% vim: tw=50 % 06/02/2023 10AM \begin{flashcard}[CIF] \begin{theorem*}[Cauchy's Integral Formula] Let \cloze{$\mathcal{U} \subseteq \CC$ be a domain, $f : \mathcal{U} \to \CC$ holomorphic, and $\ol{D(a, r)} \subseteq \mathcal{U}$.} \prompt{\\} Then \cloze{for all $z \in D(a, r)$, \[ f(z) = \frac{1}{2\pi i} \int_{\partial D(a, r)} \frac{f(w)}{w - z} \dd w \]} \end{theorem*} \end{flashcard} \begin{hiddenflashcard}[CIF-proof] Cauchy's Integral Formula proof? \\ \cloze{ Define $g(w) = \frac{f(w)}{w - z}$ for $w \neq z$ and $g(z) = f'(z)$, then $g$ is \fcemph{continuous everywhere} since $f$ \fcemph{holomorphic}. Also, $g$ \fcemph{holomorphic} on $D(a, r)$ except possibly at $z$. \\ Pick $r_1 > 0$ such that $D(a, r) \subseteq D(a, r_1) \subseteq \mathcal{U}$. Apply \fcemph{Cauchy's theorem in a disk} to $g$ on $D(a, r_1)$ with $\gamma = \partial D(a, r)$ to deduce \[ \int_{\partial D(a, r)} \frac{f(w)}{w - z} \dd w = \int_{\partial D(a, r)} \frac{f(z)}{w - z} \dd w \] Now swap an integral and sum sign since the partial sums are uniformly convergent (A\&T): \begin{align*} \int_{\partial D(a, r)} \frac{f(z)}{w - z} \dd w &= \int_{\partial D(a, r)} \frac{f(z)}{w - a} \frac{1}{1 - \frac{z - a}{w - a}} \dd w \\ &= \int_{\partial D(a, r)} \sum_{n = 0}^\infty f(z) \frac{(z - a)^n}{(w - a)^{n + 1}} \dd w \\ &= \sum_{n = 0}^\infty f(z) (z - a)^n \int_{\partial D(a, r)} \frac{1}{(w - a)^{n + 1}} \dd w \\ &= \sum_{n = 0}^\infty f(z) (z - a)^n \cdot \begin{cases} 2\pi i & n = 0 \\ 0 & n \neq 0 \end{cases} \\ &= 2\pi i f(z) \end{align*} } \end{hiddenflashcard} \begin{proof} Define \[ g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z} - f'(z) & w \neq z \\ 0 & w = z \end{cases} \] Then $g$ is continuous at $z$, holomorphic on $D(a, r)$ except possible at $z$. Find $r_1 > 0$ such that $D(a, r) \subseteq D(a, r_1) \subseteq \mathcal{U}$. Apply Cauchy's theorem to $g$ on $D(a, r_1$ with curve $\gamma = \partial D(a, r)$, then \[ \int_{\partial D(a, r)} g(w) \dd w = 0 \] i.e. \[ \int_{\partial D(a, r)} \frac{f(w)}{w - z} \dd w = \int_{\partial D(a, r)} \frac{f(z)}{w - z} \dd w \] Useful expansion: since $|w - a| = r > |z - a|$ \[ \frac{1}{w - z} = \frac{1}{(w - a) \left[ 1 - \frac{z - a}{w - a} \right]} = \sum_{n = 0}^\infty \frac{(z - a)^n}{(w - a)^{n + 1}} ,\] by geometric expansion. So \[ \int_{\partial D(a, r)} \frac{f(z)}{w - z} \dd w = \sum_{n = 0}^\infty \left[ f(z) (z - a)^n \int_{\partial D(a, r)} \frac{1}{(w - a)^{n + 1}} \dd w \right] \] We have computed that the integral in the brackets on the right is $0$ unless $n = 0$, in which case it is $2\pi i$. So \[ \int_{\partial D(a, r)} \frac{f(w)}{w - z} \dd w = 2\pi i f(z) \] as claimed. \end{proof} \begin{flashcard}[mean-value-property] \begin{corollary*}[Mean Value Property] \cloze{ If $f : \mathcal{U} \to \CC$ is holomorphic on domain $\mathcal{U}$, and $\ol{D(a, r)} \subseteq \mathcal{U}$, then \[ f(a) = \int_0^1 f(a + re^{2\pi i t}) \dd t \] } \fcscrap{i.e. $f$ takes the average value on a circle about a point.} \end{corollary*} \end{flashcard} \begin{proof} Applying Cauchy's Integral Formula, with $t \mapsto a + re^{2\pi i t}$ on $[0, 1]$ for $\partial D(a, r)$. \end{proof} \subsubsection*{Applications of CIF} \begin{flashcard}[local-maximum-principle] \begin{corollary*}[Local Maximum Principle] \cloze{Let $f : D(a, r) \to \CC$ be holomorphic. If $|f(z)| \le |f(a)|$ for all $z \in D(a, r)$, then $f$ is constant.}\fcscrap{ ``non-constant holomorphic maps cannot achieve maximum on an open set''.