% vim: tw=50 % 30/01/2023 10AM \begin{proof} Since $\Log$ is inverse to $e^z$ then using the chain rule, $\Log z$ is holomorphic with $\dfrac{}{z} \Log z = \frac{1}{z}$. We have \[ \dfrac{}{z} = \frac{1}{z + 1} = 1 - z + z^2 - z^3 + z^4 + \cdots ,\] which is the derivative of $\sum_{n = 1}^\infty \frac{(-1)^{n - 1} z^n}{n}$. So $\Log(1 + z)$ agrees with this series up to a constant. Since $\Log(1) = 0$ the equality holds. \end{proof} \myskip If $\alpha \in \CC$, define $z^\alpha \defeq \exp(\alpha \Log z)$ gives a definition of $z^\alpha$ on $\CC \setminus \RR_{\le 0}$. Can compute $\dfrac{}{z} z^\alpha = \alpha z^{\alpha - 1}$. \begin{warning*} Not necessarily true that $z^\alpha w^\alpha = (zw)^\alpha$. \end{warning*} \begin{note*} Note that if $f(z) = z^\alpha$, then the image of $f$ can be ``much smaller'' than $\CC$. For example, $\alpha = \half$, \begin{align*} z^{\half} &= \exp \left( \half \Log z \right) \\ &= \exp \left( \half \ln |z| + \half i\theta \right) &&\theta \in (-\pi, \pi) \end{align*} So: \begin{center} \includegraphics[width=0.6\linewidth] {images/d02d573ea08711ed.png} \end{center} \end{note*} \subsection{Contour Integration} \begin{flashcard}[complex-integral] If $f : [a, b] \to \CC$ is continuous \cloze{(so $\Re f$, $\Im f$ are integrable)} we define \[ \int_a^b f(t) \dd t \defeq \cloze{\int_a^b \Re(f(t)) \dd t + i \int_a^b \Im(f(t)) \dd t} \] \end{flashcard} \begin{flashcard}[integral-length-bound] \begin{proposition*} Let $f : [a, b] \to \CC$ be continuous. Then \[ \cloze{\left| \int_a^b f(t) \dd t \right|} \le \cloze{(b - a) \sup_{a \le t \le b} |f(t)|} ,\] with equality if and only if \cloze{$f$ is constant}. \end{proposition*} \begin{proof} Write $M = \sup_{a \le t \le b} |f(t)|$\cloze{, $\theta = \arg \left( \int_a^b f(t) \dd t \right)$. \begin{align*} \left| \int_a^b f(t) \dd t \right| &= e^{-i\theta} \int_a^b f(t) \dd t \\ &= \int_a^b e^{-i\theta} f(t) \dd t \\ &= \int_a^b \Re(e^{-i\theta} f(t)) \dd t \\ &\le \int_a^b |f(t) \dd t \\ &\le M(b - a) \end{align*} If we have equality, then $|f(t)| \equiv M$, and $\arg f(t) \equiv \theta$, so $f$ is constant.} \end{proof} \end{flashcard} \begin{definition*} Let $\gamma : [a, b] \to \CC$ be a $\mathcal{C}^1$-smooth curve. Then we define the \emph{arc length of $\gamma$} to be \[ \length(\gamma) \defeq \int_a^b |\gamma'(t)| \dd t .\] We say $\gamma$ is simple if $\gamma(t_1) = \gamma(t_2) \implies t_1 = t_2$ or $\{t_1, t_2\} = \{a, b\}$. If $\gamma$ is simple, then $\length(\gamma) = \text{length of the image of $\gamma$}$. \end{definition*} \begin{flashcard}[integral-along-curve] \begin{definition*} Let $f : \mathcal{U} \to \CC$ be continuous, $\mathcal{U}$ open, and $\gamma : [a, b] \to \mathcal{U}$\cloze{ be a $\mathcal{C}^1$-smooth curve. Then the integral of $f$ along $\gamma$ is} \[ \int_\gamma f(z) \dd z \defeq \cloze{\int_a^b f(\gamma(t)) \gamma'(t) \dd t} \] \end{definition*} \end{flashcard} \subsubsection*{Basic properties} \begin{enumerate}[(1)] \item linearity: \[ \int_\gamma c_1 f_1 + c_2 f_2 \dd z = c_1 \int_\gamma f_1 \dd z + c_2 \int_\gamma f_2 \] \item additivity: if $a < a' < b$ then \[ \int_{\gamma |_{[a, a']}} f(z) \dd z + \int_{\gamma |_{[a', b]}} f(z) \dd z = \int_\gamma f(z) \dd z \] \item inverse path: if $(-\gamma)(t) \defeq \gamma(-t) : [-b, -a] \to \mathcal{U}$, then \[ \int_{-\gamma} f(z) \dd z = -\int_\gamma