% vim: tw=50 % 20/01/2023 10AM \section{Complex Differentiation} Goal: study the theory of complex-valued differentiable functions in one complex variable. \begin{enumerate}[(1)] \item $p(z) = a_d z^d + \cdots + a_1 z + a_0$ polynomial, coefficients in $\RR$, $\QQ$, $\ZZ$, $\CC$. \item Recall computing the convergence of \[ \sum_{n = 1}^\infty \frac{1}{n^2}, \quad \sum_{n = 1}^\infty \frac{1}{n^s}, \quad s > 1 \] We could also consider this as a complex function in complex variable $s$. \item These functions are related to harmonic functions $u(x, y) \colon \RR^2 \to \RR$, $u_{xx} + u_{yy} = 0$. \end{enumerate} \begin{notation*} $z \in \CC$, $z = x + iy$, real, imaginary parts. \par\noindent $\ol{z}$ complex conjugate $\ol{z} = x - iy$. \\ $|z|$, $\arg(z)$ or $\Arg(z)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/9f89197698ab11ed.png} \end{center} $\theta$ with positive real axis, length of vector is $|z|$. $\theta = \arg(z)$, $\theta \in [0, 2\pi)$ then $\Arg(z)$. \end{notation*} \subsubsection*{Basic Notions} \begin{itemize} \item \begin{flashcard}[open-set-in-C] $\mathcal{U} \subset \CC$ is \emph{open} if \cloze{$\forall u \in \mathcal{U}$, $\exists \eps > 0$ such that \[ D(x, \eps) \defeq \{z \in \CC \colon |z - u| < \eps\} \subset \mathcal{U} .\]} \end{flashcard} (This is sometimes also written as $\mathbb{D}(x, \eps)$ or $B(x, \eps)$). \item \begin{flashcard}[path-in-C] a \emph{path} in $\mathcal{U} \subset \CC$ is \cloze{a continuous map $\gamma : [a, b] \to \mathcal{U}$, $\mathcal{C}'$ if $\gamma'$ exists and is \fcemph{continuous}. (one-sided derivatives at endpoints). \\ $\gamma$ is \fcemph{\emph{simple}} if it is \fcemph{injective}.} \end{flashcard} \item \begin{flashcard}[path-connected-in-U] $\mathcal{U} \subset \CC$ is \emph{path-connected} if \cloze{$\forall z, w \in \mathcal{U}$ there exists path in $\mathcal{U}$ with endpoints at $z$, $w$.} \end{flashcard} \begin{remark*} If $\mathcal{U}$ is open, $z, w \in \mathcal{U}$ connected by a path $\gamma$ in $\mathcal{U}$, then $\exists$ path $\tilde{\gamma}$ in $\mathcal{U}$ connecting $z$ and $w$ consisting of finitely many horizontal and vertical segments. \end{remark*} \end{itemize} \begin{flashcard}[domain] \begin{definition*}[Domain] A \emph{domain} is \cloze{a \fcemph{non-empty}, \fcemph{open}, \fcemph{path-connected} subset of $\CC$.} \end{definition*} \end{flashcard} \begin{flashcard}[differentiable-holomorphic-entire] \begin{definition*} \begin{enumerate}[(1)] \item $f \colon \mathcal{U} \to \CC$ is \emph{differentiable} \cloze{at $u \in \mathcal{U}$ if \[ f'(u) \defeq \lim_{z \to u} \frac{f(z) - f(u)}{z - u} \] exists.} \item $f : \mathcal{U} \to \CC$ is \emph{holomorphic} \cloze{at $u \in \mathcal{U}$ at $u \in \mathcal{U}$ if $\exists \eps > 0$ such that $f$ is differentiable at $z$ for all $z \in D(u, \eps)$ (``analytic'').} \item $f \colon \CC \to \CC$ is \emph{entire} \cloze{if it is holomorphic everywhere.