% vim: tw=50 % 20/02/2023 10AM \begin{flashcard}[laurent-expansion] \begin{theorem*}[Laurent expansion] \cloze{ Let $f$ be holomorphic on an annulus $A = \{z \in \CC : r < |z - a| < R\}$, where $0 \le r < R \le \infty$. Then: \begin{enumerate}[(i)] \item $f$ has a (unique) convergent expansion on $A$: \[ f(z) = \sum_{n = -\infty}^\infty c_n(z - a)^n \] ``Laurent series'' \item For any $r < \rho < R$, we have \[ c_n = \frac{1}{2\pi i} \int_{\partial D(a, \rho)} \frac{f(z)}{(z - a)^{n + 1}} \dd z \] \item If $r < \rho' \le \rho < R$, the Laurent series converges uniformly on $\{z \in \CC : \rho' \le |z - a| \le \rho\}$. \end{enumerate} } \end{theorem*} \end{flashcard} \begin{flashcard}[laurent-expansion-proof] \prompt{Laurent expansion proof? \\} \begin{proof} \cloze{ Fix $w \in A$, and choose $r < \rho_1 < |w - a| < \rho_2 < R$. Define two closed curves $\gamma_1, \gamma_2$ by a diameter of the annulus, labelled such that $I(\gamma_1; w) = 1$, $I(\gamma_2; w) = 0$. \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth] {images/db860fdab10911ed.png} \end{center} } $\gamma_1, \gamma_2$ are both homologous to zero in $A$, so by the generalised CIF we have \[ f(w) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(z)}{z - w} \dd z = \frac{1}{2\pi i} \int_{\gamma_1 + \gamma_2} \frac{f(z)}{z - w} \dd z \] Travelling $\gamma_1 + \gamma_2$ is the same as travelling $\partial D(a, \rho_2) - \partial D(a, \rho_1)$. So \[ f(w) = \ub{\frac{1}{2\pi i} \int_{|z - a| = \rho_1} \frac{f(z)}{z - w} \dd z}_{I_2} - \ub{\frac{1}{2\pi i} \int_{|z - a| = \rho_1} \frac{f(z)}{z - w} \dd z}_{I_1} \] Using the same geometric series for $\frac{1}{1 - \frac{w - a}{z - a}}$ to compute $I_2$ as in the Taylor series case gives \[ I_2 = \sum_{n = 0}^\infty c_n (w - a)^n \] where \[ c_n = \frac{1}{2\pi i} \int_{|z - a| = \rho_2} \frac{f(z)}{(z - a)^{n + 1}} \dd z \] for $n \ge 0$. For $I_1$, using the expansion (since $|z - a| < |w - a|$) \[ -\frac{1}{z - w} = \frac{\frac{1}{w - a}}{1 - \frac{z - a}{w - a}} = \sum_{m = 1}^\infty \frac{(z - a)^{m - 1}}{(w -a)^m} ,\] gives \[ I_1 = \sum_{m = 1}^\infty d_m (w - a)^{-m} \] where \[ d_m = \frac{1}{2\pi i} \int_{|z - a| = \rho_1} \frac{f(z)}{(z - a)^{-m + 1}} \dd z \qquad \forall m \ge 1 \] Reindex with $n = -m$, we obtain the Laurent expansion for $f$. \myskip To show (ii), (iii), suppose $f(z) = \sum_{n = -\infty}^\infty c_n(z - a)^n$ on $A$, and let $r < \rho' \le \rho < R$. The non-negative power series $\sum_{n = 0}^\infty c_n(z - a)^n$ has Radius of Convergence $\ge R$, so converges uniformly on $D(a, \rho)$. Similarly, if $u = \frac{1}{z - a}$ the negative part of the Laurent expansion, $\sum_{n = 1}^\infty c_{-n} u^n$ has Radius of Convergence $\ge \frac{1}{r}$, so converges uniformly on $\rho' \le |z - a| \le \rho$, so we can integrate term by term: \begin{align*} \frac{1}{2\pi i} \int_{\partial D(a, \rho)} \frac{f(z)}{(z - a)^{n + 1}} \dd z &= \frac{1}{2\pi i} \sum_{n = -\infty}^\infty c_n \int_{\partial D(a, \rho)} (z - a)^{n - m - 1} \dd z \\ &= c_m \end{align*} since this integral $=0$ unless $n - m - 1 = -1$, in