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Start of

lecture | 1 Complex Differentiation

Goal: study the theory of complex-valued differentiable functions in one complex vari-
able.

(1) p(2) = agz® + - -- + a1z + ag polynomial, coefficients in R, Q, Z, C.

(2) Recall computing the convergence of
o0 o0
1 1
Do D s>
n=1 n=1
We could also consider this as a complex function in complex variable s.

(3) These functions are related to harmonic functions u(z,y): R? = R, uyy + uyy = 0.

Notation. z € C, z = = + iy, real, imaginary parts.
Z complex conjugate Z = = — iy.
|z|, arg(z) or Arg(z).

/TN
\V

6 with positive real axis, length of vector is |z|. § = arg(z), 6 € [0,27) then Arg(z).

Basic Notions

e U C Cis open if Yu € U, 3¢ > 0 such that
D(z,e):={z€C: |z—u|<e} CU.

(This is sometimes also written as D(z,¢) or B(z,¢)).
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e apath in U C C is a continuous map 7 : [a,b] — U, C' if 4 exists and is continuous.
(one-sided derivatives at endpoints).
v is simple if it is injective.

e U C C is path-connected if Vz,w € U there exists path in U with endpoints at z,
w.

N
Remark. If I/ is open, z,w € U connected by a path v in U, then 3 path

7 in U connecting z and w consisting of finitely many horizontal and vertical
segments.

Definition (Domain). A domain is a non-empty, open, path-connected subset of

C.

Definition. (1) f: U — C is differentiable at u € U if

Fl) — 1 1O = FW)

z—u zZ—Uu
exists.

(2) f:U — Cis holomorphic at u € U at u € U if Fe > 0 such that f is differentiable
at z for all z € D(u,¢e) (“analytic”).

(3) f: C — Cis entire if it is holomorphic everywhere.

( N
Remark. All differentiation rules (sum, product, quotient, inverse, chain, ...) hold,

by the same proofs.
- J

Identifying C with R? we may write f: U — C as f(z +iy) = u(z,y) + iv(z,y) where u
and v are real and imaginary parts of f.

From Analysis and Topology: u: U — R as a function of two real variables is (R2-

)differentiable at (c,d) € R? with Dul(.q) = (A, u) if

u(z,y) —ule,d) — Mz —¢) + p(y — d)]
V(@ —c)?+ (y—d)?

—0

as (z,y) — (¢, d).



Proposition (Cauchy-Riemann equations). Let f: &/ — C on an open set U C C.
Then f is differentiable at w = c+1¢d € U if and only if, writing f = v+ iv, we have
u, v (R2-)differentiable at (c,d) and

Uy = Uy

Uy = —Vg

“Cauchy-Riemann equations”. (u, = U and so on).
Yy q 2

Proof. f is differentiable at w <= f/'(w) = p + iq exists

W CEOEEDIED)

=0.

Writing f = u + ‘v and considering real, imaginary parts in the quotient above, this

holds iff
U@y —uled) —ple—c —qly—d)] _
(@y)—(c,d) V(T —c)2+ (y — d)?
and
i Y@y —vled) —lgle — ) +py—d)] _
(z.y)—(c,d) V(T —c)2+ (y — d)?
This holds if and only if u, v are (R?-)differentiable at (c,d) and u, = v, and u, = —v,
holds. O

Remark (From Analysis and Topology). If the partials w,,u, exist and are con-
tinuous on U, then w,v are differentiable on /. So it suffices to check partials
exist and are continuous and Cauchy-Riemann equations hold to deduce complex
differentiability.

Examples

(1) f(2) =%z fhasu(z,y) ==z, v(z,y) = —ysou, =1, v, = —1. So f(z) = Z is not
holomorphic or differentiable anywhere.

(2) Any polynomial p(z) = agz? + --- + a1z + ag with a; € C is entire (holomorphic
everywhere).

(3) rational functions: a quotient of polynomials % is holomorphic on C\ {zeroes of ¢}.



Warning. f = u + v satisfying Cauchy-Riemann equations at a point does not
imply f differentiable; see Example Sheet 1.

Exercise: Let f: U — C on a domain U with f’(z) = 0 on U, then f is constant on U.
Sketch: use a nice path and the mean value theorem.

Why are we interested??

structure Unlike R2-differentiable functions, holomorphic functions are very constrained: for
example, if f is entire and bounded (i.e. |f(z)] < M Vz € C) then f must be
constant. (contrasts with sin for example over reals)

analycity We’ll see that f holomorphic on domain &/ has holomorphic derivative on . Hence
f is infinitely differentiable, as are u, v. Differentiating Cauchy-Riemann equations:

Uy = Vy = Ugy = Uyg = Ugy = —Uyy.

S0 Ugz + Uyy = 0; similarly vz, + vyy = 0. The real and imaginary parts of a
holomorphic function are harmonic.

Start ofonformality Let f: U — C be holomorphic function on an open set U, and w € U with f'(w) #£=
lecture 2 0. Geometric behaviour of f at w?

Claim: f is conformal at w:

71,72 C'-paths through w, v1,72: [-1,1] = U. 71(0) = 12(0) = w, 71(0) # 0.
Write ;(t) = w + r;(£)e?%® | j =1,2. We have Arg(v;(0)) = 0;(0) and

Arg((f 07;)'(0)) = Arg(75(0) f'(7;(0))) = Arg(v;(0)) + Arg(f'(w)) + 2mn,n € Z

so the direction of «y; at w under application of f is rotated by Arg(f’(w)), inde-
pendent of ~;. Since the angle between 71,7 is a difference of arguments, the f
preserves this angle.

Definition. Let U,V be domains in C. A map f: U — V is a conformal equivalence
of U and V if f is a bijective holomorphic map with f’(z) # 0 Vz € U.
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Remarks

(1) On Example sheet 1, we will use the real inverse function theorem to show that if
f:U — V is a holomorphic bijection of open sets with f’(z) # 0 Vz € U, then the
inverse of f is also holomorphic, so also conformal by the chain rule.

So conformally equivalent domains are the same from the perspective of the holo-
morphic functions they admit.

(2) We will see later that injective and holomorphic on a domain implies that f’(z) #
0 Vz € U, so this requirement is redundant.

Examples

(1) (Change of coordinates) On C, f(z) = az + b, a # 0 is a conformal equivalence
C — C. More generally a Mobius map

az+b

f(Z):m, ad—bc#O

is a conformal equivalence from the Riemann sphere to itself. Riemann sphere: add
point co to make a sphere C4, (also sometimes written C):

2NKR

or, imagine giving two copies of the unit disk with coordinates z, % (see Part II
Riemann Surfaces). If f: Co, — C4 is continuous then:

(1) If f(oc0) = oo, f holomorphic at 0o <= ¢(z) = #) is holomorphic at 0.

72

(2) If f(o0) # oo, f holomorphic at co <= f (1) holomorphic at 0.

(3) If f(a) = o0, a € C, then f is holomorphic at a <= ﬁ is holomorphic at a.
Mobius maps are change of coordinates for the sphere. Choosing z; — 0, z5 — 00,
z3 — 1 defines a M6bius map:

(z—21) 23— 2

(z—29) 23—21

flz) =

for distinct z1, 29, 23 € C (recall Part TA Groups).
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(2) asdf

Let’s recall some facts about functions defined by a power series or other sequences of
functions.

(1) A sequence (fy,)nen of functions converges uniformly to a function f on some set S
if Ve > 0, AN € N such that Vn > N, Vx € S,

[fu(z) = fl2)] <e

(2) The uniform limit of continuous functions is continuous.

(3) Weierstrass M-test: if (Mp)nen € Rsg and 0 < |f,(z)| < M, Vx € S and all n € N,
then

oo o0
Z M, <o = Z fn(x) converges uniformly on S as N — oo
n=1 n=1

(4) Let (cn)nen € C, and fix a € C. Then 3R € [0, 1oo] such that the series
oo
z Z en(z—a)"
n=1

converges absolutely if |z — a| < R, diverges if |z —a| > R. If 0 < r < R then the
series converges uniformly on D(a,r). R is the radius of convergence of the series.
We can compute

R =sup{r > 0: |c,|r" — 0 as n — oo}

or )
R = Y A= lim sup |ep |

n—oo n/zn

Theorem. Let f(z) = > °  cn(z — a)™ be a complex power series with radius of
convergence R. Then

(i) f is holomorphic on D(a, R)
(ii) f has derivative

f'(z) = Z ne(z — a)"*1
n=1

with radius of convergence R about a.

