% vim: tw=50 % 03/02/2023 10AM \begin{flashcard}[complex-FTC] \begin{theorem*}[Fundamental Theorem of Calculus] \cloze{If $f : \mathcal{U} \to \CC$ is a continuous function on open $\mathcal{U} \subseteq \CC$ with $F' = f$ an antiderivative of $f$ in $\mathcal{U}$. Then for any curve $\gamma : [a, b] \to \mathcal{U}$, \[ \int_\gamma f(z) \dd z = F(\gamma(b)) - F(\gamma(a)) .\] In particular, if $\gamma$ is closed then $\int_\gamma f = 0$.} \end{theorem*} \begin{proof} \cloze{ \begin{align*} \int_\gamma f(z) \dd z &= \int_a^b f(\gamma(t)) \gamma'(t) \dd t \\ &= \int_a^b (F \circ \gamma)'(t) \dd t \\ &= F(\gamma(b)) - F(\gamma(a)) \end{align*} by the real Fundamental Theorem of Calculus. } \end{proof} \end{flashcard} \begin{note*} In the $z \mapsto z^{-1}$ integral computation and FTC implies that there does not exist a branch of the logarithm on any open neighbourhood of $0$. \end{note*} \begin{theorem*} Let $f : D \to \CC$ be continuous on a domain $D$. If $\int_\gamma f = 0$ for all closed curves $\gamma$ in $D$, then there exists holomorphic $F : D \to \CC$ with $F' = f$. \end{theorem*} \begin{proof} Fix $a_0 \in D$. If $w \in D$, choose any curve $\gamma_w : [0, 1] \to D$ with $\gamma_w(0) = a_0$, $\gamma_w(1) = w$. Define \[ F(W) \defeq \int_{\gamma_w} f(z) \dd z \] \begin{center} \includegraphics[width=0.6\linewidth] {images/f6c709e8a3ad11ed.png} \end{center} Find $r_w > 0$ such that $\DD(w, r_w) \subseteq D$. For $|h| < r$, let $\delta_h : [0, 1] \to D$ be the line segment from $w$ to $w + h$. Then \[ F(w + h) = \int_{\gamma_{w + h}} f(z) \dd z = \int_{\gamma_w + \delta_h} f(z) \dd z \] So \begin{align*} F(w + h) &= F(w) + \int_{\delta_h} f(z) \dd z \\ &= F(w) + hf(w) + \int_{\delta_h} f(z) - f(w) \dd z \end{align*} So \begin{align*} \left| \frac{F(w + h) - F(w)}{h} - f(w) \right| &= \left| \frac{1}{h} \int_{\delta_h} f(z) - f(w) \dd z \right| \\ &\le \frac{\length(\delta_h)}{|h|} \cdot \sup_{\delta_h} |f(z) - f(w)| \\ &\le \sup_{z \in \DD(w, r_w)} |f(z) - f(w)| \\ &\to 0 \end{align*} as $r_w \to 0$. So $F'(w) = f(w)$. \end{proof} \begin{definition*} An open subset $\mathcal{U} \subseteq \CC$ is \emph{convex} if $\forall a, b \in \mathcal{U}$ the line segment between $a$ and $b$ is in $\mathcal{U}$. $\mathcal{U}$ is \emph{starlike} (sometimes instead called \emph{starshaped}) if $\exists a_0 \in \mathcal{U}$ such that $\forall b \in \mathcal{U}$ the line segment from $a_0$ to $b$ is in $\mathcal{U}$. \end{definition*} \[ \{\text{disks}\} \subseteq \{\text{convex sets}\} \subseteq \{\text{starlike sets}\} \subseteq \{\text{domains}\} \] A simplification of previous theorem: \begin{lemma*} Suppose $\mathcal{U}$ is starlike domain, and $f : \mathcal{U} \to \CC$ continuous with $\int_{\partial T} f(z) \dd z = 0$ for all triangles $T$ in $\mathcal{U}$, then $f$ has an antiderivative in $\mathcal{U}$. \end{lemma*} \begin{proof} Exactly the same, choosing $\gamma_w$ to be the segment from a basepoint $a_0$ of the starlike. \end{proof} \begin{flashcard}[Cauchy-in-triangle] \begin{theorem*}[Cauchy's Theorem in a triangle] \cloze{If $f : \mathcal{U} \to \CC$ is holomorphic on an open $\mathcal{U} \subseteq \CC$, and $T \subseteq \mathcal{U}$ is a triangle in $\mathcal{U}$, then \[ \int_{\partial T} f(z) \dd z = 0 .\]} \end{theorem*} \end{flashcard} \begin{remark*} Curves are oriented anticlockwise. \end{remark*} \begin{proof} Call $\left| \int_{\partial T} f \right| \eqdef I$, and $L = \length(\partial T)$. We subdivide $T$ by bisecting the sides to obtain $T_1, T_2, T_3, T_4$: \begin{center} \includegraphics[width=0.6\linewidth] {images/56369f58a3b111ed.png} \end{center} $\partial T_1 + \partial T_2 + \partial T_3 = \partial T - \partial T_4$, so \[ \int_{\partial T} f(z) \dd z = \sum_{i = 1}^4 \int_{\partial T_i} f(z) \dd z \] By triangle inequality, there exists $i \in \{1, 2, 3, 4\}$ such that \[ \left| \int_{\partial T_i} f(z) \dd z \right| \ge \frac{1}{4} I \] call $T^{(1)}$ and note $\length(\partial T^{(1)}) = \half$. \myskip Proceeding in this way, we obtain triangles \[ T \ge T^{(1)} \ge T^{(2)} \ge T^{(3)} \ge \cdots \] with $\length(T^{(n)}) = 2^{-N} \length(T) = \frac{L}{2^n}$, and \[ \left| \int_{\partial T^{(n)}} f(z) \dd z \right| \ge \frac{1}{4^n} I \] Since $\length(T^{(n)}) \to 0$, \[ \bigcap_{n = 1}^\infty T^{(n)} = \{\omega\} .