which case it is $2\pi i$. } \end{proof} \end{flashcard} \begin{remark*} Proof shows $f = f_1 + f_2$, $f_1$ holomorphic on $D(a, R)$, and $f_2$ holomorphic on $|z - a| > r$. Applying when $r = 0$, we have three possibilities on a punctured disk domain i.e. an isolated singularity at $z = a$. \begin{enumerate}[(1)] \item $c_n = 0$ $\forall n < 0$. Then $f$ is the restriction to $D(a, R)^\times$ of a function holomorphic on $D(a, R)$. We say $f$ has a \emph{removable singularity} at $a$. For example, $f(z) = \frac{\sin z}{z}$ at $a = 0$. \item $\exists k < 0$ such that $c_k \neq 0$ but $c_n = 0$ for all $n < k$> We have $(z - a)^{-k} f(z)$ holomorphic and non-zero at $a$. We say $f$ has a \emph{pole of order $-k$ at $a$}. For example, $g(z) = \frac{1}{z^6}$ at $a = 0$. \item $c_n \neq 0$ for infinitely many $n < 0$. $f$ has an essential singularity at $a$. For example, $e^{\frac{1}{z}}$ at $a = 0$. \end{enumerate} \end{remark*} \begin{flashcard}[removable-singularity-iff] \begin{proposition*} An isolated singularity at $z = a$ for $f$ is removable if and only if \cloze{$\lim_{z \to a} (z - a) f(z) = 0$.} \end{proposition*} \begin{proof} \cloze{ Forwards direction is clear. For backwards direction, consider \[ g(z) = \begin{cases} (z - a)^2 f(z) & z \neq a \\ 0 & z = a \end{cases} \] $g'(a) = \lim_{z \to a} (z - a) f(z) = 0$, so $g$ is holomorphic at $a$, with $g(a) = 0$. So $g(z) = \sum_{n = 2}^\infty c_n(z - a)^n$. So $f(z) = \sum_{n = 0}^\infty c_{n + 2} (z - a)^n$, so is holomorphic at $a$. } \end{proof} \end{flashcard} \begin{flashcard}[pole-iff] \begin{proposition*} An isolated singularity at $z = a$ for $f$ is a pole $\iff$ \cloze{$|f(z)| \to \infty$ as $z \to a$.} \\ Furthermore, the following are equivalent: \begin{enumerate}[(1)] \item $f$ has a pole of order $k$ at $z = a$. \item \cloze{$f(z) = (z - a)^{-k} g(z)$, where $g$ is holomorphic and nonzero at $a$.} \item \cloze{$f(z) = \frac{1}{h(z)}$ where $h$ is holomorphic at $a$ with a zero of order $k$ at $a$.} \end{enumerate} \end{proposition*} \end{flashcard} \begin{proof} (1) $\iff$ (2) is immediate using Laurent expansion. (2) $\iff$ (3) since $g$ is holomorphic, nonzero at $a$ $\iff$ $\frac{1}{g}$ is holomorphic at $a$. \myskip If $f$ has a pole of order $k$ at $z = a$, then $f(z) = (z - a)^{-k} g(z)$, so $|f(z)| \to \infty$ as $z \to a$. Convsersely if $|f| \to \infty$ as $z \to a$, then there exists $r > 0$ such that $f(z) \neq 0$ for all $0 < |z - a| < r$. So $\frac{1}{f}$ is holomorphic on $D(a, r)^\times$, and $\left| \frac{1}{f} \right| \to 0$ as $z \to a$, so the singularity for $\frac{1}{f}$ is removable, and $\frac{1}{f(z)} = h(z)$, holomorphic $h$ on $D(a, r)$. $h$ has a zero of order $k$, so $h(z) = (z - a)^k l(z)$ for $l$ holomorphic and nonzero at $a$, so $f(z) = (z - a)^{-k} g(z)$, i.e. $f$ has a pole of order $k$. at $z = a$. \end{proof} \begin{flashcard}[essential-singularity-iff] \begin{corollary*} An isolated singularity at $z = a$ is essential $\iff$ \cloze{$|f|$ does not approach a limit in $\RR \cup \{\infty\}$ as $z \to a$.} \end{corollary*} \end{flashcard}