(iii) f has derivatives of all orders on D(a, R), and f(™(a) = nlc,.
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Proof. Without loss of generality a = 0 by change of variables. Consider the series
>0 nepz™ L Since |ne,| > |cp| the radius of convergence of this series is no larger
than R. If 0 < Ry < R, then for |z| < R, we have

|z’n71

n—1
Rl

Ine, 2" < nlen| R

Ry
convergence of the series. So Y ne,2" ! has radius of convergence R.

n—1
n - (M) — 0 as n — oo. So applying the M-test with M,, = cnR’f*1 we have

f(z)=f(w)

zZ—w

ZCN Zout —ch Zzﬂ i (%)

For |z|,|w| < P < R, we have

For |z|, Jw| < R, we want to consider . Taking partial sums:

n—1

Cn Z A" || < en| - n - PP
=0

so (x) converges uniformly on {(z,w): |z|,|w| < P}. So the series converges to a con-
tinuous limit on {|z|, jw| < R}, call it g(z,w). When z # w, g(z,w) = %ﬁ}(w) When
z=w, g(w,w) =Y o0 ync,w™ L, so by continuity of g, (i) and (i) are proved. (iii) is a
simple induction. ]

Corollary. Suppose 0 < € < R, where R is the radius of convergence of the complex

power series
o0
z) = ch(z —a)"
n=0

and f(z) =0Vz € F(a,e). Then f =0 on D(a, R).

Proof. Since f =0 on D(a,¢), we have £ (a) = 0 ¥n. So by part (iii) of the previous
theorem, we have ¢, = 0 Vn, and f =0 on D(a, R). O

The Exponential and The Logarithm

We define the complex exponential

e® =exp(z) 1= Z %

Properties:



(1) Radius of convergence is 0o, so this function is entire, and we have C?—Zez = e”.

(2) For all z,w € C, et = ¢e%e¥, and e* # 0. Proof: fix w € C, and consider
F(z) :=¢e*T . e *. We have
Fl(z) = e#TWe ™ — #TWe™* = (),
so F is constant. Since e = 1, F(2) = €%, so e*T% = e%e¥. Since €* - e * = ¢ =
1VzeC, e*#0.

(3) z = +iy. Then et = e%e¥, 2,y € R.
e = cosy + isiny;

note then |e®| = 1. So

e® = e*(cosy + isiny),
and |e?| = e = eR°(?), ¢* = 1 if and only if + = 0 and y = 27k for some k € Z.
In fact, Yw € C*, 3 infinitely many z € C such that e* = w, differing by integer
multiples of 27i.

=

N *z-7m,
‘ z -4
/

Definition. Let &/ C C* be an open set. We say a continuous function \: U — C
is a branch of the logarithm if Vz € U, exp(A(z)) = z. Useful example: U = C\ R<o.

AN

Define Log: U4 — C by
Log(Z) :=In|z| + i6

0 =argz, § € (—m,m). This is the principal branch of the logarithm.

10
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Proposition. Log(z) is holomorphic on C \ R<o with derivative % Moreover, if

|z| <1, then
n 1 L

o0
Log(1+ z2) = Z

n=1

Proof. Since Log is inverse to e* then using the chain rule, Log z is holomorphic with
c%; Logz = % We have
d 1

_ = =1— 2_ .3 4.
= o Z+z 22+ 27+ s

which is the derivative of >, ol g, Log(1 + z) agrees with this series up to a

constant. Since Log(1) = 0 the equality holds. O

If o € C, define z* := exp(a Log z) gives a definition of 2* on C\ R<g. Can compute

d . a _ a—1
dZZ = Qz .

[ Warning. Not necessarily true that z*w® = (zw). ]

11
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~

1
For example, a = 3,

1
= exp (2 Log z>

1 1
= exp (2 In|z| + 2i0) 0 e (—mm)

it
TR 7

D=

z

So:

Note. Note that if f(z) = 2, then the image of f can be “much smaller” than C.

~

1.1 Contour Integration

If f: [a,b] — C is continuous (so Re f, Im f are integrable) we define

b b b
/f(t)dt ::/ Re(f(t))dt+i/ Tm(f(¢))dt

Proposition. Let f : [a,b] — C be continuous. Then

b
/ f(t)dt‘ < (b—a) sup |7,

a<t<b

with equality if and only if f is constant.

12




Proof. Write M = sup,<;<;, | f(t)], 0 = arg (f; f(t)dt).

/abf(t)dt‘ =10 /abf(t)dt
b

= / e~ f(t)dt

= /b Re(e™? f(t))dt
b

< [ lroa

< ]\;(b —a)

If we have equality, then |f(t)| = M, and arg f(t) = 0, so f is constant. O

Definition. Let v : [a,b] — C be a Cl-smooth curve. Then we define the arc length
of v to be

b
i) = / I (£)|dt.

We say « is simple if v(t1) = y(t2) = t1 = ta or {t1,t2} = {a,b}. If 7 is simple,
then length(v) = length of the image of .

J

~

Definition. Let f : &/ — C be continuous, I open, and v : [a,b] — U be a C!-
smooth curve. Then the integral of f along 7 is

b
z)dz = "(£)d
L £(2) / Fr) (Bt

Basic properties

(1) linearity:

/01f1+02f2d2=61/f1d2+62/f2
Y Y Y

(2) additivity: if a < a’ < b then

AHMI] f(z)dz + L[a/’b} f(z)dz = [yf(z)dz

(3) inverse path: if (—v)(¢) : : [=b,—a] — U, then

=7(=1)
/_7 f(z)dz = —/Vf(z)dz

13



(4) independence of paramterisation: if ¢ : [a/,b] — [a,b] is Cl-smooth, ¢(a') = a,
¢(b') = b, then for 6 = v o ¢ we have

/(Sf(z)dz:/vf(z)dz

[ Note. We can usually assume without loss of generality that ~ : [0,1] — U. ]

Common types of curves we work with:

SEIRIC

We can loosen the C'-smooth restriction and allow v to be piecewise-Ct-smooth: i.e.
a=uag<a <ag<---<ay=>bsuch that v; := 7\[%717%] is C'-smooth. Define then

n

Lf(z)dz: Z/ f(2)dz

=17

(which is well-defined by additivity).

( )
Remark. Any piecewise-C'-smooth curve can be re parametrized to by C!: for such
a 7 as above, replace ; by v; o h; where h; is monotonic C'-smooth bijection with
endpoint derivatives 0. So C'-smooth paths can have corners. For example,

]
]

o
—_ NI

)

(1) = {1 +isin(rt) te€ |

sin(rt) +i  t € [3,

Terminology
e “curve’: piecewise-C'-smooth path.

e “contour”: simple closed (endpoints are equal) piecewise-C'-smooth path.

Proposition. For any continuous f : Y — C, U open, and any curve 7 : [a,b] — U,

/Wf(z)dz

< length(7) sup | f(z)|
zey

14



Proof.

/ b f(v(t))v’(t)dt‘

/Vf(z)dz

b
< / lF(v(#)Y (t))|dt (by similar trick to previous proof)

< sup | f(2)|length(v) O
z€v

Proposition. If f, : Y — C for n € N and f : Y4 — C are continuous, and
v :[a,b] = U is a curve in Y with f,, — f uniformly on -, then

/7 Fu(2)dz o A F(2)dz

as n — Q.

Proof. By uniform convergence sup,c, [f(2) — fn(2)] — 0 as n — oco. By previous
proposition,

/f(z)dz—/fn(z)dz

¥ v

as n — oo. O

< length(y)sup |f — fnl
v

—0

Example. f,(z) = 2", n€Z, on C* =:U, and v : [0,27] = U, ~(t) = ™.

27
/fn(z)dz:/ ettt dt
0% 0
27 )
_ Z/ e(n-l—l)ztdt
0
B 2t n=-—1
o n#—1
Start of

lecture 5

15
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Theorem (Fundamental Theorem of Calculus). If f : 4 — C is a continuous
function on open U C C with F/ = f an antiderivative of f in . Then for any
curve v : [a,b] — U,

/ £(2)dz = F(y(b)) — F(3(a)).
Y

In particular, if y is closed then fv f=0.

Proof.
/7 feas = [ " F )
= /b(F o) (t)dt
— FO() - Flx(@)
by the real Fundamental Theorem of Calculus. O

Note. In the z — 2! integral computation and FTC implies that there does not
exist a branch of the logarithm on any open neighbourhood of 0.

Theorem. Let f: D — C be continuous on a domain D. If f7 f =0 for all closed
curves v in D, then there exists holomorphic F' : D — C with F/ = f.