f(z) \dd z \] \item independence of paramterisation: if $\phi : [a', b'] \to [a, b]$ is $\mathcal{C}^1$-smooth, $\phi(a') = a$, $\phi(b') = b$, then for $\delta = \gamma \circ \phi$ we have \[ \int_\delta f(z) \dd z = \int_\gamma f(z) \dd z \] \end{enumerate} \begin{note*} We can usually assume without loss of generality that $\gamma : [0, 1] \to \mathcal{U}$. \end{note*} \noindent Common types of curves we work with: \begin{center} \includegraphics[width=0.6\linewidth] {images/db305426a08a11ed.png} \end{center} We can loosen the $\mathcal{C}^1$-smooth restriction and allow $\gamma$ to be \emph{piecewise-$\mathcal{C}^1$-smooth}: i.e. $a = a_0 < a_1 < a_2 < \cdots < a_n = b$ such that $\gamma_i \defeq \gamma |_{[a_{i - 1}, a_i]}$ is $\mathcal{C}^1$-smooth. Define then \[ \int_\gamma f(z) \dd z = \sum_{i = 1}^n \int_{\gamma_i} f(z) \dd z \] (which is well-defined by additivity). \begin{remark*} Any piecewise-$\mathcal{C}^1$-smooth curve can be re parametrized to by $\mathcal{C}^1$: for such a $\gamma$ as above, replace $\gamma_i$ by $\gamma_i \circ h_i$ where $h_i$ is monotonic $\mathcal{C}^1$-smooth bijection with endpoint derivatives $0$. So $\mathcal{C}^1$-smooth paths can have corners. For example, \[ \gamma(t) \defeq \begin{cases} 1 + i\sin(\pi t) & t \in \left[ 0, \half \right] \\ \sin(\pi t) + i & t \in \left[ \half, 1 \right] \end{cases} \] \end{remark*} \subsubsection*{Terminology} \begin{itemize} \item ``curve'': piecewise-$\mathcal{C}^1$-smooth path. \item ``contour'': simple \emph{closed} (endpoints are equal) piecewise-$\mathcal{C}^1$-smooth path. \end{itemize} \begin{flashcard}[integral-bound-by-length] \begin{proposition*} For any continuous $f : \mathcal{U} \to \CC$, $\mathcal{U}$ open, and any curve $\gamma : [a, b] \to \mathcal{U}$, \[ \cloze{\left| \int_\gamma f(z) \dd z \right| \le \length(\gamma) \sup_{z \in \gamma} |f(z)|} \] \end{proposition*} \end{flashcard} \begin{proof} \begin{align*} \left| \int_\gamma f(z) \dd z \right| &= \left| \int_a^b f(\gamma(t)) \gamma'(t) \dd t\right| \\ &\le \int_a^b |f(\gamma(t)) \gamma'(t))| \dd t &&(\text{by similar trick to previous proof}) \\ &\le \sup_{z \in \gamma}|f(z)| \length(\gamma) && \qedhere \end{align*} \end{proof} \begin{flashcard}[function-integral-converging-on-curve] \begin{proposition*} If $f_n : \mathcal{U} \to \CC$ for $n \in \NN$ and $f : \mathcal{U} \to \CC$ are continuous, and $\gamma : [a, b] \to \mathcal{U}$ is a curve in $\mathcal{U}$ with $f_n \to f$ uniformly on $\gamma$, then \[ \cloze{\int_\gamma f_n(z) \dd z \to \int_\gamma f(z) \dd z} \] as $n \to \infty$. \end{proposition*} \begin{proof} \cloze{ By uniform convergence $\sup_{z \in \gamma} |f(z) - f_n(z)| \to 0$ as $n \to \infty$. By previous proposition, \begin{align*} \left|\int_\gamma f(z) \dd z - \int_\gamma f_n(z) \dd z\right| &\le \length(\gamma) \sup_\gamma |f - f_n| \\ &\to 0 \end{align*} as $n \to \infty$. } \end{proof} \end{flashcard} \begin{example*} $f_n(z) = z^n$, $n \in \ZZ$, on $\CC^* \eqdef \mathcal{U}$, and $\gamma : [0, 2\pi] \to \mathcal{U}$, $\gamma(t) = e^{it}$. \begin{center} \includegraphics[width=0.2\linewidth] {images/3f64f008a08d11ed.png} \end{center} \begin{align*} \int_\gamma f_n(z) \dd z &= \int_0^{2\pi} e^{nit} ie^{it} \dd t \\ &= i\int_0^{2\pi} e^{(n + 1)it} \dd t \\ &= \begin{cases} 2\pi i & n = -1 \\ 0 & n \neq -1 \end{cases} \end{align*} \end{example*}