% vim: tw=50 % 07/02/2023 09AM \myskip TO find the magnetic field, derive $\bf{b} = \nabla \times \bf{A}$ from (1): \[ \boxed{\bf{B}(\bf{x}) = \frac{\mu_0}{4\pi} \int \frac{\bf{J}(\bf{x}') \times (\bf{x} - \bf{x}')}{|\bf{x} - \bf{x}'|^3} \dd^3 \bf{x}'} \tag{2} \] This is the \emph{Biot-Savat law}, giving the magnetic field generated by a stationary current distribution. \myskip A special case is when the current is restricted to a thin wire in the form of a curve $C$. Then the current element $\bf{J} \dd^3 \bf{x}$ can be replaced by $I \dd \bf{x}$ ($I$ is the current in the wire) ($\dd \bf{x}$ is the vector line element parallel to wire). Charge conservation means that $I = \text{const}$ along the wire. The result is \[ \boxed{\bf{B}(\bf{x}) = \frac{\mu_0 I}{4\pi} \int_C \frac{\dd \bf{x}' \times (\bf{x} - \bf{x}')}{|\bf{x} - \bf{x}'|^3}} \tag{3} \] The thin-wire current density can be represented as \[ \bf{J}(\bf{x}) = I \int_C \delta(\bf{x} - \bf{x}') \dd \bf{x}' \] ($I = \text{const}$), which gives (3) when substituted in (2) (exercise). \myskip Charge conservation takes the form \begin{align*} \nabla \cdot \bf{J}(\bf{x}) &= I \int_C \nabla \delta(\bf{x} - \bf{x}') \cdot \dd \bf{x}' \\ &= -I \int_C \nabla' \delta(\bf{x} - \bf{x}') \cdot \dd \bf{x}' \\ &= -I [\delta(\bf{x} - \bf{x}_2) - \delta(\bf{x} - \bf{x}_1)] \end{align*} where $C$ runs from $\bf{x}_1$ to $\bf{x}_2$. If $C$ is closed then $\bf{x}_2 = \bf{x}_1$, and $\nabla \cdot \bf{J} = 0$ as expected. If $C$ is infinite (for example long straight wire) then $\nabla \cdot \bf{J} = 0$ for any finite $\bf{x}$. \myskip Check that (3) gives the same result as Amp\`ere's law for a long straight thin wire (along the $z$ axis of cylindrical polars). \begin{center} \includegraphics[width=0.3\linewidth] {images/d1411ae4a6d011ed.png} \end{center} We have $\bf{x} = r\bf{e}_r$ (taking $z = 0$ WLOG) and $\bf{x}' = z' \bf{e}_z$, so \[ \bf{x} - \bf{x}' = r\bf{e}_r - z' \bf{e}_z \qquad \text{and} \qquad \dd \bf{x}' = \dd z' \bf{e}_z \] giving \begin{align*} \bf{B}(\bf{x}) &= \frac{\mu_0 I}{4\pi} \bf{e}_\phi \int_{-\infty}^\infty \frac{r\dd z'}{(r^2 + z^2)^{3/2}} \\ &= \frac{\mu_0 I}{4\pi} \bf{e}_\phi \left[ \frac{z'}{r(r^2 + z^2)^{1/2}} \right]_{-\infty}^\infty \\ &= \frac{\mu_0 I}{2\pi r} \bf{e}_\phi \end{align*} as expected. \subsection{Magnetic dipoles} For a general current distribution $\bf{J}(\bf{x})$ confined to a ball $\{V : |\bf{x}| < R\}$, \[ \bf{A}(\bf{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\bf{J}(\bf{x}')}{|\bf{x} - \bf{x}'|} \dd^3 \bf{x}' \] The external field for $|\bf{x}| = r > R$ can be evaluated by expanding \[ \frac{1}{|\bf{x} - \bf{x}'|} = \frac{1}{r} \left( 1 + \frac{\bf{x}' \cdot \bf{x}}{r^2} + O \left( \frac{R^2}{r^2} \right) \right) ,\] leading to a multipole expansion as before. We need to calculate the moments of the current distribution. Since $\bf{J} = \bf{0}$ on $\partial V$ and $\nabla \cdot \bf{J} = 0$, the divergence theorem implies \begin{align*} 0 &= \int_{\partial V} x_i J_j \dd S_j \\ &= \int_V \partial_j (x_i J_j) \dd^3 \bf{x} \\ &= \int_V (\delta_{ij} + x_i \partial_j J_j) \dd^3 \bf{x} \\ &= \int_V J_i \dd^3 \bf{x} \end{align*} so the moment vanishes. Similarly, \begin{align*} 0 &= \int_{\partial V} x_i x_j J_k \dd S_k \\ &= \int_V \partial_k(x_i x_j J_k) \dd^3 \bf{x} \\ &= \int_V (\delta_{ik} x_j J_k + x_i \delta_{jk} J_k + x_i x_j \partial_k J_k \dd^3 \bf{x} \\ &= \int_V x_j J_i \dd^3 \bf{x} + \int_V x_i J_j \dd^3 \bf{x} \end{align*} so the first moment is an antisymetric matrix. \myskip The \emph{magnetic dipole moment} \[ \boxed{\bf{m} = \half \int_V \bf{x} \times BF{J} \dd^3 \bf{x}} \] \[ m_i = \half \eps_{ijk} \int_V x_j J_k \dd^3 \bf{x} \] is a vector related to the antisymmetric matrix by \[ \int_V x_i J_j \dd^3 \bf{x} = \eps_{ijk} m_k \] Returning to the multipole expansion for $\bf{A}$, we have \begin{align*} A_i(\bf{x}) &= \frac{\mu_0}{4\pi |\bf{x}|} \left( \int_V J_i(\bf{x}') \dd^3 \bf{x}' + \frac{x_j}{|\bf{x}|^3} \int x_j' J_i(\bf{x}') \dd^3 \bf{x}' + \cdots \right) \\ &= \frac{\mu_0}{4\pi |\bf{x}|} \left( 0 + \frac{x_j \eps_{jik} m_k}{|\bf{x}|^2} + \cdots \right) \end{align*} The leading approximateion is therefore \[ \bf{A}(\bf{x}) \approx \bf{A}_{\text{dipole}} (\bf{x}) = \frac{\mu_0}{4\pi} \frac{\bf{m} \times \bf{x}}{|\bf{x}|^3} \] which is the vector potential due to a (point) dipole $\bf{m}$ at the origin. The corresponding magnetic field is (exercise) \[ \bf{B}_{\text{dipole}} = \nabla \times \bf{A}_{\text{dipole}} = \frac{\mu_0}{4\pi} \left( \frac{3(\bf{m} \cdot \bf{x}) \bf{x} - |\bf{x}|^2 \bf{m}}{|\bf{x}|^5} \right) \] A point dipole $\bf{m}$ at the origin corresponds to the current density and vector potential \[ \bf{J} = \nabla \times (\bf{m} \delta(\bf{x})), \qquad \bf{A} = \nabla \times \left( \frac{\mu_0 \bf{m}}{4\pi |\bf{x}|} \right) \] The magnetic dipole moment of a thin wire carrying current $I$ around a closed curve $C$ is \[ \bf{m} = \frac{I}{2} \int_C \bf{x} \times \dd \bf{x} \] To evaluate this, let $\bf{a}$ be any constant vector. Then, by Stoke's Theorem, \begin{align*} \bf{a} \cdot \bf{m} &= \frac{I}{2} \int_C \bf{a} \cdot (\bf{x} \times \dd \bf{x}) \\ &= \frac{I}{2} \int_C (\bf{a} \times \bf{x}) \cdot \dd \bf{x} \\ &= \frac{I}{2} \int_S (\nabla \times (\bf{x} \times \bf{x})) \cdot \dd \bf{S} \\ &= I \int_S \bf{a} \cdot \dd \bf{S} \end{align*} where $S$ is an open surface with boundary $C$ and we use \begin{align*} \nabla \times (\bf{a} \times \bf{x}) &= \bf{x} \cdot \nabla \bf{a} - \bf{a} \cdot \nabla \bf{x} + (\nabla \cdot \bf{x}) \bf{a} - (\nabla \cdot \bf{a})\bf{x} \\ &= \bf{0} - \bf{a} + 3\bf{a} - \bf{0} \\ &= 2\bf{a} \end{align*} Since $\bf{a}$ is arbitrary, we have \[ \boxed{\bf{m} = I\bf{S}} \] where $\bf{S} = \int_S \dd \bf{S}$ is the vector area of $S$ (which depends only on $C$, not on the choice of $S$). Simplest example: circular loop, for example $x^2 + y^2 = a^2$, $z = 0$, for which $\bf{m} = I\pi a^2 \bf{e}_z$. On the $z$-axis, the dipole approximately gives \[ B_z = \frac{\mu_0}{4\pi} \left( \frac{3m_z z^2 - z^2 m_z}{|z|^5} \right) = \frac{\mu_0 Ia^2}{2|z|^3} \] while the exact solution (Example Sheet 2, Question 3) is \[ B_z = \frac{\mu_0 Ia^2}{2(z^2 + a^2)^{3/2}} \] \begin{center} \includegraphics[width=0.2\linewidth] {images/d33a495ea6cd11ed.png} \end{center}