Proof. Fix ag € D. If w € D, choose any curve v, : [0,1] — D with 7,(0) = ao,
Yw (1) = w. Define

16



Find 7, > 0 such that D(w,r,) C D. For |h| < r, let & : [0,1] — D be the line segment
from w to w + h. Then

F(w+h) = / F(2)ds = L RCE

Yw+h
So
Fw+h) = F(w) + : f(z)dz
= F(w) + hf(w)+ i f(z) = f(w)dz

So

< R s |7(2) ~ (w)

< sup  |f(2) — f(w)]

z€D(w,rw)

—0

as 1y — 0. So F'(w) = f(w). O

Definition. An open subset U C C is convex if Va,b € U the line segment between
a and b is in U. U is starlike (sometimes instead called starshaped) if Jag € U such
that Vb € U the line segment from ag to b is in U.

{disks} C {convex sets} C {starlike sets} C {domains}

A simplification of previous theorem:

Lemma. Suppose U is starlike domain, and f : &/ — C continuous with f or f(2)dz =
0 for all triangles T" in U, then f has an antiderivative in U.

Proof. Exactly the same, choosing v, to be the segment from a basepoint ag of the
starlike. 0

Theorem (Cauchy’s Theorem in a triangle). If f : &/ — C is holomorphic on an
open Y C C, and T C U is a triangle in U, then

/6 faz=o.

17



[ Remark. Curves are oriented anticlockwise. }

Proof. Call | [, f| =: I, and L = length(dT'). We subdivide T by bisecting the sides to

obtain 17,715,153, Ty:

o1y + 0Ty + 015 = 9T — 3T4, SO

4
f(z)dz = f(z)dz
[ Joa=3 [ 1
By triangle inequality, there exists ¢ € {1,2,3,4} such that

f(z)dz

oT;

1
> =1
4

call T() and note length(9T™W) = 1.
Proceeding in this way, we obtain triangles
T>TD >7@) >76) > ...

with length(7) = 2= length(T) = 2%, and

Since length(7™) — 0,
(7™ = {w}.
n=1

Note: z, 1 have holomorphic antiderivatives.

/8T<"> f(z)dz

1
wls

/ £(2) = Fw) — (2 — w) £ (w)dz
oT(n)

18



Since f is differentiable at w, Ve > 0, 3.0 such that |w — z| <0 = |f(2) — f(w) —
(z —w)f(w)| < elz —w|. Soif n > 1, we have

|G = fw) = (=) )ds] < o swp o w2
oT(n)

2€0T(")
So
1 L L
< — .. 5
4qn = 2n 2n
and I < L?¢. Letting € — 0, we have I = 0. O

Theorem. Let S C U be a finite set and f : &4 — C be continuous on U and
holomorphic on ¢/ \ S. Then [, o S = 0 for all triangles 7" in U.

Proof. Using triangle subdivision, assume WLOG that S = {a},a € T. fa e T' C T
for another triangle T’ then by triangular subdivision

—I-:

ot = =

since f is holomorphic on 7'\ T” we have

/ f‘ = / f‘ < length(T") - sup | f]
oT oT’ oT’
< length(1") - sup | f|
T

and previous theorem,

so letting length(7") — 0, we have [, f = 0. O]

19
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Theorem (Cauchy’s theorem in a disk). Let D be a disk (or any starlike domain)
and f: D — C a continuous function, holomorphic away from at most a finite set
of points in D, then f7 f =0 for any closed curve v in D.

Proof. By previous theorem and converse Fundamental Theorem of Calculus for starlike
domains, there exists antiderivative F' for f on D. So by FTC, Cauchy’s Theorem
follows. O

Theorem (Cauchy’s Integral Formula). Let 4 C C be a domain, f : U — C
holomorphic, and D(a,r) CU. Then for all z € D(a,r),

flo) =5 I

271 aD(aﬂn) w—z

dw

Proof. Define

g(w) = 0 - s

{ﬂ“zgﬁ(z) —f'(z) w#z

Then g is continuous at z, holomorphic on D(a,r) except possible at z. Find r; > 0
such that D(a,r) C D(a,r1) CU. Apply Cauchy’s theorem to g on D(a,r; with curve

v = 0D(a,r), then
/ g(w)dw =0
dD(a,r)

[ W[t
dD(ay) W — 2 dD(a,y) W — 2

Useful expansion: since |w —a| =r > |z — a|

L _ 1 N ()t
T e PN EOLE

i.e.

by geometric expansion. So

7f(z) = 3 2z —a)” ot w
/GD(‘W”) w = Zdw - Z [f( )( ) /6D(a,r) (w - a)n+1d ]

n=0

We have computed that the integral in the brackets on the right is 0 unless n = 0, in
which case it is 27i. So

/ de = 2mif(2)
0D(a,r)

w—z

as claimed. O

20
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Corollary (Mean Value Property). If f : U/ — C is holomorphic on domain ¢/, and
D(a,r) CU, then

1
f(a) = /0 fla+ re%“)dt

i.e. f takes the average value on a circle about a point.

Proof. Applying Cauchy’s Integral Formula, with ¢ — a+re?™ on [0, 1] for dD(a,r). [

Applications of CIF

Corollary (Local Maximum Principle). Let f : D(a,7) — C be holomorphic. If
|f(2)] < |f(a)| for all z € D(a,r), then f is constant. “non-constant holomorphic
maps cannot achieve maximum on an open set”.

Proof. By mean value property, V0 < p < r we have

1
@i =| [t pema
0
< sup [f(2)|
|z—al=p

< [f(a)]
Since we have equality at each step, we have |f(z)| = |f(a)| for all |z —a| = p. So |f] is
a constant function on D(a,r). Hence f is constant on D(a,r). O

Theorem (Liouville’s Theorem). Every bounded entire function is constant.

Proof. With |f(z)| < M for f entire, and R > 1 we have for any 0 < |z| < g that
.image

=10 =gz | [ ) [ - ] aw
1 z
=5 oo = 7™

Since |z — w| > % and |w| = R, we have

1 1
fe)—fO)<—-2nR- sup |f(w)|-]|z]|-
1) = 1O < g w2ne s IS J2] 5

1
< M-zl ——
—0

21



as R — 00. So f(z) = f(0), so f = f(0) is constant. O

Corollary (Fundamental Theorem of Algebra). Every non-constant polynomial
with complex coefficients has a root in C.

Proof. 1f p(z) has no root in C, then f(z) := le) is entire. p(z) non-constant implies

ag #0,d>1. So % :ad+ad,1+%+--~+aozid shows that |p(2)| — oo as |z| — occ.
So |f(z)] — 0 as |z| — oo; so there exists R > 0 such that Vz ¢ D(0,r), |f(2)] < 1.
Let M := max_ p55y |f(2)| Then |f| is bounded by max{1, M}, and so by Liouville is
constant, contradicting the assumption that p is non-constant. ]

Taylor-Expansion

Theorem (Taylor Expansion). Let f : D(a,r) — C be holomorphic. Then f is
represented by convergent power series on D(a,r):
f(2)=) cnlz—a)"
n=0
with )
n! 271 Jop(a,p) (w — @)+t
for 0 < p <.
Proof. For |z —al < p < r, CIF gives
1
o= ge [ Ty,
2T Jop(a,p) W — 2
1 = (z—a)"
= — flw) - ————dw
270 JoD(a,p) (w) nz_;) (w—a)rtl

|1 / 1
= g — w) ———=dw| (z —a)"
= [27” 6D(a,p)f( e R

proving the theorem. (We swap the sum and integral since the partial sums give rise to
a sequence of functions that converge uniformly on 0D(a, p)). O

Remarks

(1) “analytic” = has power series representation on a disk in the domain. So holomorphic
— analytic.

(2) holomorhic functions have derivatives of all orders, which are holomorphic.
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Corollary (Morera’s Theorem). Let D be a disk and f : D — C such that fv f=0
for all closed curves v in D. Then f is holomorphic.

Proof. By converse of Fundamental Theorem of Calculus, there exists holomorphic F
on D with F’ = f. So f is holomorphic. (Because existence of Taylor expansion implies
that the derivative of a holomorphic function is holomorphic). ]

Corollary (Uniform convergence of holomorphic functions). Let f,, : Y — C holo-
morphic functions on a domain U, and f, — f uniformly on U (sufficient: uni-
form convergence on compact subsets of ¢). Then f is holomorphic on U, and

1(2) = limy 00 f1(2).

Proof. U is a union of open disks, so it suffices to work with D(z,e) C U. Given 7 closed
curve in D(z,¢), f7 fn — f,y f (A&T), and fv fn=0,s0 f,y f =0. Since f is continuous,
Morera’s theorem applies, so f is holomorphic on D(z,¢).

Recall Taylor expansion computation: for 0 < p < &,

my .y m! f(©)
d (Z) - 2mi \/8D(z,p) (C - Z)m+1 4

/ AN f©)  falQ)
O£ = 5| [
<pg s 1f0 - ()
P ¢€dD(z,p)
— 0
as n — 00. So f'(2) = limy, 00 f1,(2). O

Remark. f need not be non-constant; for example, f,(z) = z" on D(0,7), 0 <1 <
1. Then f,, — 0 uniformly.

