% vim: tw=50 % 02/02/2023 09AM \newpage \section{Magnetostatics} \emph{Magnetostatics} is the study of the magnetic field generated by a stationary current distribution. \begin{align*} \nabla \times \bf{B} &= \mu_0 \bf{J} \tag{M4'} \\ \nabla \cdot \bf{B} &= 0 \tag{M2} \end{align*} (M4') $\implies \nabla \cdot \bf{J} = 0$, the time-independent equation of charge conservation. \subsection{Amp\`ere's Law} Consider a closed curve $C$ that is the boundary of an open surface $S$. Integrate (M4') over $S$ and apply Stoke's theorem to obtain Amp\`ere's law: \[ \boxed{\int_C \bf{B} \cdot \dd \bf{x} = \mu_0 I} \] where $I = \int_S \bf{J} \cdot \dd \bf{S}$ is the total current through $S$. \begin{center} \includegraphics[width=0.2\linewidth] {images/36fb71a4a2da11ed.png} \end{center} Since $\nabla \cdot \bf{J} = 0$, the same current $I$ flows through \emph{any} open surface $S$ such that $\partial S = C$. Amp\`ere's law is the integral version of (M4') and is valid provided that $\pfrac{\bf{E}}{t} = \bf{0}$. \[ \text{circulation of magnetic field around loop} \propto \text{total current through loop} \] In special situations we can use Amp\`ere's law together with symmetry to deduce $\bf{B}$ from $\bf{J}$. A cylindrically symmetric situation could involve \begin{itemize} \item An axial current distribution \[ J_z(r) \bf{e}_z \qquad (r, \phi, z) \] \item an azimuthal current distribution \[ J_\phi(r) \bf{e}_\phi \] \end{itemize} or a combination. ($\nabla \cdot \bf{J} = 0$ excludes a radial current). \myskip The same applies to $\bf{B}$. The curl in (M4') implies: \begin{itemize} \item $B_\phi$ is linearly related to $J_z$ \item $B_z$ is linearly related to $J_\phi$ \end{itemize} \subsubsection*{Long straight wire} A cylindrical wire of radius $R$ carries a total current $I$ parallel to its axis. To find $B_\phi(r)$ generated by $J_z(r)$, apply Amp\`ere's law to a circle $C$ of radius $r$ ($S$ is a disc). \begin{center} \includegraphics[width=0.6\linewidth] {images/17ad986ca2db11ed.png} \end{center} If $r > R$ then \begin{align*} \int_C \bf{B} \cdot \dd \bf{x} &= B_\phi(r) \int_C \bf{e}_\phi \cdot \dd \bf{x} \\ &= B_\phi(r) \int_C \dd l \\ &= B_\phi(r) 2\pi r \\ &= \mu_0 I \end{align*} Thus, outside the wire, \[ \bf{B} = \frac{\mu_0 I}{2\pi r} \bf{e}_\phi \] \subsection{Solenoid} A thin wire is coiled around a cylindrical tube of radius $R$. An \emph{ideal solenoid} is infinitely long and tightly wound, having cylindrical symmetry and purely azimuthal current. \myskip The wire carries current $I$ and has $N$ turns per unit length of the tube. \begin{center} \includegraphics[width=0.6\linewidth] {images/386a88a6a2dd11ed.png} \end{center} To find $B_z(r)$ generated by $J_\phi(r)$, apply Amp\`ere's law to a rectangular loop $C$. Taking $a < b < R$ or $R < a < b$ gives \[ L(B_z(a) - B_z(b)) = 0 \] Taking $a < R < b$ gives \[ L(B_z(a) - B_z(b)) = \mu_0 NLI \] Assuming that $B_z(r) \to 0$ as $r \to \infty$, we deduce that \[ B_z(r) \begin{cases} \mu_0 NLI & r < R \\ 0 & r > R \end{cases} \] \subsubsection*{Surface current} The ideal solenoid is an example of a \emph{surface current}, here is of the form \[ J_\phi(r) = K_\phi \delta(r - R) \] with $K_\phi = NI$. Generally, a \emph{surface current density} $\bf{K}$ produces a discontinuity in the tangential magnetic field: \[ [\bf{n} \times \bf{B}] = \mu_0 \bf{K} \] \newpage \noindent Follows from Amp\`ere's law applied to \begin{center} \includegraphics[width=0.6\linewidth] {images/940cb65ca2dd11ed.png} \end{center} (M2) implies normal component is continuous \[ [\bf{n} \cdot \bf{B}] = 0 .\] \subsection{The magnetic vector potential} (M2) implies that $\bf{B}$ can be written in terms of a \emph{magnetic vector potential} $\bf{A}(\bf{X})$: \[ \boxed{\bf{B} = \nabla \times \bf{A}} \] $\bf{A}$ is not unique. If we make a \emph{gauge transformation}, replacing $\bf{A}$ with \[ \bf{A}' = \bf{A} + \nabla \chi \] where $\chi(\bf{x})$ is an arbitrary scalar field, then $\bf{B}$ is unchanged: \[ \bf{B} = \nabla \times \bf{A} = \nabla \times \bf{A}' .\] A convenient gauge for many calculations is the \emph{Coulomb gauge} in which $\nabla \cdot \bf{A} = 0$. We can assume this condition without loss of generality. If $\nabla \cdot \bf{A} \neq 0$ then we can make a gauge transformation such that $\nabla \cdot \bf{A}' = 0$ by choosing $\chi$ to be the solution of Poisson's equation \[ -\nabla^2 \chi = \nabla \cdot \bf{A} \] In terms of $\bf{A}$, (M4') becomes \[ \nabla \times (\nabla \times \bf{A}) = \mu_0 \bf{J} \] Using the identity \[ \nabla \times (\nabla \times \bf{A}) = \nabla(\nabla \cdot \bf{A}) - \nabla^2 \bf{A} \] and assuming Coulomb gauge ($\nabla \cdot \bf{A} = 0$) we obtain Poisson's equation in vector form: \[ \boxed{-\nabla^2 \bf{A} = \mu_0 \bf{J}} \] (compare with $-\nabla^2 \Phi = \frac{\rho}{\eps_0}$) \subsection{The Biot-Savat Law} The solution of Poisson's equation is (integrating over al space, assuming decay at infinity) \[ \boxed{\bf{A}(\bf{x}) = \frac{\mu_0}{4\pi} \int \frac{\bf{J}(\bf{x}')}{|\bf{x} - \bf{x}'|} \dd^3 \bf{x}'} \] We should check that the solution satisfies the assumed Coulomb gauge condition: \begin{align*} \nabla \cdot \bf{A}(\bf{x}) &= \frac{\mu_0}{4\pi} \int_V \nabla \cdot \left( \frac{\bf{J}(\bf{x}')}{|\bf{x} - \bf{x}'|} \right) \dd^3 \bf{x}' \\ &= \frac{\mu_0}{4\pi} \int_V \bf{J}(\bf{x}') \cdot \nabla \left( \frac{1}{|\bf{x} - \bf{x}'|} \right) \dd^3 \bf{x}' \\ &= -\frac{\mu_0}{4\pi} \int_V \bf{J}(\bf{x}') \cdot \nabla' \left( \frac{1}{|\bf{x} - \bf{x}'|} \right) \dd^3 \bf{x}' \\ &= -\frac{\mu_0}{4\pi} \int_V \nabla' \cdot \left( \frac{\bf{J}(\bf{x}')}{|\bf{x} - \bf{x}'|} \right) \dd^3 \bf{x}' &&\text{using $\nabla \cdot \bf{J} = 0$} \\ &= -\frac{\mu_0}{4\pi} \int_{\partial V} \frac{\bf{J}(\bf{x}') \cdot \dd \bf{S}'}{|\bf{x} - \bf{x}'|} \end{align*} Thus $\nabla \cdot \bf{A} = 0$, as assumed, if the current is contained in some finite volume and we take $V$ to be at least as large, or if $\bf{J}$ decays sufficiently as $|\bf{x}| \to \infty$.