% vim: tw=50 % 13/03/2023 10AM \begin{flashcard}[locally-uniform-converging-implies] \begin{theorem*} Let $\{f_n\}$ be a sequence of analytic functions on $\mathcal{U}$, converging locally uniformly to $f$. Then \cloze{$f$ is holomorphic, with $f_n' \to f'$ locally uniformly.} \end{theorem*} \end{flashcard} \begin{hiddenflashcard}[locally-uniformly-converging-implies-proof] Prove the following: \\ Suppose $f_n \to f$ locally uniformly, $f_n$ holomorphic. Then $f$ holomorphic and $f_n' \to f'$ locally uniformly. \\ \cloze{ Fix $a \in \mathcal{U}$ and $\ol{D(a, r)} \subset \mathcal{U}$. Given $\gamma$ a closed curve in $\gamma$ we have \[ \int_\gamma f = \lim_{n \to \infty} \int_\gamma f_n = 0 \] by \fcemph{Cauchy's theorem}. Hence, by \fcemph{Morera's theorem}, $f$ is holomorphic on $D(a, r)$. By Taylor expansion formula, \[ |f'(w) - f_n'(w)| = \frac{1}{2\pi} \left| \int_{|z - a| = r} \frac{f(z) - f_n(z)}{(z - w)^2} \dd z\right| \] Then for $|w - a| \le \rho < r$, we have \[ |f'(w) - f_n'(w)| \le r \cdot \frac{1}{\rho^2} \cdot \sup_{|z - a| = r} |f(z) - f_n(z)| \to 0 \] So $f_n' \to f'$ locally uniformly. } \end{hiddenflashcard} \begin{proof} Fix $a \in \mathcal{U}$ and $\ol{D(a, r)} \subset \mathcal{U}$. For $r \ll 1$, $f_n \to f$ uniformly of $\ol{D(a, r)}$. So \[ |f(z) - f(w)| = |f(z) - f_n(z) + f_n(z) - f_n(w) + f_n(w) - f(w)| \] so uniform convergence implies $f$ continuous no $\ol{D(a, r)}$. Given $\gamma$ a closed curve in $D(a, r)$, we have \[ \int_\gamma f = \lim_{n \to \infty} \int_\gamma f_n = 0 \] by Cauchy's theorem. So Morera's theorem implies $f$ is holomorphic on $D(a, r)$. By Cauchy's integral formula we have: \[ |f'(w) - f_n'(w)| = \frac{1}{2\pi} \left| \int_{|z - a| = r} \frac{f(z) - f_n(z)}{(z - w)^2} \dd z \right| \] for $|w - a| \le \frac{r}{2}$ we have \begin{align*} |f'(w) - f_n'(w)| &\le r \cdot \frac{1}{\left( \frac{r}{2} \right)^2} \cdot \sup_{|z - a| = r} |f(z) - f_n(z)| \\ &\to 0 \end{align*} as $n \to \infty$ by uniform convergence. $f_n \to f$ uniformly on $\ol{D(a, r)}$ implies $|f_n' \to f'|$ uniformly on $D \left( a, \frac{r}{2} \right)$. \end{proof} \begin{remark*} The assumption of locally uniform convergence is necessary; a construction with non-holomorphic limit can be done via Runge's theorem (see Topics in Analysis). \end{remark*} \subsubsection*{Application 1: Newton's method and complex dynamics} Recall Newton's method, an iterative root-finding algorithm, takes a polynomial $p(z)$ and an initial $z_0$ for a root of $p(z)$, and compute a sequence $z_1, z_2, \ldots, z_n \defeq f^n(z_0), \ldots$ where \[ f(z) = z - \frac{p(z)}{p'(z)} ;\] sometimes(??) this sequence limits to a root of $p$. \begin{example*} $p(z) = z^3 - 1$, $f(z) = \frac{2z^3 + 1}{3z^2}$. In $\RR$: \begin{center} \includegraphics[width=0.6\linewidth] {images/09dbfa3ac18a11ed.png} \end{center} $f^n (z)$ is a sequence of meromorphic functions, so if $f^n(z_0)$ approaches a limit, for some region $\mathcal{U}$ of initial guesses, then $f^n |_{\mathcal{U}}$ has holomorphic limit. \end{example*} \begin{definition*} A family $\mathcal{F} = \{f_i\}_{i \in I}$ of holomorphic functions on a domain $D$ is \emph{normal} if every sequence in $\mathcal{F}$ has a locally uniformly convergent subsequence. (Note: we allow convergence to $\infty$). \end{definition*} \noindent \textbf{Deep theorem} (``Montel's theorem''): If $\exists a, b, c \in \CC_\infty$ such that $\forall f \in \mathcal{F}$, $f(D) \cap \{a, b, c\} = \emptyset$, then $\mathcal{F}$ is a normal family. \begin{definition*} The \emph{Fatou set} of a rational map $f$ is \[ F(f) \defeq \{z \in \CC_\infty : \exists \text{ neighbourhood $\mathcal{U}$ of $z$ s.t. $\{f^n |_{\mathcal{U}}\}$ forms a normal family} \} \] \end{definition*} \subsubsection*{Riemann mapping theorem} \begin{theorem*}[RMT] Lt $\mathcal{U} \subsetneq \CC$ be a nonempty, proper, open, simply connected subset of $\CC$. Then there exists conformal isomorphism $f : \mathcal{U} \to \DD = D(0, 1)$. \end{theorem*} \begin{proof}[Sketch of proof] Fix $z_0 \in \mathcal{U}$, and consider \[ \mathcal{F} \defeq \{f : \mathcal{U} \to \DD, \text{$f$ holomorphic, injective and $f(z_0) = 0$}\} \] Steps: \begin{enumerate}[(1)] \item $\mathcal{F}$ is non-empty. \item Show there exists $g \in \mathcal{F}$ such that $|g'(z_0)|$ is finite and maximal among elements of $\mathcal{F}$. \item Prove $g$ is a conformal isomorphism. \end{enumerate} Now we actually prove these claims: \begin{enumerate}[(1)] \item $\mathcal{U} \neq \CC$ implies $\exists a \in \CC \setminus \{\mathcal{U}\}$, so by Example Sheet 2 there exists holomorphic branch of the logarithm $\log(z - a)$ on $\mathcal{U}$. So there exists holomorphic branch $h(z) = \sqrt{z - a}$ on $\mathcal{U}$. Show: $h$ is injective on $\mathcal{U}$, and $h(\mathcal{U}) \cap -h(\mathcal{U}) = \emptyset$. By open mapping theorem, $h(D)$ contains some $D(h(z_0), \eps)$, so $|h(z) + h(z_0)| \ge \eps$ for all $z \in D$. Can then check that: \[ f_0(z) = \frac{\eps}{4} \cdot \frac{|h'(z_0)|}{|h(z_0)|^2} \cdot \frac{h(z_0)}{h'(z_0)} \cdot \frac{h(z) - h(z_0)}{h(z) + h(z_0)} \in \mathcal{F} \] \item Let $A = \sup_{f \in \mathcal{F}} |f'(z_0)|$, and choose $\{f_n\}$ in $\mathcal{F}$ such that $f_n'(z_0) \to A$. By Montel's, $\mathcal{F}$ is a normal family, so there exists $f_{n_k}$ converging locally uniformly to some $g$, holomorphic. Show $g$ is in the family (injectivity requires argument). \item If $g$ is not surjective then can construct an element of $\mathcal{F}$ violating maximality of $g$: if $c \in D(0, 1) \setminus g(\mathcal{U})$, then choose (Example Sheet 2) a holomorphic branch \[ k(z) \defeq \sqrt{\frac{g(z) - c}{1 - cg(z)}} .\] Then \[ F(z) = \frac{e^{i\theta} (k(z) - k(z_0))}{1 - k(z_0)k(z)}, \qquad \frac{k'(z_0)}{|k'(z_0)|} = e^{-i\theta} \] is in $\mathcal{F}$, with $|F'(z_0)| > |g'(z_0)|$, contradiction. \qedhere \end{enumerate} \end{proof}