. J

Corollary. If f : 4 — C is continuous on a domain ¢/ \ S for some finite set S, then
f is holomorphic on Y.

Proof. If a € S, find D(a,r) C U open disk. Cauchy’s theorem in a disk implies f,y =0
for any closed curve v in D(a, ). Morera’s theorem implies f is holomorphic on D(a,r),
at a. So f is holomorphic on U. O
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zeroes of holomorphic maps

Let f: D(a, R) — C be holomorphic, so f(z) = >, 5¢cn(z —a)" on D(a, R). If f #0

then some ¢, is non-zero; let
m :=min{n € NU {0} : ¢, # 0}.
If m > 0 then we say f has a zero of order m at a. In this case, we can write
f(2) = (z —a)"g(2)
where g(z) is holomorphic on D(a, R), g(a) # 0.

Theorem (Principle of Isolated Zeroes). If f : D(a, R) — C is holomorphic, not
identically 0, then there exists 0 < r < R such that f(z) #00on 0 < |z —a| <.

Proof. If f(a) # 0 then f(z) # 0 on D(a,r) for some 0 < r < R by continuity of f. If f
has a zero of order m at a, write f(z) = (z — a)™g(z) where g(a) # 0, g holomorphic.
By continuity of g, there exists 0 < r < R such that g(z) # 0 for all z € D(a,r), so
f(z)#0forall 0 < |z—al <r. O

e )
Remark. Principle of isolated zeroes says that there is no accumulation point of

the zero set of a holomorphic map inside its domain, unless = 0.

Remark. It is possible for the zeroes of a holomorphic map to accumulate ouside
its domain: , ,
iz _ p—iz )
sinzi=———— =0 <= ¢ *=¢ "
27

i.e. €2* =1, which holds for all z = nm, n € Z. So sin (%) has zeroes accumulating
at 0, on the boundary of its domain C* = C\ {0}.

Remark. Another application of Principle of Isolated Zeroes: since cos? z+sin? z =
1 holds for all z € R, then cos? z + sin? z — 1 is entire with R C {zero set}. So by
PIZ, cos?z +sin?z =1 for all z € C.

Proposition (Identity theorem for holomorphic functions). Let f,g : Y — C be
holomorphic on a domain U. Let S :={z € U : f(z) = g(z)}. If S has a non-isolated
point (i.e. there exists w € S such that for all ¢ > 0, D(w,e) \ {w} NS # () then
f(z) =g(z) for all z € U.
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Proof. Define h(z) = f(z) — g(z), holomorphic on U, and suppose w is non-isolated in
S. Then for € > 0 with D(w,e) C U, PIZ implies h = 0 on D(w,¢).

Given z € U, let v: [0,1] — U be a path with (0)
T:={t e[0,1] : A (y(t)) = 0 Vn > 0}

w, ¥(1) = z. Consider the set

Note that T is closed by definition. Since h = 0 on D(w, ), Taylor expansion implies T’
is non-empty, since 0 € T. Define t( := sup{t’ € [0,1] : t € T Vt < t'}. Then T closed
and non-empty so to € T. Since h(™(y(tg)) = 0 for all n > 0, h = 0 on a neighbourhood
of v(to), contradicting the maximality of ¢p, unless to = 1. So h(y(1)) =0, i.e. h(z) =0
as claimed. d

Definition (Analytic Continuation). Let &/ C V C C be domains and f: U — C is
holomorphic. g : V — C is an analytic continuation of f if:

(1) g is holomorphic on V/
(2) glu=f.

Example. (1) The series ), -, (717):“ 2" converges on D(0, 1), and takes the value

Log(1l + z) on D(0,1). So Log(1l + z) is an analytic continuation of this series
to the domain C \ (—oo, —1].

(2) >_,>02" has radius of convergence 1 about a = 0, and on D(0,1), we have
= > ,507" So X is an analytic continuation to C\ {1}.

(3) Considering f(2) =>_,5 22" f converges on D(0, 1) and cannot be analytically
continued to any larger domain. We say 9D(0, 1) is natural boundary for f(z).
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Corollary (Global Maximum principle). Let & C C be a bounded domain, and let
u be its closure (the closure of U is the intersection of all closed supersets of U). If
f:U — C is continuous and f is holomorphic on U, then |f| attains its maximum
on U \U.

Proof. U bounded implies U is bounded, hence |f| has a maximum on U, call it M. If
|f(z0)] = M for zp € U, then local maximum principle implies f = f(zp) on any disk
D(z1,r) CU. By identity theorem, f = f(z9) on D(zg,7) hence f = f(z9) on U, hence
f = f(20) on U. So M is achieved by |f| on U \ U. O

Generalise Cauchy’s Integral Formula

Goal: generalise CIF by allowing more general closed curves for the integration. We
have an issue:

Yl(c_ B eu'mk

7vit
’/;(é):e = él'_o,j]

tefo1)

/wf—2/71f

We need to deal with the issue of “winding around” a point more than once; however,
once we correctly quantify this notion, we’ll see it is the only issue to generalising CIF.

Then

Naive hope: “counting” crossings of a slit in the plane:

can happen infinitely often!

Theorem. Let v : [a,b] — C\ {w} be a continuous curve. Then there exists
continuous function 6 : [a,b] — R with

v(t) = w + r(t)e®

with r(t) = |y(t) — w|.
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Proof. WLOG translate to assume w = 0. Since arg~y(t) = arg 20 we can replace y

Ok
with ‘%‘ to assume |y(t)| =1 for all ¢ € [a, b].

Notice that if v C C \ R<g, then ¢ — Arg(y(t)) gives a continuous choice of . More
generally, if 7 lies in any slit plane C \ {z : Z= € R<o}, then 6(t) := o + Arg (6%) will
do.

Our strategy is to subdivide ~ so that its pieces lie in slit-planes, and so 6 may be
continuously defined on the pieces.

~ is continuous on [a, b], so uniform continuous, and 3¢ > 0 such that |s —t| < ¢ =
|v(s) —(t)| < 2. Subdividing a = ap < az < -+ < ap—1 < ap = b with a1 —a; < 2¢,

then
(G gy
Y(t) — < 5 >

So y([aj—1,a;]) lies in a slit plane, and we can define 6; a continuous choice of argument
for v|ja;_,.,a,) for j € {1,...,n}. We have

<2 vVt € [aj, aj+1]

v(a;) = efiai) — oifj+1(a;)
for je{1,...,n—1}. So
Oj+1(aj) = 05(az) + 2mny
for some n; € Z. Modifying each 6;, j > 2, by a suitable integer multiple of 27 ensures
the 6; fit together to a continuous choice of 6 on [a, b]. O

( )
Remark. 0 is not unique, since 6(t) + 27n is also valid for all n € Z. If 6,1, 05 are

two functions as in the theorem, then 6 — 62 is continuous, takes values in (discrete)

277, so constant.
N\ J

Definition (Winding Number). Let v : [a,b] — C be a closed curve, w ¢ 7. The
winding number or index of v about w is

0(b) — 6(a)

Iy w) == ————,

where v(t) = w + 7(t)e?® with 6 continuous.
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Lemma (Winding Number Integral Formula). Let v : [a,b] — C\ {w} be a closed

curve. Then " .
z
I(~; = —
(7 w) 2 /7 Z—w

Proof. ~y piecewise-C' implies r(¢) and 6(t) are piecewise-C' as well, where y(t) = w +

R(t)e?®),
= [* A1)
/Wz—w _/a 'y(t)—wdt

[

= /a () +460'(t)dt

= [Inr(t) +i6(t)]i=,

= 2mil (y; w)
since 7 is closed and 0(b) — 0(a) = 271 (y; w). O

Proposition. If v: [0,1] — D(a, R) is a closed curve, then Yw ¢ D(a, R), I(vy;w) = |
0.

Proof. Consider the Mébius map z +— 2=2, This takes a — 1, w + 0, so D(a, R)

a

D(1,r) for some r < 1. So then D(a, R) is contained in the slit plane C\{z : 22 ¢ ]Rgo}.

a—w

So there is a branch of arg(z — w) defined on D(a,r). And so

arg(v(1) — w) — arg(y(0) — w)

=0 O
2

I(v;w) =

Definition (Homologous to zero). Let & C C be open. Then a closed curve v in U
is homologous to zero in U if Yw ¢ U, I(~;w) = 0.

