% vim: tw=50 % 10/02/2023 10AM \begin{flashcard}[uniform-limit-of-holomorphic-is-holomorphic] \begin{corollary*}[Uniform convergence of holomorphic functions] \cloze{Let $f_n : \mathcal{U} \to \CC$ holomorphic functions on a domain $\mathcal{U}$, and $f_n \to f$ uniformly on $\mathcal{U}$ (sufficient: uniform convergence on compact subsets of $\mathcal{U}$). Then $f$ is holomorphic on $\mathcal{U}$, and $f'(z) = \lim_{n \to \infty} f_n'(z)$.} \end{corollary*} \begin{proof} \cloze{ $\mathcal{U}$ is a union of open disks, so it suffices to work with $D(z, \eps) \subset \mathcal{U}$. Given $\gamma$ closed curve in $D(z, \eps)$, $\int_\gamma f_n \to \int_\gamma f$ (A\&T), and $\int_\gamma f_n = 0$, so $\int_\gamma f = 0$. Since $f$ is continuous, Morera's theorem applies, so $f$ is holomorphic on $D(z, \eps)$. \myskip Recall Taylor expansion computation: for $0 < \rho < \eps$, \[ f^{(m)}(z) = \frac{m!}{2\pi i} \int_{\partial D(z, \rho)} \frac{f(\zeta)}{(\zeta - z)^{m + 1}} \dd \zeta \] So $f'(z) = \frac{1}{2\pi i} \int_{\partial D(z, \rho)} \frac{f(\zeta)}{(\zeta - z)^2} \dd \zeta$. \begin{align*} |f'(z) - f_n'(z)| &= \frac{1}{2\pi} \left| \int_{\partial D(z, \rho)} \frac{f(\zeta)}{(\zeta - z)^2} - \frac{f_n(\zeta)}{(\zeta - z)^2} \dd \zeta \right| \\ &\le \rho \cdot \frac{1}{\rho^2} \cdot \sup_{\zeta \in \partial D(z, \rho)} |f(\zeta) - f_n(\zeta)| \\ &\to 0 \end{align*} as $n \to \infty$. So $f'(z) = \lim_{n \to \infty} f_n'(z)$. } \end{proof} \end{flashcard} \begin{remark*} $f$ need not be non-constant; for example, $f_n(z) = z^n$ on $D(0, r)$, $0 < r < 1$. Then $f_n \to 0$ uniformly. \end{remark*} \begin{corollary*} If $f : \mathcal{U} \to \CC$ is continuous on a domain $\mathcal{U} \setminus S$ for some finite set $S$, then $f$ is holomorphic on $\mathcal{U}$. \end{corollary*} \begin{proof} If $a \in S$, find $D(a, r) \subset \mathcal{U}$ open disk. Cauchy's theorem in a disk implies $\int_\gamma = 0$ for any closed curve $\gamma$ in $D(a, r)$. Morera's theorem implies $f$ is holomorphic on $D(a, r)$, at $a$. So $f$ is holomorphic on $\mathcal{U}$. \end{proof} \subsubsection*{zeroes of holomorphic maps} Let $f : D(a, R) \to \CC$ be holomorphic, so $f(z) = \sum_{n \ge 0} c_n(z - a)^n$ on $D(a, R)$. If $f \not \equiv 0$ then some $c_n$ is non-zero; let \[ m \defeq \min\{n \in \NN \cup \{0\} : c_n \neq 0\} .\] If $m > 0$ then we say $f$ has a \emph{zero of order $m$ at $a$}. In this case, we can write \[ f(z) = (z - a)^m g(z) \] where $g(z)$ is holomorphic on $D(a, R)$, $g(a) \neq 0$. \begin{flashcard}[principle-of-isolated-zeroes] \begin{theorem*}[Principle of Isolated Zeroes] \cloze{ If $f : D(a, R) \to \CC$ is holomorphic, \fcemph{not identically} $0$, then there exists $0 < r \le R$ such that $f(z) \neq 0$ on $0 < |z - a| < r$. } \end{theorem*} \begin{proof} \cloze{ If $f(a) \neq 0$ then $f(z) \neq 0$ on $D(a, r)$ for some $0 < r \le R$ by continuity of $f$. If $f$ has a zero of order $m$ at $a$, write $f(z) = (z - a)^m g(z)$ where $g(a) \neq 0$, $g$ holomorphic. By continuity of $g$, there exists $0 < r \le R$ such that $g(z) \neq 0$ for all $z \in D(a, r)$, so $f(z) \neq 0$ for all $0 < |z - a| < r$. } \end{proof} \end{flashcard} \begin{remark*} Principle of isolated zeroes says that there is no accumulation point of the zero set of a holomorphic map inside its