% vim: tw=50 % 03/03/2023 10AM \begin{example*} Evaluate $\int_{-\infty}^\infty \frac{\cos mx}{x^2 + 1} \dd x$, $m \in \RR$. $\cos z$ is large for $iR = z$ large $R$, so instead \[ \cos mx = \Re(\eps(imx)) \implies I = \Re \left( \int_{-\infty}^\infty \frac{e^{imx}}{x^2 + 1} \dd x \right) \] Useful contour: \begin{center} \includegraphics[width=0.6\linewidth] {images/d5562df6b9ac11ed.png} \end{center} Call this $\gamma_R$. If $m > 0$, Jordan's lemma implies $\int_{C_R'} \frac{e^{imz}}{z^2 + 1} \dd z \to 0$ as $R \to \infty$. Residue theorem gives \begin{align*} \int_{\gamma_R} \frac{e^{imz}}{z^2 + 1} \dd z &= 2\pi i \Res_{z = i} \frac{e^{imz}}{z^2 + 1} \\ &= 2\pi i \cdot \frac{e^{im(i)}}{1 + i} \\ &= \pi e^{-m} \end{align*} So \[ \pi e^{-m} = \int_{C_R'} \frac{e^{imz}}{z^2 + 1} \dd z + \int_{-R}^R \frac{e^{imz}}{z^2 + 1} \dd z \implies I = \frac{\pi}{e^m}, \quad m > 0 \] If $m < 0$, $\cos(mx) = \cos(-mx)$, so $I = \frac{\pi}{e^{-m}}$ by previous computation. If $m = 0$, we have \[ \left| \int_{C_R'} \frac{1}{z^2 + 1} \dd z \right| \le \frac{\pi R}{R^2 - 1} \to 0 \] as $R \to \infty$, so with the residue computation $\Res_{z = i} \frac{1}{z^2 + 1} = \frac{1}{2i}$ we have $I = \frac{\pi}{e^0} = \pi$. So in all cases, $I = \frac{\pi}{e^{|m|}}$. \end{example*} \begin{example*} Evaluate $\int_0^{2\pi} \frac{1}{5 + 4\cos\theta}\dd \theta$. Let's use $\cos \theta = \half [e^{i\theta} + e^{-i\theta}]$, so $\cos\theta = \half \left[ z + \frac{1}{z} \right]$ for $z = e^{i\theta}$. So $\dd z = ie^{i\theta} = iz\dd \theta$. \begin{align*} \int_0^{2\pi} \frac{1}{5 + 4 \cos\theta} \dd \theta &= \int_{|z| = 1} \frac{1}{5 + 4 \left( \frac{z + \frac{1}{z}}{2} \right)} \cdot \frac{\dd z}{iz} \\ &= \frac{1}{i} \int_{|z| = 1} \frac{1}{2z^2 + 5z + 2} \dd z \\ &= \frac{1}{i} \int_{|z| = 1} \frac{1}{(2z + 1)(z + 2)} \dd z \end{align*} So we have \begin{center} \includegraphics[width=0.3\linewidth] {images/58aca2c2b9b011ed.png} \end{center} with winding number 1 around $z = -\half$. CIF applied to $\frac{1}{2(z + 2)}$ says \[ \frac{1}{2\left( -\half + 2 \right)} = \frac{1}{2\pi i} \int_{|z| = 1} \frac{1}{2(z + 2)\left( z + \half \right)} \dd z \] so \[ \frac{2\pi i}{3} = \int_{|z| = 1} \frac{1}{2z^2 + 5z + 2} \dd z = i \int_0^{2\pi} \frac{1}{5 + 4 \cos\theta} \dd \theta \] so $\int_0^{2\pi} \frac{1}{5 + 4\cos\theta} \dd \theta = \frac{2\pi}{3}$. \end{example*} \begin{example*} Evaluate $\int_0^\infty \frac{\sin x}{x} \dd x$. Consider \begin{align*} \frac{1}{2i} \int_0^\infty \frac{e^{ix} - e^{-ix}}{x} \dd x &= \frac{1}{2i} \int_0^\infty \frac{e^{ix}}{x} \dd x - \frac{1}{2i} \int_0^{-\infty} \frac{e^{it}}{-t} (-\dd t) \\ &= \frac{1}{2i} \int_{-\infty}^\infty \frac{e^{ix}}{x} \dd x \end{align*} Modify by considering $\gamma_{R,\eps}$ contour. \begin{center} \includegraphics[width=0.3\linewidth] {images/070e400ab9b111ed.png} \end{center} Cauchy's theorem gives $\int_{\gamma_{R, \eps}} \frac{e^{iz}}{z} \dd z = 0$. Jordan's lemma gives $\int_{C_R'} \frac{e^{iz}}{z} \dd z \to 0$ as $R \to \infty$. On $C_\eps'$, $z = \eps e^{i\theta}$, $\dd z = i\eps e^{i\theta} \dd \theta = iz \dd \theta$, so \[ \int_{C_\eps} \frac{e^{iz}}{z} \dd z = \int_0^\pi e^{i\eps e^{i\theta}} i \dd \theta \to i\int_0^\pi 1 \dd \theta = \pi i \] as $\eps \to 0$. So \[ \int_{\gamma_{R, \eps}} \frac{e^{iz}}{z} \dd z = \int_{C_R'} \frac{e^{iz}}{z} \dd z + \int_{-R}^{-\eps} \frac{e^{iz}}{z} \dd z - \int_{C_\eps'} \frac{e^{iz}}{z} \dd z + \int_\eps^R \frac{e^{iz}}{z} \dd z \] As $\eps \to 0$, $R \to \infty$, we obtain \[ 0 = \int_{-\infty}^\infty \frac{e^{iz}}{z} \dd z - \pi i \] So \[ \int_0^\infty \frac{\sin x}{x} \dd x = \frac{1}{2i} \pi i = \frac{\pi}{2} \] \end{example*} \begin{example*} Evaluate $\int_0^\infty \frac{x^\alpha}{x^2 + 1} \dd x$, $\alpha \in (0, 1)$. $z^\alpha = \exp(\alpha \log z)$, branch of log. \myskip Claim: Let $\log z = \ln|z| + i\arg z$, $\arg z \in \left( -\frac{\pi}{2}, \frac{3\pi}{2} \right)$. Then for $x > 0$, we have $(-x)^\alpha = (-1)^\alpha x^\alpha$. Proof of the claim: $\log(-x) = \ln|x| + \pi i = \ln x + \pi i$ since $x > 0$. In particular, $\log(-1) = \pi i$. So $\log x + \log(-1) = \ln x + \pi i = \log(-x)$. So \[ \exp(\alpha \log x) \exp(\alpha \log(-1)) = \exp(\alpha \log(-x)) \] as claimed. \begin{center} \includegraphics[width=0.3\linewidth] {images/aa326c10b9b211ed.png} \end{center} So consider $\gamma_{R, \eps}$ as in previous example. Can show integrals along $C_R', C_\eps' \to 0$ as $R \to \infty$, $\eps \to 0$. Residue theorem: \[ \Res_{z = i} \frac{\exp(\alpha\log z)}{(z + i)(z - i)} = \frac{i^\alpha}{2i} \] So \begin{align*} 2\pi i \Res_{z = i} \frac{\exp(\alpha \log z)}{(z + i)(z - i)} &= \int_{\gamma_{R, \eps}} \frac{z^\alpha}{1 + z^2} \dd z \\ &= \int_{C_R'} \frac{z^\alpha}{1 + z^2} \dd z - \int_{C_\eps'} \frac{z^\alpha}{z^2 + 1} \dd z + \int_{-R}^{-\eps} \frac{z^\alpha}{z^2 + 1} + \int_\eps^R \frac{z^\alpha}{z^2 + 1} \dd z \end{align*} By substitution $t = -z$, we have \[ \int_{-R}^{-\eps} \frac{z^\alpha}{1 + z^2} \dd z = (-1)^\alpha \int_\eps^R \frac{z^\alpha}{z^2 + 1} \dd z \] So taking $\eps \to 0$, $R \to \infty$, we have \[ 2\pi i \frac{i^\alpha}{2i} = 0 - 0 + [(-1)^\alpha + 1] \int_0^\infty \frac{x^\alpha}{1 + x^2} \dd x \] so $\int_0^\infty \frac{x^\alpha}{1 + x^2} \dd x = \frac{\pi i^4}{1 + (-1)^\alpha}$. \end{example*} \begin{example*} Evaluate $\int_0^\infty \frac{x^{1/3}}{(x + 2)^2} \dd x$. Let's define $\log z = \ln|z| + i\arg z$, $\arg z \in (0, 2\pi)$. We'll consider a ``keyhole contour'', $\gamma$. Integral on $\gamma$ of $\frac{z^{1/3}}{(z + 2)^2}$. \begin{center} \includegraphics[width=0.3\linewidth] {images/f2153bd8b9b311ed.png} \end{center} On $C_1$: \[ \left| \int_{C_1} \frac{z^{1/3}}{(z + 2)^2} \dd z \right| \le (2\pi - 2\delta)R \cdot \frac{R^{1/3}}{(R - 2)^2} \to 0 \] as $R \to \infty$. On $C_2$: \[ \left| \int_{C_2} \frac{z^{1/3}}{(z - 2)^2} \dd z \right| \le (2\pi - 2\delta)\eps \frac{\eps^{1/3}}{(2 - \eps)^2} \to 0 \] as $\eps \to 0$. On $L_1$, $z = te^{i\delta}$, $t \in [\eps, R]$, $\dd z = e^{i\delta} \dd t$. \[ \int_\eps^R \frac{t^{1/3} e^{i\delta/3}}{(te^{i\delta} + 2)^2} e^{i\delta} \dd t \to \int_\eps^R \frac{t^{1/3}}{(t + 2)^2} \dd t \] as $\delta \to 0$. On $L_2$, $z = te^{i(2pi - \delta)}$, \[ \int_\eps^R \frac{t^{1/3} e^{i \frac{2\pi - \delta}{3}}}{(te^{i(2\pi - \delta)} + 2)^2} e^{i(2\pi - \delta)} \dd t \to e^{2\pi i/3} \int_\eps^R \frac{t^{1/3}}{(t + 2)^2} \dd t \] So we have by residue theorem, \[ O \left( \frac{1}{R^{2/3}} \right) - e^{2pi i/3} \int_\eps^R \frac{t^{1/3}}{(t + 2)^2} \dd t - O \left( \eps^{4/3} \right) + \int_\eps^R \frac{t^{1/3}}{(t + 2)^2} \dd t = \Res_{z = -2} \frac{z^{1/3}}{(z + 2)^2} \cdot 2\pi i \] Then taking $\eps \to 0$ and $R \to \infty$ we get \[ (1 - e^{2\pi i/3}) \int_0^\infty \frac{t^{1/3}}{(t + 2)^2} \dd t = 2\pi i \Res_{z = -2} \frac{z^{1/3}}{(z + 2)^2} \] Using residue computation trick (iii), this residue is \[ \left. \dfrac{}{z} \right|_{z = -2} = \left. \dfrac{}{z} \right|_{z = -2} \exp \left( \frac{1}{3} \log z \right) = \left. \frac{1}{3z} \exp \left( \frac{1}{3} \log z \right) \right|_{z = -2} \] so $\Res_{z = -2} \frac{z^{1/3}}{(z + 2)^2} = -\frac{1}{6} \sqrt[3]{2} e^{\pi i/3}$. Can compute $\frac{e^{\pi i/3}}{(1 - e^{2\pi i/3}}= \frac{i}{\sqrt{3}}$, so $\int_0^\infty \frac{t^{1/3}}{(t + 2)^2} \dd t = \frac{\pi}{3\sqrt{3}} \sqrt[3]{2}$. \end{example*}