% vim: tw=50 % 14/02/2023 09AM \newpage \section{Electrodynamics} \subsection{Faraday's law of induction} Maxwell's equation \[ \nabla \times \bf{E} = -\pfrac{\bf{B}}{t} \tag{M3} \] implies that a time-dependent magnetic field must be accompanied by an electric field. This can induce a current to flow in a conductor -- a process known as \emph{electromagnetic induction}. \subsubsection*{Faraday's law for a static circuit} Consider a closed curve $C$ that is the boundary of a time-independent open surface $S$. Integrate (M3) over $S$ and use Stoke's theorem: \[ \int_C \bf{E} \cdot \dd \bf{x} = -\int_S \pfrac{\bf{B}}{t} \cdot \dd \bf{S} = -\dfrac{}{t} \int_S \bf{B} \cdot \dd \bf{S} \] This is \emph{Faraday's law of induction} for a static circuit: \[ \boxed{\mathcal{E} = -\dfrac{\mathcal{F}}{t}} \] where \[ \boxed{\mathcal{E} = \int_C \bf{E} \cdot \dd \bf{x}} \] is the \emph{electromotive force} (emf) around $C$ and \[ \boxed{\mathcal{F} = \int_S \bf{B} \cdot \dd \bf{S}} \] is the \emph{magnetic flux} through $S$. \myskip Since $\nabla \cdot \bf{B} = 0$, the flux $\mathcal{F}$ is the same for any $S$ such that $\partial S = C$, so it can be regarded as the magnetic flux through $C$. \myskip Using $\bf{B} = \nabla \times \bf{A}$ and Stoke's theorem, we can write \[ \int_C \bf{A} \cdot \dd \bf{x} ,\] which is invariant under a gauge transformation $\bf{A}' = \bf{A} + \nabla \chi$. \myskip The emf is not actuallly a force. It is the line integral of the Lorentz force on a particle of unit charge confined to $C$: \[ \mathcal{E} = \frac{1}{q} \int_C \bf{F} \cdot \dd \bf{x} = \int_C (\bf{E} + \dot{\bf{x}} \times \bf{B}) \cdot \dd \bf{x} = \int_C \bf{E} \cdot \dd \bf{x} ,\] since $\dot{\bf{x}}$ is tangent to $C$ for a particle confined to a $t$-independent curve $C$. \myskip We will see later that if $C$ coincides with a thin wire of resistance $R$, then the current induced in the wire is $I = \mathcal{E} / R$. \myskip There are several ways in which the magnetic flux through $C$ could change in time: \begin{itemize} \item A magnet is moved near $C$. \item A current-carrying circuit is moved near $C$. \item The current in a nearby circuit is changed. \end{itemize} All these will induce an emg around $C$ and cause a current to flow. \subsubsection*{Faraday's law for a moving circuit} Now let $C(t)$ be a \emph{time-dependent} closed curve that is the boundary of an open surface $S(t)$. How does the magnetic flux through $S$, \[ \mathcal{F} = \int_S \bf{B} \cdot \dd \bf{S} \] change in time? We have \begin{align*} \mathcal{F}(t + \delta t) - \mathcal{F}(t) &= \int_{S(t + \delta t)} \bf{B}(\bf{x}, t + \delta t) \cdot \dd \bf{S} - \int_{S(t)} \bf{B}(\bf{x}, t) \cdot \dd \bf{S} \\ &= \int_{S(t + \delta t)} \left( \bf{B}(\bf{x}, t) + \pfrac{\bf{B}}{t} \delta t + O(\delta t^2) \right) \cdot \dd \bf{S} - \int_{S(t)} \bf{B}(\bf{x}, t) \cdot \dd \bf{S} \\ &= \int_{S(t + \delta t) - S(t)} \bf{B}(\bf{x}, t) \cdot \dd \bf{S} + \int_{S(t)} \pfrac{\bf{B}}{t} \cdot \dd \bf{S} \delta t + O(\delta t^2) \end{align*} Let $\partial V$ be the volume swept out by $S(t)$ in the time interval $\delta t$. Its boundary is the closed surface $S(t + \delta t) - S(t) + \Sigma$, where $\Sigma$ is the surface swept out by $C(t)$ in time $\delta t$. \begin{center} \includegraphics[width=0.6\linewidth] {images/a66d2ec2ac4b11ed.png} \end{center} By (M2) and the divergence theorem, \begin{align*} 0 &= \int_{\partial V} (\nabla \cdot \bf{B}) \dd V \\ &= \int_{S(t + \delta t) - S(t)} \bf{B} \cdot \dd \bf{S} + \int_\Sigma \bf{B} \cdot \dd \bf{S} \end{align*} To evaluate the last term, parametrise $C$ as $\bf{x} = \bf{x}(\lambda, t)$, where $\lambda$ is a parameter around $C$. An element of $C$ is \[ \dd \bf{x} = \pfrac{\bf{x}}{\lambda} \dd \lambda \] and has velocity $\bf{v} = \pfrac{\bf{x}}{t}$. In time $\delta t$ it sweeps out the vector area element \[ \dd \bf{S} = \dd \bf{x} \times (\bf{v} \delta t) \] (points out of $\delta V$, as required). Thus \begin{align*} \int_\Sigma \bf{B} \cdot \dd \bf{S} &= \int_C \bf{B} \cdot (\dd \bf{x} \times \bf{v}) \delta t + O(\delta t^2) \\ &= \int_C (\bf{v} \times \bf{B}) \cdot \dd \bf{x} \delta t + O(\delta t^2) \end{align*} We then have \begin{align*} \mathcal{F}(t + \delta t) - \mathcal{F}(t) &= - \int_C (\bf{v} \times \bf{B}) \cdot \dd \bf{x} \delta t + \int_S \pfrac{\bf{B}}{t} \cdot \dd \bf{S} \delta t + O(\delta t^2) \end{align*} from which \begin{align*} \dfrac{\mathcal{F}}{t} &= -\int_C (\bf{v} \times \bf{B}) \cdot \dd \bf{x} + \int_S \pfrac{\bf{B}}{t} \cdot \dd \bf{S} \\ &= -\int_C (\bf{v} \times \bf{V}) \cdot \dd \bf{x} - \int_S (\nabla \times \bf{E}) \cdot \dd \bf{S} \\ &= -\int_C (\bf{e} + \bf{v} \times \bf{B}) \cdot \dd \bf{x} \end{align*} We recover Faraday's law, \[ \mathcal{E} = -\dfrac{\mathcal{F}}{t} ,\] with the redefined emf \[ \mathcal{E} = \int_C (\bf{E} + \bf{v} \times \bf{B}) \cdot \dd \bf{x} \] This $\mathcal{E}$ is again the line integral adound $C$ of the Lorentz force on particle of unit charge confined to $C$ (for which the perpendicular components of $\dot{\bf{x}}$ must agree with those of the curve velocity $\bf{v}$).