domain, unless $\equiv 0$. \end{remark*} \begin{remark*} It \emph{is} possible for the zeroes of a holomorphic map to accumulate ouside its domain: \[ \sin z \defeq \frac{e^{iz} - e^{-iz}}{2i} = 0 \iff e^{-z} = e^{-iz} \] i.e. $e^{2iz} = 1$, which holds for all $z = n\pi$, $n \in \ZZ$. So $\sin \left( \frac{1}{z} \right)$ has zeroes accumulating at $0$, on the boundary of its domain $\CC^* = \CC \setminus \{0\}$. \end{remark*} \begin{remark*} Another application of Principle of Isolated Zeroes: since $\cos^2 z + \sin^2 z = 1$ holds for all $z \in \RR$, then $\cos^2 z + \sin^2 z - 1$ is entire with $\RR \subset \{\text{zero set}\}$. So by PIZ, $\cos^2 z + \sin^2 z = 1$ for all $z \in \CC$. \end{remark*} \begin{flashcard}[identity-theorem-for-holomorphic-functions] \begin{proposition*}[Identity theorem for holomorphic functions] \cloze{ Let $f, g : \mathcal{U} \to \CC$ be holomorphic on a domain $\mathcal{U}$. Let $S \defeq \{z \in \mathcal{U} : f(z) = g(z)\}$. If $S$ has a \fcemph{non-isolated} point \fcemph{(i.e. there exists $w \in S$ such that for all $\eps > 0$, $D(w, \eps) \setminus \{w\} \cap S \neq \emptyset$)} then $f(z) = g(z)$ for all $z \in \mathcal{U}$. } \end{proposition*} \begin{proof} \cloze{ Define $h(z) = f(z) - g(z)$, holomorphic on $\mathcal{U}$, and suppose $w$ is non-isolated in $S$. Then for $\eps > 0$ with $D(w, \eps) \subseteq \mathcal{U}$, PIZ implies $h \equiv 0$ on $D(w, \eps)$. \myskip Given $z \in \mathcal{U}$, let $\gamma : [0, 1] \to \mathcal{U}$ be a path with $\gamma(0) = w$, $\gamma(1) = z$. Consider the set \[ T \defeq \{t \in [0, 1] : h^{(n)}(\gamma(t)) = 0 ~\forall n \ge 0\} \] Note that $T$ is closed by definition. Since $h \equiv 0$ on $D(w, \eps)$, Taylor expansion implies $T$ is non-empty, since $0 \in T$. Define $t_0 \defeq \sup\{t' \in [0, 1] : t \in T ~\forall t \le t'\}$. Then $T$ closed and non-empty so $t_0 \in T$. Since $h^{(n)}(\gamma(t_0)) = 0$ for all $n \ge 0$, $h \equiv 0$ on a neighbourhood of $\gamma(t_0)$, contradicting the maximality of $t_0$, unless $t_0 = 1$. So $h(\gamma(1)) = 0$, i.e. $h(z) = 0$ as claimed. } \end{proof} \end{flashcard} \begin{flashcard}[analytic-continuation] \begin{definition*}[Analytic Continuation] \cloze{ Let $\mathcal{U} \subseteq V \subseteq \CC$ be domains and $f : \mathcal{U} \to \CC$ is holomorphic. $g : V \to \CC$ is an \emph{analytic continuation} of $f$ if: \begin{enumerate}[(1)] \item $g$ is holomorphic on $V$ \item $g|_{\mathcal{U}} = f$. \end{enumerate} } \end{definition*} \end{flashcard} \begin{example*} \begin{enumerate}[(1)] \item The series $\sum_{n \ge 1} \frac{(-1)^{n + 1}}{n} z^n$ converges on $D(0, 1)$, and takes the value $\Log(1 + z)$ on $D(0, 1)$. So $\Log(1 + z)$ is an analytic continuation of this series to the domain $\CC \setminus (-\infty, -1]$. \item $\sum_{n \ge 0} z^n$ has radius of convergence 1 about $a = 0$, and on $D(0, 1)$, we have $\frac{1}{1 - z} \sum_{n \ge 0} z^n$. So $\frac{1}{1 - z}$ is an analytic continuation to $\CC \setminus \{1\}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/7daec5fca93211ed.png} \end{center} \item Considering $f(z) = \sum_{n \ge 0} z^{2^n}$, $f$ converges on $D(0, 1)$ and cannot be analytically continued to any larger domain. We say $\partial D(0, 1)$ is \emph{natural boundary} for $f(z)$. \end{enumerate} \end{example*}