% vim: tw=50 % 27/02/2023 10AM \begin{remark*}[Jordan Curve Theorem] Every simple closed continuous curve in the plane separates $\CC$ into two connected components, one bounded, one unbounded. \end{remark*} \subsubsection*{Computing residues} \begin{enumerate}[(i)] \item If $f$ has a simple ($=$ order $1$) pole at $z = a$, then the Laurent expansion at $a$ is \[ f(z) = \frac{c_{-1}}{z - a} + c_0 + c_1(z - a) + c_2(z - a)^2 + \cdots \] so \[ \Res_{z = a} (f(z)) = \lim_{z \to a} (z - a) f(z) \] \begin{example*} $f(z) = \frac{1}{1 + z^2}$ at $z = i$: $(z - i) f(z) = \frac{1}{z + i}$, so $\Res_{z = i} f(z) = \frac{1}{2i}$. \end{example*} \item If $f = \frac{g(z)}{h(z)}$, where $g$ is holomorphic and non-zero at $z = a$, and $h$ is holomorphic and has a simple zero at $z = a$: \[ g(z) = g(a) + (z - a) \tilde{g}(z) \] $\tilde{g}$ holomorphic at $z = a$, \[ h(z) = h'(a)(z - a) \tilde{h}(z) \] $\tilde{h}(a) = 1$ at $z = a$, and is holomorphic at $a$. So \[ \frac{g(z)}{h(z)} = \frac{g(a)}{h'(a) (z - a) \tilde{h}(z)} + \boxed{\frac{\tilde{g}(z)}{h'(z) \tilde{h}(z)}} \] (the boxed expression is holomorphic at $a$). Applying (i) to $\frac{g(a)}{h'(a) (z - a)\tilde{h}(z)}$, we see that \[ \Res_{z = a} f(z) = \frac{g(a)}{h'(a)} \] \begin{example*} $f(z) = \frac{e^z}{z^2 + 1}$ at $z = i$. (ii) implies \[ \Res_{z = i} f(z) \frac{e^i}{2i} \] \end{example*} \item If $f(z) = \frac{g(z)}{(z - a)^k}$, $g$ holomorphic at $a$. Then $\Res_{z = a} f(z)$ is the coefficient of $(z - a)^{k - 1}$ in the expansion of $g$, which is \[ \frac{f^{(k - 1)}(a)}{(k - 1)!} \] \end{enumerate} Let's explore applications to real integrals. \begin{example*} Evaluate $\int_0^\infty \frac{1}{1 + x^4} \dd x$. Note: \begin{enumerate}[(1)] \item $\frac{1}{1 + x^4} = \frac{1}{1 + (-x)^4}$ \item $|x| \gg 1 \implies \left| \frac{1}{1 + x^4} \ll 1 \right|$. \end{enumerate} Consider: \begin{center} \includegraphics[width=0.3\linewidth] {images/a6477072b68911ed.png} \end{center} $1 + x^4$ has 4 simple zeroes: $e^{\pi i/4}$, $e^{3\pi i/4}$, $e^{5\pi i/4}$ and $e^{7\pi i/4}$. $\gamma_R$ has winding number $1$ around $e^{\pi i/4}$, $e^{3\pi i/4}$, and $0$ around the others. $\Res_{z = e^{\pi i/4}} \frac{1}{1 + z^4} = \frac{1}{4e^{3\pi i/4}}$, and $\Res_{z = e^{3\pi i/4}} \frac{1}{1 + z^4} = \frac{1}{4e^{9\pi i/4}} = \frac{1}{4e^{\pi i/4}}$. (Computed using (ii), with $g(z) \equiv 1$, $h(z) = 1 + z^4$). We have: \[ \int_{\gamma_R} \frac{1}{z^4 + 4} \dd z = \int_{C_R'} \ub{\frac{1}{1 + z^4} \dd z}_{I_1} + \ub{\int_{-R}^R \frac{1}{1 + z^4} \dd z}_{I_2} \] For $I_1$, parametrise $z = Re^{i\theta}$, $\theta \in [0, \pi]$. Then \[ I_1 = \int_0^\pi \frac{1}{1 + R^4 e^{4i\theta}} iRe^{i\theta} \dd \theta \] $|I_1| \le \frac{\pi R}{R^4 + 1} \to 0$ as $R \to \infty$. So \begin{align*} I_2 &= \int_{\gamma_R} \frac{1}{1 + z^4} \dd z - \int_{C_R'} \frac{1}{1 + z^4} \dd z \\ &= 2\pi i \left[ \frac{1}{4e^{3\pi i/4}} + \frac{1}{4e^{\pi i/4}} \right] - \int_{C_R'} \frac{1}{1 + z^4} \dd z \\ &\to 2\pi i \left[ \frac{1}{4e^{3\pi i/4}} + \frac{1}{4e^{\pi i/4}} \right] - 0 \end{align*} So \[ I_2 \to \half \pi i \left( e^{-3\pi i/4} + e^{-\pi i/4} \right) = \half \pi i \left( -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i \right) = \frac{\pi}{\sqrt{2}} \] So $\int_0^\infty \frac{1}{1 + z^4} \dd z = \half \int_{-\infty}^\infty \frac{1}{1 + z^4} \dd z = \frac{\pi}{2\sqrt{2}}$. \end{example*} \begin{example*} Compute $\int_{-\infty}^\infty \frac{\cos(x)}{1 + x + x^2} \dd x$. Note \[ \cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{ix - y} + e^{-ix + y}}{2} \] However, $e^{ix} = \cos x + i\sin x$, so the function $\frac{e^{ix}}{1 + x + x^2}$ has real part $\frac{\cos x}{1 + x + x^2}$ on $\RR$. Notice then $e^{i(x + iy)} = e^{ix - y}$, so this function is bounded above by $1$ in modulus for $y \ge 0$. \begin{center} \includegraphics[width=0.3\linewidth] {images/0bcbab4ab68d11ed.png} \end{center} Roots of $1 + x + x^2$ are $e^{2\pi i/3}$, $e^{4\pi i/3}$, $\gamma_R$ winds around $e^{2\pi i/3}$ with winding number $1$. \[ \int_{\gamma_R} \frac{e^{iz}}{1 + z + z^2} \dd z = \ub{\int_{C_R'} \frac{e^{iz}}{1 + z + z^2}}_{I_1} + \ub{\int_{-R}^R \frac{e^{iz}}{1 + z + z^2}}_{I_2} \] $|I_1| \le \length(C_R') = \frac{1}{R^2 - R - 1} = \frac{\pi R}{R^2 - R - 1} \to 0$ as $R \to \infty$. We have \[ \Res_{z = e^{2\pi i/3}} \frac{e^{iz}}{1 + z + z^2} = \frac{e^{ie^{2\pi i/3}}}{1 + 2e^{2\pi i/3}} \] so $I_2 \to 2\pi i \left[ \frac{e^{ie^{2\pi i/3}}}{1 +2e^{2\pi i/3}} \right] - 0$ (as $R \to \infty$). $e^{2\pi i/3} = -\half + \frac{\sqrt{3}}{2} i$, so $1 + 2e^{2\pi i/3} = \sqrt{3}i$. \[ e^{ie^{2\pi i/3}} = e^{i\left( -\half + \frac{\sqrt{3}}{2}i \right)} = e^{-i/2} e^{-\sqrt{3}/2} \] so $I_2 \to 2\pi i \left[ \frac{e^{-i/2} e^{-\sqrt{3}/2}}{\sqrt{3} i} \right] = \frac{2\pi}{\sqrt{3}}e^{-\sqrt{3}/2} e^{-i/2}$. So \begin{align*} \int_{-\infty}^\infty \frac{\cos x}{1 + x + x^2} &= \Re \left( \frac{2\pi}{\sqrt{3}} e^{-\sqrt{3}/2} e^{-i/2} \right) \\ &= \frac{2\pi}{\sqrt{3}} e^{-\sqrt{3}/2} \cos \left( -\half \right) \end{align*} \end{example*} \begin{flashcard}[jordans-lemma] \begin{lemma*}[Jordan's Lemma] Suppose $f(z)$ is holomorphic on $\{|z| > r\}$ for some $r > 0$, and \cloze{$zf(z)$ is bounded. Then for all $\alpha > 0$, we have \[ \int_{C_R'} f(z) e^{i\alpha z} \dd z \to 0 \] } as $R \to \infty$, where $C_R' : [0, \pi] \to \CC$, $C_R'(t) = Re^{it}$. \end{lemma*} \end{flashcard} \begin{proof} We have for $z = Re^{it}$, that $|e^{i\alpha z}| = e^{-\alpha R \sin t}$, and so using the basic estimate $\frac{\sin t}{t} \ge \frac{2}{\pi}$ on $[0, \pi/2]$ (since $\frac{\sin t}{t}$ decreases on $[0, \pi/2]$), we have \[ |e^{i\alpha z}| \le \begin{cases} e^{-\alpha R \frac{2t}{\pi}} & t \in [0, \pi/2] \\ e^{-\alpha R \frac{2t'}{\pi}} & t' = \pi - t, t \in [\pi/2, \pi] \end{cases} \] BY hypothesis, there exists $M \in \RR$ such that $|zf(z)| \le M$. Putting these together, let $\tilde{C_R'}$ be $C_R'$ for $[0, \pi/2]$. Then \begin{align*} \left| \int_{\tilde{C_R'}} f(z) e^{i\alpha z} \dd z \right| &\le \int_0^{\pi/2} M e^{-\alpha R \frac{2t}{\pi}} \dd t \\ &= \left[ M \left( \frac{1}{-\alpha R \frac{2}{\pi}} \right) e^{-\alpha R \frac{2t}{\pi}} \right]_{t = 0}^{t = \pi/2} \\ &= \frac{(1 - e^{-\alpha R} \pi M}{2R\alpha} \\ &\to 0 \end{align*} as $R \to \infty$. Similarly for $t \in [\pi/2, \pi]$. \end{proof} \begin{hiddenflashcard}[jordans-lemma-proof] \prompt{Jordan's Lemma proof} \begin{itemize} \item \cloze{Estimate $\frac{\sin t}{t} \ge \frac{2}{\pi}$ on $[0, \pi/2]$.} \item \cloze{Since $|e^{i\alpha z}| = e^{-\alpha R \sin t}$, \[ |e^{i\alpha z}| \le \begin{cases} e^{-\alpha R \frac{2t}{\pi}} & t \in [0, \pi/2] \\ e^{-\alpha R \frac{2t'}{\pi}} & t' = \pi - t, t \in [\pi/2, \pi] \end{cases} \]} \item \cloze{Split the integral into $[0, \pi/2]$ and $[\pi/2, \pi]$ and show that each goes to 0.} \end{itemize} \end{hiddenflashcard}