Definition (Simply Connected). U is simply connected if every closed curve in U
is homologous to zero.

s 2
Remark. For U open this is equivalent to the homotopy definition of simply con-

nected.
L )

(1) Any disk is simply connected by previous proposition.
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(2) Any punctured disk D(a,R) \ {a} is not simply connected, since curves can wind
around a:

nv’/: A°'"°/°‘3°“s
© 2 &ro

" DG RN a3

DG R)

Theorem (General CIF). Let f : U — C be holomorphic on a domain U, and -y is
a closed curve homologous to zero in U. Then Yw € U \ 7,

27 Z—w

I05w)f(w) = 5 | 1) 4,

and [ f(z)dz =0

Start of

locture O Proof. Notice applying the first equality to g(z) = f(z)(z —w) gives f7 f =0. So suffices

to prove the first statement. We have by previous lemma that

100w fw) = 5 [ 12
i

dz

so we want to show that

211 zZ—w

l./wdz:OVweU\y

Consider the function

[Q=IW) 4y

This is a continuous function on U x U. Want to show that
/g(z,w)dz =0Wwel\y
v

Consider the auxiliary function i on C:

J,9(¢w)d¢ weu

h(w):=q [ 8¢ fweC\y:I(y,w)=0}

=V
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IfweldNnV, then

scwac = [T [T o
v v C-w yC—w

so h is well-defined. For any disk D(0, R) with v C D(0, R), we have I(v;w) = 0 for all
w ¢ D(0, R). In fact, v homologous to zero in U, so U UV = C. For w ¢ D(0, R), we

have
‘ - length(y) - sup¢e., | f(Q)]

—0
lw| —

w)| =

as |w| — oo.

Claim: h is holomorphic on C. If so, h is bounded since |h(w)| — 0 as |w| — co. Then
by Liouville’s is constant, taking the value 0 on C, concluding the proof.

Lemma. Let & C C be open and ¢ : U x [a,b] — C continuous with z — ¢(z, )
holomorphic on U for every s € [a,b]. Then

z) :/abqb(z,s)ds

is holomorphic on U.

Proof. Idea: Morera. WLOG, U is a disk. For any closed curve v : [0,1] — U we have

frne=  [[stmon] o
[ [f o]

* is Fubini’s theorem: Suppose f : [a,b] X [¢,d] — C is a continuous function. Then we

have /ab </cd f(m,y)dy> dz = /Cd (/abf(x,y)dx> dy

and z — fcd f(z,y)dy and y — fab f(z,y)dz are continuous. This clearly holds if f is
constant, so also when f is a step function. Since [a, b] x [c, d] is closed and bounded, f
is uniformly continuous. So f is a uniform limit of step functions, and so we exchange
the order as claimed. End of proof of x.

L dz—/ (/¢zsdz)d3

Since z — ¢(z, s) is holomorphic, this is 0 by Cauchy in a disk. So

fo=
;

and by Morera, ¢ is holomorphic as claimed. O
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So h is holomorphic as claimed and the generalised CIF follows. O

Corollary (Cauchy’s theorem for simply connected domains). Let f : U4 — C be
holomorphic on simply connected domain /. Then V closed curves v in U,

szo.

Fact: If U C C is open, then U is simply connected if and only if the complement of I/
in Cy Is connected.

Examples

(i) D(a,R) C C, has disk complement in C, so simply connected.

(ii) Convex and starlike sets are simply connected.

(iii) Annulus not simply connected.

Isolated singularities of holomorphic maps

Definition (Isolated singularity). A point a € C is an isolated singularity of f :
U — C holomorphic if Ir > 0 such that f is holomorphic on D(a, )\ {a}, denoted
D(a,r)*.

Examples

(i) a=0, f(2) = % Use the identity theorem or expansion of e* to show that

B 22 5 T

San—Z—3'+a—?+
about 0. So ) . 6
z z z

fe=1-2+5 -2y

about 0. So f is restriction of a holomorphic function on C, call it f, and f(0) = 1.
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(i) @ = 0, g(2) = %, g holomorphic on C*, and |g(z)] — oo as |z| — 0, so there
doesn’t exist continuous extension at 0.

(iii) Recall the action w r+ ¥ = eReweilmw

So h(z) = ez maps any D(0,e)* to all of C*.

Theorem (Laurent expansion). Let f be holomorphic on an annulus A = {z € C:
r < |z —a| < R}, where 0 <r < R < co. Then:

(i) f has a (unique) convergent expansion on A:

o

flz) = Z cn(z—a)"

n=—oo
“Laurent series”
(ii) For any r < p < R, we have

Cp = L Ldz
270 Jop(a,p) (2 — @) T

(iii) If » < p/ < p < R, the Laurent series converges uniformly on {z € C: p/ <
|2 —a| <p}.

Proof. Fix w € A, and choose © < p; < |w —a| < p2 < R. Define two closed curves
v1,7v2 by a diameter of the annulus, labelled such that I(y1;w) = 1, I(v2;w) = 0.
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~1,72 are both homologous to zero in A, so by the generalised CIF we have

Flw) = —— Mdzl/ ) g,

21 wEw 211 Ltyp BT W

Travelling v + 72 is the same as travelling 0D(a, p2) — dD(a, p1). So

f(w) = 1/ Mdz _ 1/ Mdz

2M J_aj=p Z W 2 J—aj=p Z W

IQ Il

Using the same geometric series for i L_ to compute I» as in the Taylor series case

z—a

gives
o0
I, = Z cn(w —a)”
n=0
where

_ ! f(z)
n 277_‘_2 /|z—ap2 (Z _ a)n—l—l dz

for n > 0. For I;, using the expansion (since |z — a| < |w — al)

1 _ w—a _ = (Z_a)mil
z—w 1-Z=4 _mzzl (w—a)™’
gives
oo
L = Z dm(w —a)™™
m=1
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where .
dm = 5— L
27 J|a—q|=p, (2 — @)

Reindex with n = —m, we obtain the Laurent expansion for f.

To show (ii), (iii), suppose f(z) = >0 cn(z—a)” on A, and let r < p’ < p < R. The

n=—oo
non-negative power series »_°  ¢,(z —a)™ has Radius of Convergence > R, so converges

uniformly on D(a, p). Similarly, if u = Zfla the negative part of the Laurent expansion,
> o2, c—pu™ has Radius of Convergence > %, so converges uniformly on p' < |z —al| < p,
so we can integrate term by term:

1 / f(z) / 1
— —_— (z—a)" " dz
270 Jop(a,p) (2 — a)"‘H 2m ; aD(a,p)

:Cm

since this integral = 0 unless n —m — 1 = —1, in which case it is 2. O

( N

Remark. Proof shows f = f; + fa, fi holomorphic on D(a, R), and fo holomorphic
on |z —a| > r. Applying when r = 0, we have three possibilities on a punctured
disk domain i.e. an isolated singularity at z = a.

(1) ¢, =0Vn < 0. Then f is the restriction to D(a, R)* of a function holomorphic
on D(a, R). We say f has a removable singularity at a. For example, f(z) = 22
at a = 0.

(2) 3k < 0 such that cx # 0 but ¢, = 0 for all n < k; We have (2 — a) % f(2)
holomorphic and non-zero at a. We say f has a pole of order —k at a. For
example, g(z) = % at a = 0.

(3) ¢, # 0 for infinitely many n < 0. f has an essential singularity at a. For
example, ex at a = 0.

Proposition. An isolated singularity at z = a for f is removable if and only if
lim, ,q(z —a)f(z) =0.

Proof. Forwards direction is clear. For backwards direction, consider

Z—(LZZ z a
g(z):{< IG) = #

0 zZ=aq

g (a) = lim,4(z — a)f(2) = 0, so g is holomorphic at a, with g(a) = 0. So g(z) =
Yoo gen(z—a)™. So f(z) =Y 07 cnta(z — a)", so is holomorphic at a. O
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Proposition. An isolated singularity at z = a for f is a pole <= |f(z)| — oo as
Z = a.
Furthermore, the following are equivalent:

(1) f has a pole of order k at z = a.
(2) f(2) = (2 — a)"*g(2), where g is holomorphic and nonzero at a.

(3) f(z) = ﬁ where h is holomorphic at a with a zero of order k at a.

Proof. (1) <= (2) is immediate using Laurent expansion. (2) <= (3) since g is

holomorphic, nonzero at a <= % is holomorphic at a.

If f has a pole of order k at z = a, then f(2) = (z —a) ¥g(2), so | f(2)] = oo as z — a.
Convsersely if |f| — oo as z — a, then there exists » > 0 such that f(z) # 0 for all

0<|z—al <r.So % is holomorphic on D(a,r)*, and ’ﬂ — 0 as z — a, so the singularity
for % is removable, and ﬁ = h(z), holomorphic h on D(a,r). h has a zero of order k,

s0 h(z) = (z — a)*1(z) for | holomorphic and nonzero at a, so f(z) = (z — a) Fg(z), i.e.
f has a pole of order k. at z = a. O

Corollary. An isolated singularity at z = a is essential <= |f| does not approach
a limit in RU {o0} as z — a.

