% vim: tw=50 % 21/02/2023 09AM \subsection{Electromagnetic waves} \subsubsection*{The Wave Equation} Consider freely evolving electric and magnetic fields in a vaccuum, in the absence of charges and currents: \begin{align*} \nabla \cdot \bf{E} &= 0 \tag{M1} \\ \nabla \cdot \bf{B} &= 0 \tag{M2} \\ \nabla \times \bf{E} &= -\pfrac{\bf{B}}{t} \tag{M3} \\ \nabla \times \bf{B} &= \mu_0 \eps_0 \pfrac{\bf{E}}{t} \tag{M4} \end{align*} Eliminate $\bf{B}$ by taking $\pfrac{}{t}$ (M4) and substituting (M3): \begin{align*} \mu_0 \eps_0 \pfrac{\bf{E}}{t} &= \pfrac{}{t} (\nabla \times \bf{B}) \\ &= \nabla \times \pfrac{\bf{B}}{t} \\ &= -\nabla \times (\nabla \times \bf{E}) \\ &= \nabla^2 \bf{E} \end{align*} where we use the identity \[ \nabla \times (\nabla \times \bf{E}) = \nabla(\nabla \cdot \bf{E}) - \nabla^2 \bf{E} \] and (M1). \myskip Alternatively, eliminate $\bf{E}$ by taking $\pfrac{}{t}$ (M3) and substituting (M4): \begin{align*} \pfrac[2]{\bf{B}}{t} &= -\pfrac{}{t} (\nabla \times \bf{E}) \\ &= -\nabla \times \pfrac{\bf{E}}{t} \\ &= -\frac{1}{\mu_0 \eps_0} \nabla \times (\nabla \times \bf{B}) \\ &= \frac{1}{\mu_0 \eps_0} \nabla^2 \bf{B} \end{align*} using the same identity and (M2). So each (Cartesian) component of $\bf{E}$ and $\bf{B}$ satisfies the \emph{wave equation} \[ \boxed{\pfrac[2]{u}{t} = c^2 \nabla^2 u} \] with wave speed \[ \boxed{c = \frac{1}{\sqrt{\mu_0 \eps_0}}} \] which is the \emph{speed of light} (in a vaccuum), \[ c = 2.997923458 \times 10^8 \mathsf{ms^{-1}} .\] This is of course because light is an \emph{electromagnetic wave} involving oscillations of $\bf{E}$ and $\bf{B}$. Depending on the wavelength, EM waves can be radio waves, microwaves, infrared, ultraviolet, X-rays, gamma rays, etc. \subsubsection*{Plane Electromagnetic Waves} Consider a \emph{plane wave} in which $\bf{E}$ and $\bf{B}$ depend only on $(x, t)$ and not on $(y, z)$. A simple example is \[ \bf{E} = E(x, t) \bf{e}_y \] where $E(x, t)$ satisfies the 1D wave equation \[ \pfrac[2]{E}{t} = c^2 \pfrac[2]{E}{t} \] The general solution \[ E(x, t) = f(x - ct) + g(x + ct) \] is the sum of a wave travelling without change of form in the $+x$ direction and another travelling in the $-x$ direction. What is the corresponding $\bf{B}$? We have \begin{align*} \pfrac{\bf{B}}{t} &= -\nabla \times \bf{E} \\ &= -\pfrac{E}{x} \bf{e}_z \\ &= (-f'(x - ct) - g'(x + ct))\bf{e}_z \end{align*} and so \[ \bf{B} = B(x, t) \bf{e}_z \] with \[ B(x, t) = \frac{1}{c} (f(x - ct) - g(x + ct)) \] This also satisfies $\nabla \times \bf{B} = \mu_0 \eps_0 \pfrac{\bf{E}}{t}$ (exercise). \myskip Of particular importance is a \emph{monochromatic wave} of a single \emph{angular frequency} $\omega$, for example \[ E = E_0 \cos(kx - \omega t), \qquad B = \frac{E_0}{c} \ cos(kx - \omega t) \] where $E_0$ is a constant amplitude and $h = \frac{\omega}{c}$ is the \emph{wavenumber}, related to the wavelength $\lambda$ by $k = \frac{2\pi}{\lambda}$. (The frequency is $\nu = \frac{\omega}{2\pi}$ and the period is $\frac{1}{\nu} = \frac{2\pi}{\omega}$.) \myskip Notes: \begin{itemize} \item The (angular) frequency and wavenumber are related by the \emph{dispersion relation} \[ \omega^2 = c^2 k^2, \qquad \text{i.e. } \omega = \pm ck \] \item The oscillations and $\bf{E}$ and $\bf{B}$ are in phase but in orthogonal directions. \item The waves are \emph{transverse}: the oscillating fields are orthogonal to the direction in which the wave varies (and propagates). \end{itemize} \begin{center} \includegraphics[width=0.6\linewidth] {images/7f66e1f2b1cc11ed.png} \end{center} Because Maxwell's equations are linear, EM waves of different amplitudes, frequencies and directions can be \emph{superposed}. (Light rays can pass through each other!) \subsubsection*{Polarization} A more general approach to plane EM waves is to seek solutions of the form \begin{align*} \bf{E} &= \Re(\bf{E}_0 e^{i(\bf{k} \cdot \bf{x} - \omega t)}) \\ \bf{B} &= \Re(\bf{B}_0 e^{i(\bf{k} \cdot \bf{x} - \omega t)}) \end{align*} where $\bf{E}_0$, $\bf{B}_0$ are constant (complex) vector amplitudes, $\bf{k}$ is the (real, constant) \emph{wavevector} and $\omega$ is the (real, constant) angular frequency. The wavenumer is $k = |\bf{k}|$. \myskip The wave equation is satisfied by $\bf{E}$ and $\bf{B}$ if $\omega$ and $k$ satisfy the dispersion relation \[ \boxed{\omega^2 = c^2 k^2} \] The individual Maxwell equations reduce to algebraic conditions: \begin{align*} \nabla \cdot \bf{E} &= 0 &&\implies& \bf{k} \cdot \bf{E}_0 &= 0 \\ \nabla \cdot \bf{B} &= 0 &&\implies& \bf{k} \cdot \bf{B}_0 &= 0 \\ \nabla \times \bf{E} &= -\pfrac{\bf{B}}{t} &&\implies& \bf{k} \times \bf{E}_0 &= \omega \bf{B}_0 \\ \nabla \times \bf{B} &= \mu_0 \eps_0 \pfrac{\bf{E}}{t} &&\implies& \bf{k} \times \bf{B}_0 &= -\frac{\omega}{c^2} \bf{E}_0 \end{align*} The fourth equation is redundant because the first and third, together with the dispersion relation, imply \[ \bf{k} \times \bf{B}_0 = \frac{1}{\omega} \bf{k} \times (\bf{k} \times \bf{E}_0) = -\frac{k^2}{\omega^2} \bf{E}_0 = -\frac{\omega}{c^2} \bf{E}_0 \] Suppose $\bf{E}_0$ is real. Then $\bf{B}_0$ is also real and the vectors $\bf{k}$, $\bf{E}_0$ and $\bf{B}_0$ form an orthogonal triad. So $\bf{E}$ and $\bf{B}$ oscillated in fixed directions, which are perpendicular to each other and to the direction of propagation. \myskip This is similar to the 1D wave considered previously and corresponds to a \emph{linearly polarized wave}.