} \end{enumerate} \end{definition*} \end{flashcard} \begin{remark*} All differentiation rules (sum, product, quotient, inverse, chain, \ldots) hold, by the same proofs. \end{remark*} \noindent Identifying $\CC$ with $\RR^2$ we may write $f \colon \mathcal{U} \to \CC$ as $f(x + iy) = u(x, y) + iv(x, y)$ where $u$ and $v$ are real and imaginary parts of $f$. \myskip From Analysis and Topology: $u \colon \mathcal{U} \to \RR$ as a function of two real variables is ($\RR^2$-)differentiable at $(c, d) \in \RR^2$ with $D u|_{(c, d)} = (\lambda, u)$ if \[ \frac{u(x, y) - u(c, d) - [\lambda(x - c) + \mu(y - d)]}{\sqrt{(x - c)^2 + (y - d)^2}} \to 0 \] as $(x, y) \to (c, d)$. \begin{flashcard}[Cauchy-Riemann] \begin{proposition*}[Cauchy-Riemann equations] Let $f \colon \mathcal{U} \to \CC$ on an open set $\mathcal{U} \subset \CC$. Then $f$ is differentiable at $w = c + id \in \mathcal{U}$ if and only if, \cloze{writing $f = u + iv$, we have $u$, $v$ ($\RR^2$-)\fcemph{differentiable} at $(c, d)$ \emph{and} \[ \boxed{\begin{aligned} u_x &= v_y \\ u_y &= -v_x \end{aligned}} \]} \fcscrap{``Cauchy-Riemann equations''. ($u_x = \pfrac{u}{x}$ and so on).} \end{proposition*} \end{flashcard} \begin{proof} $f$ is differentiable at $w \iff f'(w) = p + iq$ exists \[ \iff \lim_{z \to w} \frac{f(z) - f(w) - (z - w)(p + iq)}{|z - w|} = 0 .\] Writing $f = u + iv$ and considering real, imaginary parts in the quotient above, this holds iff \[ \lim_{(x, y) \to (c, d)} \frac{u(x, y) - u(c, d) - [p(x - c) - q(y - d)]}{\sqrt{(x - c)^2 + (y - d)^2}} = 0 \] and \[ \lim_{(x, y) \to (c, d)} \frac{v(x, y) - v(c, d) - [q(x - c) + p(y - d)]}{\sqrt{(x - c)^2 + (y - d)^2}} = 0 \] This holds if and only if $u, v$ are ($\RR^2$-)differentiable at $(c, d)$ and $u_x = v_y$ and $u_y = -v_x$ holds. \end{proof} \begin{hiddenflashcard}[sufficient-condition-for-differentiable] Sufficient condition for $f : \mathcal{U} \to \CC$ to be differentiable? \\ \cloze{If $u, v$ are \fcemph{continuously} differentiable on $\mathcal{U}$ and Cauchy-Riemann equations hold, then $f$ is differentiable on $\mathcal{U}$.} \end{hiddenflashcard} \begin{remark*}[From Analysis and Topology] If the partials $u_x, u_y$ exist and are continuous on $\mathcal{U}$, then $u, v$ are differentiable on $\mathcal{U}$. So it suffices to check partials exist and are continuous and Cauchy-Riemann equations hold to deduce complex differentiability. \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $f(z) = \ol{z}$. $f$ has $u(x, y) = x$, $v(x, y) = -y$ so $u_x = 1$, $v_y = -1$. So $f(z) = \ol{z}$ is \emph{not} holomorphic or differentiable anywhere. \item Any polynomial $p(z) = a_d z^d + \cdots + a_1 z + a_0$ with $a_i \in \CC$ is entire (holomorphic everywhere). \item \emph{rational} functions: a quotient of polynomials $\frac{p(z)}{q(z)}$ is holomorphic on $\CC \setminus \{\text{zeroes of $q$}\}$. \end{enumerate} \begin{warning*} $f = u + iv$ satisfying Cauchy-Riemann equations at a point does not imply $f$ differentiable; see Example Sheet 1. \end{warning*} \noindent Exercise: Let $f \colon \mathcal{U} \to \CC$ on a domain $\mathcal{U}$ with $f'(z) \equiv 0$ on $\mathcal{U}$, then $f$ is constant on $\mathcal{U}$. Sketch: use a nice path and the mean value theorem. \myskip Why are we interested?? \begin{itemize} \item [structure] Unlike $\RR^2$-differentiable functions, holomorphic functions are very constrained: for example, if $f$ is entire and bounded (i.e. $|f(z)| \le M ~\forall z \in \CC$) then $f$ must be constant. (contrasts with $\sin$ for example over reals) \item [analycity] We'll see that $f$ holomorphic on domain $\mathcal{U}$ has holomorphic derivative on $\mathcal{U}$. Hence $f$ is infinitely differentiable, as are $u, v$. Differentiating Cauchy-Riemann equations: \[ u_x = v_y \implies u_{xx} = v_{yx} = v_{xy} = -u_{yy} .\] So $u_{xx} + u_{yy} = 0$; similarly $v_{xx} + v_{yy} = 0$. The \emph{real} and imaginary parts of a holomorphic function are harmonic. \end{itemize}