\] Note: $z$, $1$ have holomorphic antiderivatives. \[ \frac{1}{4^n}I \le \left| \int_{\partial T^{(n)}} f(z) \dd z \right| = \left| \int_{\partial T^{(n)}} f(z) - f(w) - (z - w)f'(w) \dd z \right| \] Since $f$ is differentiable at $w$, $\forall \eps > 0$, $\exists \delta . 0$ such that $|w - z| < \delta \implies |f(z) - f(w) - (z - w)f'(w)| < \eps|z - w|$. So if $n \gg 1$, we have \[ \left| \int_{\partial T^{(n)}} f(z) - f(w) - (z - w) f'(w) \dd z \right| \le \frac{L}{2^n} \cdot \sup_{z \in \partial T^{(n)}} |z - w| \cdot \eps \] So \[ \frac{I}{4^n} \le \frac{L}{2^n} \cdot \frac{L}{2^n} \cdot \eps \] and $I \le L^2 \eps$. Letting $\eps \to 0$, we have $I = 0$. \end{proof} \begin{hiddenflashcard}[Cauchy-in-triangle-proof] Proof of Cauchy's theorem in a triangle? \\ \begin{proof} \cloze{ Subdivide the triangle $T$ into 4 smaller congruent triangles $T_1, T_2, T_3, T_4$ such that \[ I = \int_{\partial T} f(z) \dd z = \sum_{i = 1}^4 \int_{\partial T_i} f(z) \dd z \] Pick the $T_i$ with the largest integral and call it $T^{(1)}$. Repeat this inductively, and let $w$ be the intersection of all the triangles. We have that \[ \left| \int_{\partial T^{(n)}} f(z) \dd z \right| \ge \frac{1}{4^n} I \] by induction, and the length of the integral of each $T^{(n)}$ is $\frac{L}{2^n}$. Then since $1$ and $z$ have holomorphic antiderivatives, \begin{align*} \frac{1}{4^n} I &\le \left| \int_{\partial T^{(n)}} f(z) \dd z \right| \\ &= \left| \int_{\partial T^{(n)}} f(z) - f(w) - (z - w) f'(w) \dd z \right| \\ &\le \int_{\partial T^{(n)}} |f(z) - f(w) - (z - w) f'(w)| \dd z \\ &\le \int_{\partial T^{(n)}} \eps |z - w| \dd z \\ &\le \frac{L}{2^n} \cdot \sup_{z \in \partial T^{(n)}} |z - w| \cdot \eps \\ &= \frac{L}{2^n} \cdot \frac{L}{2^n} \cdot \eps \\ \implies I \le L^2 \eps \end{align*} for all $n$ large enough such that \[ \left| \frac{f(z) - f(w)}{z - w} - f'(w) \right| < \eps \] for all $z \in \partial T^{(n)}$. Letting $\eps \to 0$, we get $I = 0$. } \end{proof} \end{hiddenflashcard} \begin{theorem*} Let $S \subseteq \mathcal{U}$ be a finite set and $f : \mathcal{U} \to \CC$ be continuous on $\mathcal{U}$ and holomorphic on $\mathcal{U} \setminus S$. Then $\int_{\partial T} f = 0$ for all triangles $T$ in $\mathcal{U}$. \end{theorem*} \begin{proof} Using triangle subdivision, assume WLOG that $S = \{a\}$, $a \in T$. If $a \in T' \subseteq T$ for another triangle T', then by triangular subdivision \begin{center} \includegraphics[width=0.6\linewidth] {images/47292bb0a3b211ed.png} \end{center} and previous theorem, \[ \int_{\partial T} f = \int_{\partial T'} = f \] since $f$ is holomorphic on $T \setminus T'$ we have \begin{align*} \left| \int_{\partial T} f \right| &= \left| \int_{\partial T'} f \right| &\le \length(T') \cdot \sup_{\partial T'} |f| \\ &\le \length(T') \cdot \sup_T |f| \end{align*} so letting $\length(T') \to 0$, we have $\int_{\partial T} f = 0$. \end{proof} \begin{flashcard}[cauchy-thm-in-disk] \begin{theorem*}[Cauchy's theorem in a disk] \cloze{Let $D$ be a disk (or any starlike domain) and $f : D \to \CC$ a continuous function, holomorphic away from at most a finite set of points in $D$, then $\int_\gamma f = 0$ for any closed curve $\gamma$ in $D$.} \end{theorem*} \prompt{ \begin{proof} \cloze{ By Cauchy's theorem in a triangle, and converse of Fundamental Theorem of Calculus, there exists an antiderivative $F$ for $f$ on $D$. So by Fundamental Theorem of Calculus, Cauchy's Theorem follows. } \end{proof} } \end{flashcard} \begin{proof} By previous theorem and converse Fundamental Theorem of Calculus for starlike domains, there exists antiderivative $F$ for $f$ on $D$. So by FTC, Cauchy's Theorem follows. \end{proof}