Theorem (Casorati-Weierstrass). f : D(a, R)* — C with essential singularity at
z = a. Then f has dense image on any neighbourhood of a; that is, Vw € C, Ve > 0,
V4§ > 0 then 3z € D(a,0)* such that |f(z) —w| <e.

Proof. Example Sheet 2. O

More difficult: “great Picard theorem”. If z = a is an essential singularity of f, then

3b € C such that Ve > 0, C\ {b} C f((D(a,e)*).

Exercise: f(z) = e* has an essential singularity at co, and takes every non-zero value on
every neighbourhood of co.

Remark. An advantage of the Riemann sphere perspective: if f : D(a, R)* — C
has a pole at z = a, we can view f as a continuous map f : D(a, R) — C, with
f(a) = co. fis “holomorphic at a” in the C, sense since % is holomorphic on a
neighbourhood of a, with a zero of the same order as the pole of f.
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Definition. Suppose D is a domain. A function f is meromorphic on D if f :
D\ S — C is holomorphic, where S is a set of isolated singularities for f which are
removable or poles.

Definition. Let f : D(a, R)* — C be holomorphic with Laurent expansion f(z) =
S cn(z—a)™. The residue of f at z =a is

n=—oo

Res,—q f(2) :=c_1 € C

Definition. Let f : D(a, R)* — C be holomorphic with Laurent expansion f(z) =
> o cn(z—a)™. The principal part of f at z = a is

n=—0oo

-1

Z cn(z—a)"

n=—oo

Proposition. Let v be a closed curve in D(a, R)*. Then

/ f(2)dz = 2mil(y;a) Res,—q f(2)

Proof. Using uniform convergence of Laurent expansion of f, we have that:

/7 f(2)dz = i cn [ [y (z—a)"dz}

n=—oo

/(z—a)”dz:{o _ n# -1
~ 2ril(y;a) n=-—1

the proposition is proved. ]

Since

If f is meromorphic on a domain D, and z = a is a pole of f in D, then its principal
part at z = a is of the form

Ck C—k+1 - C—1
(z—a)k  (z—a)k1 z—a
a polynomial in ﬁ, and can be written as 0 zp_(’z)) = for some polynomial p. So the principal

part of f at z = a is holomorphic on C\ {a}.
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More generally, if f is meromorphic on D, and {a1,...,an,} C {poles of f in D}, with
pi(x) the principal part of f at z = a;, then the function

is meromorphic on D, with removable singularities at aq, ..., am.

Theorem (Residue Theorem). Let f be meromorphic on a domain D, and 7 a
curve which is homologous to zero in D. Suppose 7 does not contain any pole of f,
and f has only finitely many poles in D with non-zero winding number for ~; call
them {aj,...,am,}. Then

/f(z)dz = 2772'%](’}/; a;) Res,—q, f(2)
gl i=1

Proof. Let P; denote the principal part of f at z = a;, and write g = f —> -2, P;. Then

by Cauchy’s theorem,
m
/g:o, ie. /f:Z/R
Y i =17

Each P; is holomorphic on C\ {a;} as we argued, so by the previous proposition we have
/R- = 2mil(7y; a;) Res,=q, Pi(2)
¥

By definition, Res,—q; P;(z) = Res,—q, f(2), so
/f = 27 ZI(’y; a;) Res,—q, f(2) O
v i=1

Remarks

(%) If v is homologous to 0 in a domain D, then {z € C: I(~;z) # 0 or z € 7} is a closed
set and a bounded set. Notice that the winding number is a continuous function on
C \ 7, taking values in a discrete set, then {z € C\ v : I(y;2) = 0} is open. So
the complement is closed. Since the polws of f are isolated, this closed bounded set
contains only finitely many of them (Bolzano-Weierstrass).

(1) f holomorphic on D: Residue theorem implies Cauchy’s theorem.

(2) f(z) = 92)  Then Res,—q f(2) = g(a), so Residue theorem implies CIF.

z—a'
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(3) We say a closed curve v bounds a domain U if

U
I(:2) = {(1) o

If v is a closed curve in a domain D which bounds a domain U, and f is holomorphic
on D, then f7 f=0and

Sz

Z—w

dz = 2mif(w) Yw e U\ v
gl

If f is meromorphic on D with no poles on 7, then

/f—2m S Reseeu /(2)

w poles in U

Start of
lecture 12 Remark (Jordan Curve Theorem). Every simple closed continuous curve in the
plane separates C into two connected components, one bounded, one unbounded.

Computing residues

(i) If f has a simple (= order 1) pole at z = a, then the Laurent expansion at a is

flz) = 1 +eo+ei(z—a)Fea(z—a)?+ -

SO

Res:—a(f(2)) = lim(z —a) f(2)

z—a

Example. f(z) = 1+22 at z=1: (z—1)f(2) = ZH, so Res.—; f(z) = &.

(ii) If f = Z%’Zg, where ¢ is holomorphic and non-zero at z = a, and h is holomorphic
and has a simple zero at z = a:

g holomorphic at z = a, B
h(z) =1 (a)(z — a)h(2)

h(a) =1 at z = a, and is holomorphic at a. So

Qr
—
N
N—

g(z) g(a)
hz)  W(a)(z — a)h(z) ’

W (2)h(z)
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(the boxed expression is holomorphic at a). Applying (i) to W,

that

we see

e 0= 25

Example. f(z) = 25%; at z = ¢. (ii) implies
i

Res,—; f(z)%

1

(iii) If f(z) = 22 g holomorphic at a. Then Res.—, f(z) is the coefficient of (z —

(z—a)k”’

a)®*~! in the expansion of g, which is

Let’s explore applications to real integrals.
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—L_dz. Note:

Example. Evaluate [;° ; g

(1)

1 _
1+z4 —

1
1+(—z)%

(2) |z| >1 = )ﬁ«l‘.

Consider:

1 + 2* has 4 simple zeroes: e
1 around e™/4, ¢3mi/4

1
RGSZ:e37ri/4 1422 —
1+ z%). We have:

1
4e97i/4

_ 1
T femi/4c

7ri/4’ 637ri/4’ 657ri/4

, and 0 around the others. Res,_ xi/a

Tmi/4

and e

. vr has winding number
and

1 1
1424 = 4e3mi/40

(Computed using (ii), with g(z) = 1, h(z) =

1 R
dz = d —d
/YR24+4Z /(7231"‘24 Z+/—R1+Z4 :
I I
For I, parametrise z = Re', 0 € [0, 7]. Then
n={ —L _ireas
1= 0 1 -+ R4€4i92 €
|I1] SRZ—}JEI—H)asR—M)o. So
1 1
IQ:/ dz—/ —dz
R o 1+24
1 1 1
= 274 - — | — —Fd
m |:4637r7,/4 4e7rz/4:| /C;{ 1+ 24 z
. 1 1
— 2ms 4e3mi/4 T gemi/a| 0
So
1 ; ; 1 1 1 1 1 T
Iy — —mi (6737”/4 + 67“2/4> = -t <— ——i+—=- z> = —
2772 2 V2 V2 V2 V2 V2
oo 1 _ 1 poo 1 _ T
So i madz =3 [ madr =55
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Example. Compute [~ 1:3:);’&22 dz. Note

e +€—zz Ty AL e—zx+y
COsS 2z = =
2 2

e cos T
TroTa? has real part Thaqs? On R.

Notice then ¢/(*+%) = ¢@=¥ 5o this function is bounded above by 1 in modulus for
y = 0.

However, e = cosx + isinx, so the function

Roots of 1+ z + 22 are 2™/ 3, edmi/ 3, vr winds around e2mi/3

1.
etz etz R elz
[Ny Ty
wgltzt+z C;gl%—z—l—z _pl+z+4+z2

with winding number

11 12
11| < length(C}) = s = Rgfg_l — 0 as R — oo. We have
ez‘z ei827'ri/3
ReSZ:ezm/s 5 = 5
L+z+22 1+ 2e2m/3
je2mi/3 . 1 \/g .
so Iy — 2mi [132&’#1/3] —0 (as R — o0). e2™/3 = —5+ %%4,801+ 2e2™/3 = \/34.

. omi (1., V3, .
61627\-1/3 _ ez(—§+71> _ 6_1/26_\/5/2

V3i

*  cosw 2T /379 _ij2
_ P _Rel 22 /2,—1/
[ —re (T

— —@ cos | —=
/3 2

so Iy — 27i {e—i/2e—\/§/2} = %6_\/5/26_7;/2. So
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Lemma (Jordan’s Lemma). Suppose f(z) is holomorphic on {|z| > r} for some
r >0, and zf(z) is bounded. Then for all & > 0, we have

(2)e"**dz — 0
Cr

as R — oo, where C, : [0, 7] = C, Ci(t) = Re™.