} \end{corollary*} \end{flashcard} \begin{proof} By mean value property, $\forall 0 < \rho < r$ we have \begin{align*} |f(a)| &= \left| \int_0^1 f(a + \rho e^{2\pi it} \dd t \right| \\&\le \sup_{|z - a| = \rho} |f(z)| \\ &\le |f(a)| \end{align*} Since we have equality at each step, we have $|f(z)| = |f(a)|$ for all $|z - a| = \rho$. So $|f|$ is a constant function on $D(a, r)$. Hence $f$ is constant on $D(a, r)$. \end{proof} \begin{flashcard}[liouville] \begin{theorem*}[Liouville's Theorem] \cloze{Every bounded entire function is constant.} \end{theorem*} \end{flashcard} \begin{flashcard}[liouville-proof] \prompt{Proof of Liouville's theorem? \\} \begin{proof} \cloze{ With $|f(z)| \le M$ for $f$ entire, and $R \gg 1$ we have for any $0 < |z| < \frac{R}{2}$ that .image \begin{align*} |f(z) - f(0)| &= \frac{1}{2\pi} \left| \int_{\partial D(0, R)} f(w) \left[ \frac{1}{w - z} - \frac{1}{w} \right] \dd w \right| \\ &= \frac{1}{2\pi} \left| \int_{\partial D(0, R)} f(w) \frac{z}{(w - z)w} \dd w \right| \end{align*} Since $|z - w| > \frac{R}{2}$ and $|w| = R$, we have \begin{align*} |f(z) - f(0)| &\le \frac{1}{2\pi} \cdot 2\pi R \cdot \sup_{w \in \partial D(0, R)} |f(w)| \cdot |z| \cdot \frac{1}{R \cdot \frac{R}{2}} \\ &\le M \cdot |z| \cdot \frac{1}{R/2} \\ &\to 0 \end{align*} as $R \to \infty$. So $f(z) = f(0)$, so $f \equiv f(0)$ is constant. } \end{proof} \end{flashcard} \begin{flashcard}[fundamental-theorem-of-algebra] \begin{corollary*}[Fundamental Theorem of Algebra] \cloze{Every \fcemph{non-constant} polynomial with complex coefficients has a root in $\CC$.} \end{corollary*} \begin{proof} \cloze{ If $p(z)$ has no root in $\CC$, then $f(z) \defeq \frac{1}{p(z)}$ is entire. $p(z)$ non-constant implies $a_d \neq 0$, $d \ge 1$. So $\frac{p(z)}{z^d} = a_d + a_{d - 1} + \frac{1}{z} + \cdots + a_0 \frac{1}{z^d}$ shows that $|p(z)| \to \infty$ as $|z| \to \infty$. So $|f(z)| \to 0$ as $|z| \to \infty$; so there exists $R > 0$ such that $\forall z \not\in D(0, r)$, $|f(z)| \le 1$. Let $M \defeq \max_{z \in \ol{D(0, r)}} |f(z)|$ Then $|f|$ is bounded by $\max\{1, M\}$, and so by Liouville is constant, contradicting the assumption that $p$ is non-constant. } \end{proof} \end{flashcard} \subsubsection*{Taylor-Expansion} \begin{flashcard}[taylor-expansion] \begin{theorem*}[Taylor Expansion] \cloze{ Let $f : D(a, r) \to \CC$ be holomorphic. Then $f$ is represented by convergent power series on $D(a, r)$: \[ f(z) = \sum_{n = 0}^\infty c_n(z - a)^n \] with \[ c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\partial D(a, \rho)} \frac{f(w)}{(w - a)^{n + 1}} \dd w \] for $0 \le \rho < r$. } \end{theorem*} \begin{proof} \cloze{ For $|z - a| < \rho < r$, CIF gives \begin{align*} f(z) &= \frac{1}{2\pi i} \int_{\partial D(a, \rho)} \frac{f(w)}{w - z} \dd w \\ &= \frac{1}{2\pi i} \int_{\partial D(a, \rho)} f(w) \cdot \sum_{n = 0}^\infty \frac{(z - a)^n}{(w - a)^{n + 1}} \dd w \\ &= \sum_{n = 0}^\infty \left[ \frac{1}{2\pi i} \int_{\partial D(a, \rho)} f(w) \cdot \frac{1}{w - a^{n + 1}} \dd w \right] (z - a)^n \end{align*} proving the theorem. (We swap the sum and integral since the partial sums give rise to a sequence of functions that \fcemph{converge uniformly} on $\partial D(a, \rho)$). } \end{proof} \end{flashcard} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item ``analytic'' $=$ has power series representation on a disk in the domain. So holomorphic $\implies$ analytic. \item holomorhic functions have derivatives of all orders, which are holomorphic. \end{enumerate} \begin{flashcard}[morera-thm] \begin{corollary*}[Morera's Theorem] \cloze{ Let $D$ be a disk and $f : D \to \CC$ such that $\int_\gamma f = 0$ for all closed curves $\gamma$ in $D$. Then $f$ is holomorphic. } \end{corollary*} \begin{proof} \cloze{ By converse of Fundamental Theorem of Calculus, there exists holomorphic $F$ on $D$ with $F' = f$. So $f$ is holomorphic. (Because existence of Taylor expansion implies that the derivative of a holomorphic function is holomorphic). } \end{proof} \end{flashcard}