% vim: tw=50 % 10/03/2023 10AM \begin{flashcard}[open-mapping-thm] \begin{corollary*}[Open mapping theorem] \cloze{ A nonconstant holomorphic function maps open sets to open sets. } \end{corollary*} \begin{proof} \cloze{ Want to show that if $f : D \to \CC$ then $\forall a \in D$, $\forall r > 0$ sufficiently small, $f(D(a, r)) \supset D(f(a), \eps)$ for some $\eps$. By previous theorem\prompt{ (local mapping degree theorem)}, if $r$ and $\eps$ are sufficiently small, then $\forall w \in D(f(a), \eps)$ we have that the number of zeroes of $f(z) - w$ in $D(a, r)$ is $\deg_{z = a} f(z) > 0$. } \end{proof} \end{flashcard} \begin{flashcard}[rouches-thm] \begin{theorem*}[Rouch\'e's theorem] Let $\gamma$ bound a domain $D$, and $f$, $g$ \cloze{are \fcemph{holomorphic} on a \fcemph{neighbourhood} of $D \cup \gamma$. If $|f(z)| > |g(z)|$ for all $z \in \gamma$, then $f$ and $f + g$ have the same number of zeroes in $D$.} \end{theorem*} \end{flashcard} \begin{hiddenflashcard}[rouches-thm-proof] \prompt{Proof of Rouch\'e's theorem? \\} \cloze{ Define $h(z) = \frac{f(z) + g(z)}{f(z)} = 1 + \frac{g(z)}{f(z)}$. Note $h$ is meromorphic on a neighbourhood of $D \cup \gamma$ and has no zeroes or poles on $\gamma$. Also, $h \circ \gamma \subset D(1, 1)$ so $I(h \circ \gamma; 0) = 0$. So by argument principle, \[ \text{\# zeroes of $f + g$ on $D$} - \text{\# zeroes of $f$ on $D$} = I(h \circ \gamma; 0) = 0 \] } \end{hiddenflashcard} \begin{proof} Define $h(z) = \frac{f(z) + g(z)}{f(z)} = 1 + \frac{g(z)}{f(z)}$. Note $h$ is meromorphic on a neighbourhood of $D \cup \gamma$. Since $|f(z)| > |g(z)|$ $\forall z \in \gamma$< $f + g$ and $f$ are nonzero on $\gamma$, so $h$ has no zeroes or poles on $\gamma$. By argument principle, we have \[ \text{\# zeroes of $f + g$ on $D$} - \text{\# zeroes of $f$ on $D$} = I(h \circ \gamma; 0) \] By hypothesis, $h \circ \gamma \subset D(1, 1)$. So $I(h \circ \gamma; 0)$. \end{proof} \begin{example*} Consider $p(z) = z^4 + 6z + 3$. If $|z| \ge 2$, then $\left| z^3 + 6 + \frac{3}{z} \right| \ge |z|^3 - 6 - \frac{3}{|z|} > 0$, so $p(z) = z \left( z^2 + 6 + \frac{3}{z} \right) \neq 0$. We could instead apply Rouch\'e's with $\gamma : |z| = 2$, $f(z) = z^4$, $g(z) = 6z + 3$, so $|z|^4 = 16 > 15 = 6|z| + 3 \ge |6z + 3|$. By Rouch\'e's, $p(z)$ has 4 zeroes inside $D(0, 2)$. For $|z| = 1$, $|6z| = 6$ and $|z^4 + 3| \le 4$. So using $\gamma : |z| = 1$, $f(z) = 6z$, $g(z) = z^4 + 3$, we see $p(z)$ has 1 zero inside $D(0, 1)$. (Note that this implies that $p(z)$ has a real root, since roots come in conjugate pairs for polynomials over $\RR$). \end{example*} \begin{example*}[Rouch\'e's $\implies$ open mapping] If $f : D \to \CC$ is holomorphic and nonconstant and $a \in D$, we can choose $r > 0$ such that $D(a, 2r)^\times$ has no zeroes of $f(z) - f(a)$. Let $\gamma$ be $|z - a| = r$, and let $0 < \eps , \min_{z \in \gamma} |f(z) - f(a)|$. Then for $w \in D(f(a), \eps)$, $f(z) - w = f(a) - w + f(z) - f(a)$, and we have by $|f(a) - w| < \eps < |f(z) - f(a)|$ for all $z \in \gamma$. By Rouch\'e's, zeroes in $D(a, r)$ of $f(z) - w$ is equal to number of zeroes in $D(a, r)$ of $f(z) - f(a) > 0$. So $f(D(a, r)) \supset D(f(a), \eps)$. \end{example*} \subsubsection*{Uniform limits of holomorphic functions} \begin{flashcard}[locally-uniformly-defn] \begin{definition*}[Converging locally uniformly] \cloze{ Let $\mathcal{U} \subset \CC$ be open, and $f_n : \mathcal{U} \to \CC$ a sequence of functions. Then $f_n \to f$ \emph{converges locally uniformly on $\mathcal{U}$} if $\forall u \in \mathcal{U}$, $\exists D(a, r) \subset \mathcal{U}$ on which $f_n \to f$ uniformly. } \end{definition*} \end{flashcard} \begin{example*} $f_n(z) = z^n$ on $\mathcal{U} = D(0, 1)$. As $n \to \infty$, $f_n$ tends to constant zero function pointwise. For $a \in D(0, 1)$, $\ol{D\left(a, \frac{1 - |a|}{2}\right)} \subset D(0, 1)$, and $f_n \to 0$ uniformly on $D \left( a, \frac{1 - |a|}{2} \right)$. So $f_n \to 0$ locally uniformly on $D(0, 1)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/63c687bebf3111ed.png} \end{center} However, for any $\eps > 0$, $|f_n(z)| < \eps \iff |z|^n < \eps \iff |z| < \eps^{1/n}$, so no uniform bound can hold for all $|z| < 1$. \end{example*} \begin{flashcard}[locally-uniformly-convergent-iff] \begin{proposition*} $\{f_n\} : \mathcal{U} \to \CC$ is locally uniformly convergent on $\mathcal{U}$ $\iff$ \cloze{$\{f_n\}$ converges uniformly on any compact subset of $\mathcal{U}$.} \end{proposition*} \end{flashcard} \noindent Recall: $K \subset \CC$ is compact $\iff$ $K$ is closed and bounded $\iff$ every open cover has a finite subcover. \begin{proof} If $f_n \to f$ locally uniformly on $\mathcal{U}$, and $K \subset \mathcal{U}$ is compact, then $\forall a \in K$, there exists $r_a > 0$ such that $\{f_n\}$ converges uniformly on $D(a, r_a)$. $\bigcup_{a \in K} D(a, r_a)$ is an open cover of $K$, so there exists $a_1, \ldots, a_l$ such that \[ K \subset D(a_1, r_{a_1}) \cup \cdots \cup D(a_l, r_{a_l}) .\] Taking the max of constants of uniform convergence on these discs, $f_n \to f$ uniformly on $K$. \myskip If $f_n \to f$ on every compact subset of $\mathcal{U}$ then if $a \in \mathcal{U}$, find a closed disc $\ol{D(a, r)} \subset \mathcal{U}$. Then $f_n \to f$ converges uniformly on $D(a, r)$. \end{proof}