Proof. We have for z = Re®, that |¢/®*| = e~@E5nt and so using the basic estimate

st > 2 on [0,7/2] (since 2L decreases on [0,7/2]), we have

—_aR?2t
|€ia2| < € aRﬁl te [0777/2]
= 2t
e BTt =n—tten/2,7]

BY hypothesis, there exists M € R such that |zf(z)| < M. Putting these together, let
C}, be C}, for [0,7/2]. Then

/2
< / Me=°B% 4
0

t=m/2
_= M 1 e—OéR%
—aR2
m t=0

) f(z)emzdz
Cr

as R — oo. Similarly for t € [7/2, 7]. O

Start of
lecture 13
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Example. Evaluate [ <3M2

instead

dx, m € R. cosz is large for i{R = z large R, so

' 00 eim:c
cosmz = Re(e(imz)) = I =Re (/oo :52+1dx>

Useful contour:

Call this vg. If m > 0, Jordan’s lemma implies fc’ —j;?_zl dz — 0 as R — co. Residue
R
theorem gives

imz

elmz ‘ e
/}/R Tﬂdz = 2mi ReSZ:Z‘ 22 T1

€zm(z)
1+

=me ™

=27 -

So

ez’mz R eimz T
7T€_m = / sz +/ sz =~ I = -, m > 0
oy 25+ 1 _r2°+1 emn

If m < 0, cos(mx) = cos(—mx), so [ = T by previous computation. If m = 0, we

have
1 TR
—dz| < ——— =0
/C;% 22 +1 - R2-1
as R — oo, so with the residue computation Res,—; 22—1“ = % we have [ = 55 = 7.

So in all cases, I = ﬁ
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Example. Evaluate fo% =7——7df. Let’s use cosf = [ + ], so cosf =

) 5+4 cos 0
% [z + 5 for z = €. So dz = ie?? = izd#.

2m 1 1 d
[ et Loy
o O+4cosl |Z|:15+4<Z+T;> iz

_ 1/ _ I .
- ) |z|=1 22’2+5Z+2
1 1
= — —d
5 /z|:1 2z +1)(z+2)

So we have
with winding number 1 around z = —%. CIF applied to ﬁ says
1 1 1
(T2~ 2mi %
2(-3+2) 27 Jj=12(2+2) (24 3)
SO

2mi 1 ]
LU - =i ——
3 /|Z|1 22 45212 Z/O 5+ 4cosf

2m 1 do = 2

S0 Jo  B574cosgdl’ = 3
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Example. Evaluate [J°*2Zdy. Consider

0 T
1 oo ix _ ,—Ix 1 0o ix 1 —oo it
1 fRdr=g®, 1 [=er, 1 =, 5
2 Jo x 2i Jg =z 2@ Jy =
1 0o iT
2t J_o

Modify by considering yg . contour.

. e’iZ . . eiz
Cauchy’s theorem glve§ fVRﬁ 7dz‘ = 0. Jordan’s lemma gives fck £-dz — 0 as
R — 00. On O, z = e, dz = ice?df = i2db, so

e'iz T ™
—dz = / e idf — z/ 1d6 = =i
C. ? 0 0

as e — 0. So
eiz eiz —€ eiz eiz R 6@'2
/ —dz = / —dz + —dz — —dz + —dz
YR, z C;{ z _R < Cé z € z

Ase — 0, R — oo, we obtain
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Example. Evaluate fooo x?—ildx, a € (0,1). 2% = exp(alog z), branch of log.

3

Claim: Let logz = In|z| + targz, argz € (—g,—). Then for x > 0, we have
(—z)* = (—1)*z®. Proof of the claim: log(—x) = In|z|+ 7i = Inx + 7i since = > 0.
In

In particular, log(—1) = mi. So logx + log(—1) =

x + mi = log(—x). So

exp(alog x) exp(alog(—1)) = exp(alog(—x))

as claimed.

So consider yr . as in previous example. Can show integrals along C%, CL — 0 as

R — 00, € = 0. Residue theorem:

R, 2olelegE) o
(z+i)(z—1) 21

So
1 (03
amiRes,— P [ 2 g,
(z+1)(z —1) vre 1+ 22
(64 (0% —& (0%
:/ szz—/ QZdH/ -+
o, 1+2 cr 2 +1 _p 2*+1

By substitution ¢ = —z, we have

—& @ R @
[ om0
_r 14z c 2°+1

So taking e — 0, R — 0o, we have

i =0 — 0+ [(—1)* + 1]/
22 0

SR _ it
80 Jo 142dT = 1 Tyye-
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dz

(67

dx

/ER

ZO[

2241

dz



oo gl/3

0 Tagaede. Let’s define log z = In |z|+iarg z, arg z € (0, 27).

Example. Evaluate

We'll consider a “keyhole contour”, «. Integral on v of (er/;)Q
On 01:
,1/3 R1/3
dz| < (2 20)R - 0
/Cl(z—i-Q) < @r-2)R-m—on -
as R — o0o. On Cy:
,1/3 £1/3
——dz| < 27 - 20)e———= — 0
Lt e g o

ase — 0. On Ly, z =te®, t € [e, R], dz = edt.

R 41/3,i5/3 t1/3
/ edt — /
. (tei? +2)2

as & — 0. On Ly, z = tei(2Pi=0),

R 41/3i R /3
t 3 g . t
1(2m—96) dt 2mi/3 / dt
/ (=D 1 2)2° AR

So we have by residue theorem,

1Y 2pii/3/R £1/3 e /R £1/3 B ,1/3 o
0<R2/3> S |t 0 (e¥%)+ = Resema [ 2

Then taking € — 0 and R — oo we get

) o0 t1/3 21/3
1— 27”/3/ dt = 2miRes,— 9 ———
(1 —e™) o (t+2)?2 RS2 1 o)

Using residue computation trick (iii), this residue is

d d 1 1 1 1 |
— = — exp|=logz) = —exp| =logz
dz|,__o dz|,__, = 3 & 3z = 3 & ——9
so Res,—_o (zjr/; = 1\[67”/3 Can compute ui%l/g = \if, SO Ooo %dt =

e 3
i V2
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Proposition. Let f have a zero (respectively pole) of order k > 0 at z = a. Then

]}l((;)) has a simple pole at z = a, of residue k (respectively —k).

( I
Remark. By Example Sheet 2, if f : U/ — C with f(U) contained in a simply con-
nected set which omits 0, then there exists holomorphic function g(z) = log f(z) on

];/((5)) the “logarithmic

U, so ]}l((j)) has holomorphic antiderivative log f on U. We call

derivative” of f.
L J

Proof. Suppose f(z) = (z—a)¥g(2) near a, with g(a) # 0, then f'(2) = k(z—a)*1g(2)+
(z = a)fg'(2), s0

Since g(a) # 0, % is holomorphic at a. So ResZ:afT/ = k. (Similarly for the pole
case). O

Theorem (Argument Principle). Let v be a closed curve bounding a domain D,
and f a function meromorphic on an open neighbourhood of D U~. If f has no
zeroes or poles on v, then

I(foy;()):;ML‘;/((j;dz:#ofzeroes of fin D — # of poles of f in D

where zeroes and poles are counted with multiplicity.

Proof. We have
1 dw
27

I(fov;0)= f
oy

1 [ f'(2)
= — dz
2mi J, f(2)

w

By residue theorem, this is

Z Res,—q J}/

poles « in D
of f'/f
but by previous proposition this equals

number of zeroes of f in D — number of poles of f in D

counting multiplicity. O
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Remarks
(1) Recall v is compact, f o~ is also a closed curve (and compact).
(2) Morally: this says
27 (# of zeroes of f in D — # of poles of f in D)
is the change in arg f(z) as z travels ~.

The argument principle has important consequences for local behaviour of f.

Definition. If f is holomorphic and non-constant near z = a, then the local degree
of f(z) at z = a is deg,_, f(2), the order of the zero of f(z) — f(a) at z = a.

If f is non-constant, we can write f(z) — f(a) = (¢ — a)*g(2), g holomorphic at a, and

the zero at z = a of f(z) — f(a) is isolated. So 0 < |z — a| sufficiently small implies

f(z) — f(a) # 0. SO for small £ > 0, the circle v(t) = a + e, t € [0, 27], about a gives

I(f ov; fa)) = I(f(+(t)) — f(a); 0)
= # of zeroes in D(a,¢) of f(z) — f(a) — # of poles of f(z) — f(a) in D(a,e)
= degz:a f(Z)

Consider the local behaviour of f(z) = 2* at z = 0 for k > 0. We have deg,_, f(2) = k.

