% vim: tw=50 % 23/02/2023 09AM \myskip Now suppose $\bf{E}_0$ is complex and of the form \[ \bf{E}_0 = \bf{a} - i\bf{b} \] where $\bf{a}$ and $\bf{b}$ are linearly independent real vectors in the plane perpendicular to $\bf{k}$. Then the direction of \[ \bf{E} = \bf{a} \cos(\bf{k} \cdot \bf{x} - \omega t) + \bf{b} \sin(\bf{k} \cdot \bf{x} - \omega t) \] is not fixed but rotates in the plane perpendicular to $\bf{k}$. In general it traces out an ellipse and the wave is said to be \emph{elliptically polarized}. The special case of \emph{circular polarization} occurs when $|\bf{b}| = |\bf{a}|$. Then $\bf{E}$ traces out a circle. \myskip The polarization if \emph{right-handed} if $\bf{b} = \hat{\bf{k}} \times \bf{a}$ and \emph{left-handed} if $\bf{b} = -\hat{\bf{k}} \times \bf{a}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/80ac98ceb35a11ed.png} \end{center} Exercise: work out how $\bf{B}$ evolves. \subsubsection*{Reflection from a conductor} Suppose a perfect conductor occupies the half-space $x > 0$. An \emph{incident wave} approaching the surface $x = 0$ in the $+x$ direction has the form \[ \bf{E}_{\text{inc}} = \Re \left( E_0 e^{i(kx- \omega t)} \bf{e}_y \right) \] where we take $k > 0$, $\omega = ck > 0$ and $E_0 \in \RR$. \myskip Inside the conductor, we have $\bf{E} = \bf{0}$. Since the tangential components of $\bf{E}$ are continuous at the surface ($[\bf{n} \times \bf{E}] = \bf{0}$) we require $E_y = 0$ at $x = 0$. This can be satisfied by adding a \emph{reflected wave} \[ \bf{E}_{\text{ref}} = \Re \left( -E_0 e^{i(-kx-\omega t)} \bf{e}_y \right) \] propagating in the $-x$ direction. \myskip The combined solution is \begin{align*} \bf{E} &= \bf{E}_{\text{inc}} + \bf{E}_{\text{ref}} \\ &= \Re \left( 2iE_0 \sin(kx) e^{-i\omega t} \bf{e}_y \right) \\ &= 2E_0 \sin(kx) \sin(\omega t) \bf{e}_y \end{align*} which is a \emph{standing wave}. The corresponding field is \begin{align*} \bf{B} &= \Re \left( \frac{E_0}{c} e^{i(kx - \omega t)} \bf{e}_z \right) + \Re \left( \frac{E_0}{c} e^{i(-kx -\omega t)} \bf{e}_z \right) \\ &= \Re \left( \frac{2E_0}{c} \cos(kx) e^{-i\omega t} \bf{e}_z \right) \\ &= \frac{2E_0}{c} \cos(kx) \cos(\omega t) \bf{e}_z \end{align*} Inside the conductor, $\bf{B} = \bf{0}$ (since $\pfrac{\bf{B}}{t} = -\nabla \times \bf{E}$ and $\bf{B}$ is harmonic in time). So there is a tangential discontinuity in $\bf{B}$ and a surface current \[ \bf{K} = \frac{1}{\mu_0}[\bf{n} \times \bf{B}] = \frac{2E_0}{\mu_0 c} \cos(\omega t) \bf{e}_y \] \begin{center} \includegraphics[width=0.6\linewidth] {images/852bc98ab35d11ed.png} \end{center} \subsection{Electromagnetic Energy} In electrostatics, we saw that the energy per unit volume in $\bf{E}$ is $\half \eps_0 |\bf{E}|^2$. \myskip In magnetostatics, we saw that the energy per unit volume in $\bf{B}$ is $\frac{1}{2\mu_0} |\bf{B}|^2$. \myskip ow derive a general conservation law from Maxwell's equations. Consider the rate of change of the electric and magnetic energy per unit volume: \begin{align*} \pfrac{}{t} \left( \half \eps_0 |\bf{E}|^2 + \frac{1}{2\mu_0} |\bf{B}|^2 \right) &= \bf{E} \cdot \left( \eps_0 \pfrac{\bf{E}}{t} \right) + \bf{B} \cdot \left( \frac{1}{\mu_0} \pfrac{\bf{B}}{t} \right) \\ &= \bf{E} \cdot \left( \frac{1}{\mu_0} \nabla \times \bf{B} - \bf{J} \right) + \bf{B} \cdot \left( -\frac{1}{\mu_0} \nabla \times \bf{E} \right) \end{align*} An identity from vector calculus: \[ \nabla \cdot (\bf{E} \times \bf{B}) = \bf{B} \cdot (\nabla \times \bf{E}) - \bf{E} \cdot (\nabla \times \bf{B}) \] Divide by $\mu_0$ and add to previous equation: \[ \pfrac{}{t} \left( \half \eps_0 |\bf{E}|^2 + \frac{1}{2\mu_0} |\bf{B}|^2 \right) + \nabla \cdots \left( \frac{\bf{E} \times \bf{B}}{\mu_0} \right) = -\bf{E} \cdot \bf{J} \] This is the energy equation for the EM field. Write it as \[ \boxed{\pfrac{w}{t} + \nabla \cdot S = -\bf{E} \cdot \bf{J}} \tag{1} \] where \[ \boxed{w = \half \eps_0 |\bf{E}|^2 + \frac{1}{2\mu_0} |\bf{B}|^2} \] is the \emph{energy density} (energy / unit volume) and \[ \boxed{\bf{S} = \frac{\bf{E} \times \bf{B}}{\mu_0}} \] is the \emph{energy flux density} (energy flux / area). $\bf{S}$ is known as the \emph{Poynting vector}. In the absence of currents, equation (1) becomes \[ \pfrac{w}{t} + \nabla \cdot \bf{S} = 0 \] and expresses the conservation of EM energy. Integrate over a time-independent volume $V$ with $\partial V = S$ and use the divergence theorem: \[ \dfrac{}{t} \int_V w \dd V + \int_S \bf{S} \cdot \dd \bf{S} = 0 \] (rate of change of energy in $V$ equals $-$ flux of energy through $S$). On the RHS of equation (1), $\bf{E} \cdot \bf{J}$ is the rate at which the EM field loses energy (per unit volume) by doin gwork on charged particles via the Lorentz force. Recall \begin{align*} \rho &= \sum_{i = 1}^N q_i \delta(\bf{x} - \bf{x}_i) \\ \bf{J} &= \sum_{i = 1}^N q_i \dot{\bf{x}}_i \delta(\bf{x} - \bf{x}_i) \\ \bf{F}_i &= q_i (\bf{E}(\bf{x}_i, t) + \dot{\bf{x}}_i \times \bf{B} (\bf{x}_i, t)) \end{align*} so the rate of working is \begin{align*} \sum_{i = 1}^N \bf{F}_i \cdot \dot{\bf{x}}_i &= \sum_{i = 1}^N \bf{E}(\bf{x}_i, t) \cdot (q_i \dot{\bf{x}}_i) \\ &= \int \bf{E} \cdot \bf{J} \dd V \end{align*} In a conductor, Ohm's law $\bf{J} = \sigma \bf{E}$ implies $\bf{E} \cdot \bf{J} = \frac{|\bf{J}|^2}{\sigma}$ which is positive definite, and is the rate of Joule heating / volume. (EM energy $\to$ heat) \subsubsection*{Energy density and flux for an EM wave} For \begin{align*} \bf{E} &= \Re(\bf{E}_0 e^{i(\bf{k} \cdot \bf{x} - \omega t)}) \\ \bf{B} &= \Re(\bf{B}_0 e^{i(\bf{k} \cdot \bf{x} - \omega t)}) \end{align*} then using the identity \[ \Re(A) \Re(B) = \Re \left( \frac{AB + A\ol{B}}{2} \right), \] we have \begin{align*} w &= \half \eps_0 |\bf{E}|^2 + \frac{1}{2\mu_0} |\bf{B}|^2 \\ &= \frac{1}{4}\eps_0 \Re ((\bf{E}_0 \cdot \bf{E}_0) e^{2i(\bf{k} \cdot \bf{x} - \omega t)} + |\bf{E}_0|^2) + \frac{1}{4\mu_0} \Re ((\bf{B}_0 \cdot \bf{B}_0) e^{2i(\bf{k} \cdot \bf{x} - \omega t)} + |\bf{B}_0|^2) \end{align*} The $e^{2i(\bf{k} \cdot \bf{x} - \omega t)}$ terms average to zero, leaving the average energy density \[ \langle w \rangle = \frac{1}{4} \eps_0 |\bf{E}_0|^2 + \frac{1}{4\mu_0} |\bf{B}_0|^2 \] Since $\bf{B}_0 = \frac{1}{c} \hat{\bf{k}} \times Bf{E}_0$ and $\hat{\bf{k}} \cdot \bf{E}_0 = 0$, the two contributions are equal and we have \[ \langle w \rangle = \half \eps_0 |\bf{E}_0|^2 .\] Similarly, the Poynting vector is \begin{align*} \bf{S} &= \frac{\bf{E} \times \bf{B}}{\mu_0} \\ &= \frac{1}{2\mu_0} \Re \left( (\bf{E}_0 \times \bf{B}_0) e^{2i(\bf{k} \cdot \bf{x} - \omega t)} + (\bf{E}_0 \times \ol{\bf{B}}_0) \right) \end{align*} Average flux density \[ \langle \bf{S} \rangle = \frac{|\bf{E}_0|^2}{2\mu_0 c} \hat{\bf{k}} = \half \eps_0 |\bf{E}_0|^2 c \hat{\bf{k}} = \langle w \rangle c \hat{\bf{k}} \] Implies that the EM wave transports energy at speed $c$ in the direction $\hat{\bf{k}}$.