% vim: tw=50 % 13/02/2023 10AM \begin{flashcard}[global-maximum-principle] \begin{corollary*}[Global Maximum principle] \cloze{ Let $\mathcal{U} \subseteq \CC$ be a bounded domain, and let $\ol{\mathcal{U}}$ be its closure (the closure of $\mathcal{U}$ is the intersection of all closed supersets of $\mathcal{U}$). If $f : \ol{\mathcal{U}} \to \CC$ is continuous and $f$ is holomorphic on $\mathcal{U}$, then $|f|$ attains its maximum on $\ol{\mathcal{U}} \setminus \mathcal{U}$. } \end{corollary*} \begin{proof} \cloze{ $\mathcal{U}$ bounded implies $\ol{\mathcal{U}}$ is bounded, hence $|f|$ has a maximum on $\mathcal{U}$, call it $M$. If $|f(z_0)| = M$ for $z_0 \in \mathcal{U}$, then local maximum principle implies $f \equiv f(z_0)$ on any disk $D(z_1, r) \subseteq \mathcal{U}$. By identity theorem, $f \equiv f(z_0)$ on $D(z_0, r)$ hence $f \equiv f(z_0)$ on $\mathcal{U}$, hence $f \equiv f(z_0)$ on $\ol{\mathcal{U}}$. So $M$ is achieved by $|f|$ on $\ol{\mathcal{U}} \setminus \mathcal{U}$. } \end{proof} \end{flashcard} \subsubsection*{Generalise Cauchy's Integral Formula} Goal: generalise CIF by allowing more general closed curves for the integration. We have an issue: \begin{center} \includegraphics[width=0.6\linewidth] {images/bed54580ab8811ed.png} \end{center} Then \[ \int_{\gamma_2} f = 2 \int_{\gamma_1} f \] We need to deal with the issue of ``winding around'' a point more than once; however, once we correctly quantify this notion, we'll see it is the \emph{only} issue to generalising CIF. \myskip Na\"ive hope: ``counting'' crossings of a slit in the plane: \begin{center} \includegraphics[width=0.3\linewidth] {images/1a56896eab8911ed.png} \end{center} can happen infinitely often! \begin{flashcard}[existence-of-r-theta-decomposition] \begin{theorem*} Let $\gamma : [a, b] \to \CC \setminus \{w\}$ be a continuous curve. Then there exists continuous function $\theta : [a, b] \to \RR$ with \[ \gamma(t) = w + r(t)e^{i\theta t} \] with $r(t) = |\gamma(t) - w|$. \end{theorem*} \begin{proof} \cloze{ WLOG translate to assume $w = 0$. Since $\arg \gamma(t) = \arg \frac{\gamma(t)}{|\gamma(t)|}$, we can replace $\gamma$ with $\frac{\gamma}{|\gamma|}$ to assume $|\gamma(t)| = 1$ for all $t \in [a, b]$. \myskip Notice that if $\gamma \subseteq \CC \setminus \RR_{\le 0}$, then $t \mapsto \Arg(\gamma(t))$ gives a continuous choice of $\theta$. More generally, if $\gamma$ lies in any slit plane $\CC \setminus \left\{ z : \frac{z}{e^{-\alpha}} \in \RR_{\le 0} \right\}$, then $\theta(t) \defeq \alpha + \Arg \left( \frac{z}{e^{i\alpha}} \right)$ will do. \myskip Our strategy is to subdivide $\gamma$ so that its pieces lie in slit-planes, and so $\theta$ may be continuously defined on the pieces. \begin{center} \includegraphics[width=0.3\linewidth] {images/0d3a9f9eab8a11ed.png} \end{center} $\gamma$ is continuous on $[a, b]$, so uniform continuous, and $\exists \eps > 0$ such that $|s - t| < \eps \implies |\gamma(s) - \gamma(t)| < 2$. Subdividing $a = a_0 < a_2 < \cdots < a_{n - 1} < a_n = b$ with $a_{j + 1} - a_j < 2\eps$, then \[ \left| \gamma(t) - \gamma \left( \frac{a_{j + 1} - a_j}{2} \right) \right| < 2 \qquad \forall t \in [a_j, a_{j + 1}] \] So $\gamma([a_{j - 1}, a_j])$ lies in a slit plane, and we can define $\theta_j$ a continuous choice of argument for $\gamma |_{[a_{j - 1}, a_j]}$ for $j \in \{1, \ldots, n\}$. We have \[ \gamma(a_j) = e^{i\theta_j(a_i)} = e^{i\theta_{j + 1}(a_j)} \] for $j \in \{1, \ldots, n - 1\}$. So \[ \theta_{j + !