% vim: tw=50 % 06/03/2023 10AM \begin{proposition*} Let $f$ have a zero (respectively pole) of order $k > 0$ at $z = a$. Then $\frac{f'(z)}{f(z)}$ has a simple pole at $z = a$, of residue $k$ (respectively $-k$). \end{proposition*} \begin{remark*} By Example Sheet 2, if $f : \mathcal{U} \to \CC$ with $f(\mathcal{U})$ contained in a simply connected set which omits $0$, then there exists holomorphic function $g(z) = \log f(z)$ on $\mathcal{U}$, so $\frac{f'(z)}{f(z)}$ has holomorphic antiderivative $\log f$ on $\mathcal{U}$. We call $\frac{f'(z)}{f(z)}$ the ``logarithmic derivative'' of $f$. \end{remark*} \begin{proof} Suppose $f(z) = (z - a)^k g(z)$ near $a$, with $g(a) \neq 0$, then $f'(z) = k(z - a)^{k - 1} g(z) + (z - a)^k g'(z)$, so \[ \frac{f'(z)}{f(z)} = \frac{k}{z - a} + \frac{g'(z)}{g(z)} \] Since $g(a) \neq 0$, $\frac{g'}{g}$ is holomorphic at $a$. So $\Res_{z = a} \frac{f'}{f} = k$. (Similarly for the pole case). \end{proof} \begin{theorem*}[Argument Principle] Let $\gamma$ be a closed curve bounding a domain $D$, and $f$ a function meromorphic on an open neighbourhood of $D \cup \gamma$. If $f$ has no zeroes or poles on $\gamma$, then \[ I(f \circ \gamma; 0) = \frac{1}{2\pi i} \int_\gamma \frac{f'(z)}{f(z)} \dd z = \text{\# of zeroes of $f$ in $D$ } - \text{ \# of poles of $f$ in $D$} \] where zeroes and poles are counted with multiplicity. \end{theorem*} \begin{hiddenflashcard}[argument-principle] \begin{theorem*}[Argument Principle] \begin{itemize} \item \cloze{$\gamma$ closed curve bounding a domain $D$} \item \cloze{$f$ meromorphic on open neighbourhood of $D \cup \gamma$} \item \cloze{$f$ has no zeroes or poles on $\gamma$} \end{itemize} Then: \[ \cloze{ I(f \circ \gamma; 0) = \frac{1}{2\pi i} \int_\gamma \frac{f'(z)}{f(z)} \dd z = \text{\# of zeroes of $f$ in $D$ } - \text{ \# of poles of $f$ in $D$} } \] \end{theorem*} \end{hiddenflashcard} \begin{flashcard}[argument-principle-proof] \prompt{Argument principle proof? \\} \begin{proof} \cloze{ We have \begin{align*} I(f \circ \gamma; 0) &= \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{\dd w}{w} \\ &= \frac{1}{2\pi i} \int_\gamma \frac{f'(z)}{f(z)} \dd z \end{align*} By residue theorem, this is \[ \sum_{\substack{\text{poles $\alpha$ in $D$} \\ \text{of $f' / f$}}} \Res_{z = \alpha} \frac{f'}{f} \] but by previous proposition this equals \[ \text{number of zeroes of $f$ in $D$} - \text{number of poles of $f$ in $D$} \] counting multiplicity. } \end{proof} \end{flashcard} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item Recall $\gamma$ is compact, $f \circ \gamma$ is also a closed curve (and compact). \item Morally: this says \[ 2\pi (\text{\# of zeroes of $f$ in $D$ } - \text{ \# of poles of $f$ in $D$}) \] is the change in $\arg f(z)$ as $z$ travels $\gamma$. \end{enumerate} The argument principle has important consequences for local behaviour of $f$. \begin{flashcard}[local-degree-defn] \begin{definition*} If $f$ is holomorphic and non-constant near $z = a$, then the \emph{local degree} of $f(z)$ at $z = a$ is \cloze{$\deg_{z = a} f(z)$, the order of the zero of $f(z) - f(a)$ at $z = a$.} \end{definition*} \end{flashcard} \noindent If $f$ is non-constant, we can write $f(z) - f(a) = (z - a)^k g(z)$, $g$ holomorphic at $a$, and the zero at $z = a$ of $f(z) - f(a)$ is isolated. So $0 < |z - a|$ sufficiently small implies $f(z) - f(a) \neq 0$. SO for small $\eps > 0$, the circle $\gamma(t) = a + \eps e^{it}$, $t \in [0, 2\pi]$, about $a$ gives \begin{align*} I(f \circ \gamma; f(a)) &= I(f(\gamma(t)) - f(a); 0) \\ &= \text{\# of zeroes in $D(a, \eps)$ of $f(z) - f(a)$ } - \text{ \# of poles of $f(z) - f(a)$ in $D(a, \eps)$} \\ &= \deg_{z = a} f(z) \end{align*} Consider the local behaviour of $f(z) = z^k$ at $z = 0$ for $k > 0$. We have $\deg_{z = 0} f(z) = k$. \begin{center} \includegraphics[width=0.6\linewidth] {images/24ef76c0bc0e11ed.png} \end{center} Note that $\forall w \in D(0, \eps)$, $w$ has $k$ preimages under $f$ in $D(0, \eps^{1/k})$. \begin{flashcard}[local-mapping-thm] \begin{theorem*}[Local mapping degree theorem] \cloze{ Let $f : D(a, R) \to \CC$ be holomorphic and non-constant, with local degree $k > 0$. Then for $r > 0$ sufficiently small, there exists $\eps > 0$ such that if $0 < |w - f(a)| < \eps$, then $f(z) = w$ has exactly $k$ (simple) roots in $D(a, r)$. } \end{theorem*} \begin{proof} \cloze{ Choose $r > 0$ such that $f(z) - f(a)$ has no zeroes for $0 < |z - a| \le r$ and $f'(z) \neq 0$ for $0 < |z - a| \le r$; $r$ exists by identity principle. Let $\gamma$ be the circle of radius $r$ about $a$. Then $f \circ \gamma$ doesn't contain $f(a)$, so there exists $\eps > 0$ such that $D(f(a), \eps) \cap f \circ \gamma = \emptyset$. For $w \in D(f(a), \eps)$, the number of zeroes of $f(z) = w$ in $D(a, r)$ is $I(f \circ \gamma; w)$. But $I(f \circ \gamma; w) = I(f \circ \gamma, f(a)) = k$\prompt{ (since the winding number is \fcemph{constant} on \fcemph{connected components} of $\CC \setminus f \circ \gamma$)}. Since $f(z) - w$ has nonzero derivative in $D(a, r)^\times$, so the preimages of $w$ are simple. } \end{proof} \end{flashcard} \myskip Note $I(f \circ \gamma; w) = I(f \circ \gamma; f(a))$ because the winding number is constant on connected components of $\CC \setminus f \circ \gamma$.