Note that Yw € D(0,¢), w has k preimages under f in D(0, /).

Theorem (Local mapping degree theorem). Let f : D(a, R) — C be holomorphic
and non-constant, with local degree k > 0. Then for r > 0 sufficiently small, there
exists € > 0 such that if 0 < |w — f(a)| < e, then f(z) = w has exactly k (simple)
roots in D(a,r).

Proof. Choose r > 0 such that f(z)— f(a) has no zeroes for 0 < |z—a| < rand f/'(z) # 0
for 0 < |z —a| < r; r exists by identity principle. Let v be the circle of radius r about a.
Then f o~y doesn’t contain f(a), so there exists € > 0 such that D(f(a),e) N fo~y = 0.
For w € D(f(a),e), the number of zeroes of f(z) = w in D(a,r) is I(f o v;w). But
I(fovy;w) =1I(f o, f(a)) = k. Since f(z) — w has nonzero derivative in D(a,r)*, so
the preimages of w are simple. O
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Note I(f oy;w) = I(f o~; f(a)) because the winding number is constant on connected
components of C\ f o~.

Corollary (Open mapping theorem). A nonconstant holomorphic function maps
open sets to open sets.

Proof. Want to show that if f : D — C then Va € D, Vr > 0 sufficiently small,
f(D(a,r)) D D(f(a),e) for some . By previous theorem, if r and e are sufficiently
small, then Yw € D(f(a),e) we have that the number of zeroes of f(z) —w in D(a,r) is
deg,_, f(z) > 0. O

Theorem (Rouché’s theorem). Let v bound a domain D, and f, g are holomorphic
on a neighbourhood of D U~. If | f(2)| > |g(2)| for all z € v, then f and f + g have
the same number of zeroes in D.

Proof. Define h(z) = £ (%g(z) =1+ ?E?) Note h is meromorphic on a neighbourhood
of DU~. Since |f(2)| > |g(2)| Vz € vj f + ¢ and f are nonzero on +, so h has no zeroes

or poles on v. By argument principle, we have
# zeroes of f+ g on D — # zeroes of f on D = I(ho~;0)

By hypothesis, ho~y C D(1,1). So I(ho~;0). O]

Example. Consider p(z) = z4+62z+3. If 2| > 2, then }23 +6+ %‘ > ]2\3—6—% >
0, so p(z) = z (z2 + 6+ %) # 0. We could instead apply Rouché’s with v : |z| = 2,
f(z) = 2%, g(2) = 62 + 3, so |z|* = 16 > 15 = 6|z| + 3 > |62 + 3|. By Rouché’s,
p(2) has 4 zeroes inside D(0,2). For |z| = 1, [6z] = 6 and |2* + 3| < 4. So using
vzl =1, f(2) = 62, g(z) = z* + 3, we see p(z) has 1 zero inside D(0,1). (Note
that this implies that p(z) has a real root, since roots come in conjugate pairs for
polynomials over R).

Example (Rouché’s = open mapping). If f : D — C is holomorphic and
nonconstant and a € D, we can choose r > 0 such that D(a,2r)* has no zeroes of
f(2) — f(a). Let v be |z —a|] = r, and let 0 < €, min,c, |f(2) — f(a)|. Then for
w € D(f(a),e), f(z) —w = f(a) —w+ f(2) — f(a), and we have by |f(a) —w| <
e < |f(2) — f(a)| for all z € v. By Rouché’s, zeroes in D(a,r) of f(z) —w is equal
to number of zeroes in D(a,r) of f(z) — f(a) > 0. So f(D(a,r)) D D(f(a),e).
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Uniform limits of holomorphic functions

Definition (Converging locally uniformly). Let &4/ C C be open, and f, : Y — C
a sequence of functions. Then f,, — f converges locally uniformly on U if Yu € U,
iD(a,r) C U on which f,, — f uniformly.

Example. f,(z) = 2" on U = D(0,1). As n — oo, f, tends to constant zero
function pointwise. For a € D(0,1), D (a, 1%'“‘) C D(0,1), and f, — 0 uniformly

on D (a, 1;‘“'). So fn — 0 locally uniformly on D(0,1).

However, for any € > 0, |fu(2)] <€ <= |2|* <e <= |z| < €'/, s0 no uniform
bound can hold for all |z| < 1.

Proposition. {f,} : U — C is locally uniformly convergent on U <= {f,}
converges uniformly on any compact subset of U.

Recall: K C C is compact <= K is closed and bounded <= every open cover has a
finite subcover.

Proof. 1f f,, — f locally uniformly on U, and K C U is compact, then Va € K, there
exists 74 > 0 such that {f,} converges uniformly on D(a,74). J,cx D(a,74) is an open
cover of K, so there exists aq,...,a; such that

K C D(a1,rq,) U---UD(ay,rg).

Taking the max of constants of uniform convergence on these discs, f,, — f uniformly
on K.

o1
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If f,, — f on every compact subset of U then if a € U, find a closed disc D(a,r) C U.
Then f,, — f converges uniformly on D(a,r). O

Theorem. Let {f,} be a sequence of analytic functions on U, converging locally
uniformly to f. Then f is holomorphic, with f/ — f’ locally uniformly.

Proof. Fix a € U and D(a,r) CU. For r < 1, f, — f uniformly of D(a,r). So
1f(z) = ()| = [f(2) = fa(2) + fn(2) = fa(w) + fa(w) — f(w)]
so uniform convergence implies f continuous no D(a,r). Given v a closed curve in

D(a,r), we have
[£=tm [ f.=0
g "0y

by Cauchy’s theorem. So Morera’s theorem implies f is holomorphic on D(a,r). By
Cauchy’s integral formula we have:

as n — oo by uniform convergence. f, — f uniformly on D(a,r) implies |f; — f'|
uniformly on D (a, %) O

Remark. The assumption of locally uniform convergence is necessary; a construc-
tion with non-holomorphic limit can be done via Runge’s theorem (see Topics in
Analysis).

Application 1: Newton’s method and complex dynamics

Recall Newton’s method, an iterative root-finding algorithm, takes a polynomial p(z)

and an initial zg for a root of p(z), and compute a sequence z1, 22, ..., zp = f"(20),. ..
where )
p(z
Z)=z— ;
) = 2= L2

sometimes(?7) this sequence limits to a root of p.
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Example. p(z) = 22 — 1, f(2) = QEZ:{I. In R:

N 1/3174

4

f"(z) is a sequence of meromorphic functions, so if f"(zy) approaches a limit, for
some region U of initial guesses, then f™|;; has holomorphic limit.

Definition. A family 7 = {fi}ier of holomorphic functions on a domain D is
normal if every sequence in F has a locally uniformly convergent subsequence.
(Note: we allow convergence to co).

Deep theorem (“Montel’s theorem”): If Ja,b,¢ € C such that Vf € F, f(D) N
{a,b,¢} =0, then F is a normal family.

Definition. The Fatou set of a rational map f is

F(f) :={z € C : 3 neighbourhood U of z s.t. {f"|4} forms a normal family}

Riemann mapping theorem

Theorem (RMT). Lt /4 C C be a nonempty, proper, open, simply connected subset
of C. Then there exists conformal isomorphism f: U — D = D(0,1).

Sketch of proof. Fix zg € U, and consider

F :={f:U — D, f holomorphic, injective and f(z9) = 0}
Steps:
(1) F is non-empty.

(2) Show there exists g € F such that |¢’(29)] is finite and maximal among elements of

F.
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Prove ¢ is a conformal isomorphism.

Now we actually prove these claims:

(1)

U # C implies da € C\ {4}, so by Example Sheet 2 there exists holomorphic branch
of the logarithm log(z —a) on U. So there exists holomorphic branch h(z) = /z —a
on U. Show: h is injective on U, and h(U) N —h(U) = 0. By open mapping theorem,
h(D) contains some D(h(zp),€), so |h(z) 4+ h(z9)| > ¢ for all z € D. Can then check
that:

e |W(z h(zo) h(z) — h(z

o) = 5 IHCOL B HE) =)

4 [h(z0)]* h'(z0) h(z)+ h(z0)
Let A =supser|f'(20)], and choose {f,} in F such that f;(20) — A. By Montel’s,
F is a normal family, so there exists f,, converging locally uniformly to some g,
holomorphic. Show ¢ is in the family (injectivity requires argument).

If ¢ is not surjective then can construct an element of F violating maximality of g:
if ce D(0,1) \ g(4), then choose (Example Sheet 2) a holomorphic branch

_ |9z)—c
k(z) := I —cg()’
Then
Pl = S ) FG)
1—k(z0)k(z) = [F(20)]
is in F, with |F'(20)| > |¢'(20)|, contradiction. O
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