}(a_j) = \theta_j(a_j) + 2\pi n_j \] for some $n _j \in \ZZ$. Modifying each $\theta_j$, $j \ge 2$, by a suitable integer multiple of $2\pi$ ensures the $\theta_j$ fit together to a continuous choice of $\theta$ on $[a, b]$. } \end{proof} \end{flashcard} \begin{remark*} $\theta$ is not unique, since $\theta(t) + 2\pi n$ is also valid for all $n \in \ZZ$. If $\theta_1, \theta_2$ are two functions as in the theorem, then $\theta_1 - \theta_2$ is continuous, takes values in (discrete) $2\pi \ZZ$, so constant. \end{remark*} \begin{flashcard}[winding-number] \begin{definition*}[Winding Number] \cloze{ Let $\gamma : [a, b] \to \CC$ be a closed curve, $w \not\in \gamma$. The \emph{winding number} or \emph{index} of $\gamma$ about $w$ is \[ I(\gamma; w) \defeq \frac{\theta(b) - \theta(a)}{2\pi} ,\] where $\gamma(t) = w + r(t)e^{i\theta(t)}$ with $\theta$ continuous. } \end{definition*} \end{flashcard} \begin{flashcard}[winding-number-integral-formula] \begin{lemma*}[Winding Number Integral Formula] \cloze{ Let $\gamma : [a, b] \to \CC \setminus \{w\}$ be a closed curve. Then \[ I(\gamma; w) = \frac{1}{2\pi i} \int_\gamma \frac{\dd z}{z - w} \] } \end{lemma*} \begin{proof} \cloze{ $\gamma$ piecewise-$C^1$ implies $r(t)$ and $\theta(t)$ are piecewise-$C^1$ as well, where $\gamma(t) = w + R(t) e^{i\theta(t)}$. \begin{align*} \int_\gamma \frac{\dd z}{z - w} &= \int_a^b \frac{\gamma'(t)}{\gamma(t) - w} \dd t \\ &= \int_a^b \frac{r'(t)}{r(t)} + i\theta'(t) \dd t \\ &= [\ln r(t) + i\theta(t)]_{t = a}^{t = b} \\ &= 2\pi i I(\gamma; w) \end{align*} since $\gamma$ is closed and $\theta(b) - \theta(a) = 2\pi I (\gamma; w)$. } \end{proof} \end{flashcard} \begin{proposition*} If $\gamma : [0, 1] \to D(a, R)$ is a closed curve, then $\forall w \not\in D(a, R)$, $I(\gamma; w) = 0$. \end{proposition*} % .image \begin{proof} Consider the M\"obius map $z \mapsto \frac{z - w}{a - w}$, This takes $a \mapsto 1$, $w \mapsto 0$, so $D(a, R) \mapsto D(1, r)$ for some $r < 1$. So then $D(a, R)$ is contained in the slit plane $\CC \setminus \left\{ z : \frac{z - w}{a - w} \in \RR_{\le 0} \right\}$. So there is a branch of $\arg(z - w)$ defined on $D(a, r)$. And so \[ I(\gamma; w) = \frac{\arg(\gamma(1) - w) - \arg(\gamma(0) - w)}{2\pi} = 0 \qedhere \] \end{proof} \begin{flashcard}[homologous-to-zero] \begin{definition*}[Homologous to zero] \cloze{ Let $\mathcal{U} \subseteq \CC$ be open. Then a closed curve $\gamma$ in $\mathcal{U}$ is \emph{homologous to zero in $\mathcal{U}$} if $\forall w \not\in \mathcal{U}$, $I(\gamma; w) = 0$. } \end{definition*} \end{flashcard} \begin{flashcard}[simply-connected] \begin{definition*}[Simply Connected] \cloze{ $\mathcal{U}$ is \emph{simply connected} if every closed curve in $\mathcal{U}$ is homologous to zero. } \end{definition*} \end{flashcard} \begin{remark*} For $\mathcal{U}$ open this is equivalent to the homotopy definition of simply connected. \end{remark*} \begin{enumerate}[(1)] \item Any disk is simply connected by previous proposition. \item Any punctured disk $D(a, R) \setminus \{a\}$ is not simply connected, since curves can wind around $a$: \begin{center} \includegraphics[width=0.4\linewidth] {images/ae399af4ab8e11ed.png} \end{center} \end{enumerate} \begin{flashcard}[general-CIF] \begin{theorem*}[General CIF] \cloze{ Let $f : \mathcal{U} \to \CC$ be holomorphic on a domain $\mathcal{U}$, and $\gamma$ is a closed curve homologous to zero in $\mathcal{U}$. Then $\forall w \in \mathcal{U} \setminus \gamma$, \[ I(\gamma; w) f(w) = \frac{1}{2\pi i} \int_\gamma \frac{f(z)}{z - w} \dd z ,\] and $\int_\gamma f(z) \dd z = 0$ } \end{theorem*} \end{flashcard}