrelevant, since we can add arbitrary $g(t)$ to $\phi$. -- its the independence of $\bf{x}$ that matters. \item Not the same as steady Bernoulli! -- see handout \item For steady, irrotational flow, $H$ is constant everywhere. \end{enumerate} \subsection{Force on Translating Sphere and Cylinder} \subsubsection{Steadym Translating Sphere} For steady motion, it is most convenient to use the frame of reference moving with the sphere \begin{center} \includegraphics[width=0.6\linewidth] {images/531e45d0b36711ed.png} \end{center} From section 4.2, uniform flow past stationary sphere is given by \[ \phi = U \cos\theta \left( r + \frac{a^3}{2r^2} \right) \] and on $r = a$, $u_r = 0$, $u_\theta = -\frac{3}{2} U\sin\theta$. Apply either form of Bernoulli: ($\pfrac{\phi}{t} = 0$, $\chi = 0$) to obtain \[ \half \rho \left( -\frac{3}{2} U\sin\theta \right)^2 + p(a, \theta) = \half \rho U^2 + p_{\infty} \] i.e. $p(a, \theta) = p_\infty + \half \rho U^2 \left( 1 - \frac{a}{4} \sin^2 \theta \right)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/6d3c8404b36711ed.png} \end{center} Pressure distribution is symmetric force-aft and round equator. $\implies$ The net force on the sphere is zero! \myskip This surprising result is \emph{d'Alembert's paradox}. In fact, there is no drag ($\equiv$ the net force parallel to the motion) on any steadily moving body in unbounded potential flow: KE is constant, we've neglected viscosity / friction. So conservation of energy gives no work done. \begin{note*}[Non-examinable] effect of viscosity on translating sphere. See experimentally: \begin{center} \includegraphics[width=0.6\linewidth] {images/49c57232b36811ed.png} \end{center} and find $F = 0.4 \half \rho U^2 (\pi a^2)$ -- see handout. \end{note*} \noindent However, potential flow is good slippery bubbles, for rapid acceleration of a rigid particle, or small amplitude oscillations.