\documentclass[11pt]{scrartcl} % vim: tw=50 \usepackage{notesheader} { \renewtheorem{customtheorem}[customproposition]{Theorem} \renewtheorem{customlemma}[customproposition]{Lemma} \renewtheorem{customcorollary}[customproposition]{Corollary} } \begin{document} \newcommand\coursecode{VP} \title{Variational Principles} \author{} \date{\today} \maketitle \tableofcontents \newpage \section{Variational Principles} This is not intended to be a complete set of notes. These notes only consist of the things that I wanted to make flashcards of and practise revising a little. \subsection{Euler Lagrange Equations} In this course, almost all of the problems will be about minimising something like (where $x$ is a function of $t$, so we call $F$ a \emph{functional}): \[ F[x] = \int_a^b f(x, \dot{x}, t) \dd t \] In the case where $x$ must take predefined values at $t = a$ and $t = b$, we can get \emph{Euler Lagrange equations}. The simplest form of Euler Lagrange: \begin{flashcard}[Euler-Lagrange] \prompt{Euler Lagrange equation?} \[ \cloze{\pfrac{f}{x} = \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right)} \] \end{flashcard} The derivation is to consider what we call the \emph{first variation} of $F$: \begin{align*} \delta F &= F[x + \delta x] - F[x] \\ &= \int_a^b \left( f(x + \delta x, \dot{x} + \delta \dot{x}, t) - f(x, \dot{x}, t) \right) \dd t \\ &= \int_a^b \left( \pfrac{f}{x} \delta x + \pfrac{f}{\dot{x}} \delta \dot{x} \right) \dd t \\ &= \int_a^b \pfrac{f}{x} \delta x \dd t + \left[ \pfrac{f}{\dot{x}} \delta x \right]_a^b - \int_a^b \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right) \delta x \dd t \\ &= \int_a^b \left( \pfrac{f}{x} - \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right) \right) \delta x \dd t \end{align*} Since $\delta x$ is arbitrary, we must have \[ \pfrac{f}{x} - \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right) = 0 \] \subsubsection*{First Integrals} There are also some useful first integrals of the equation which are true under certain conditions on $f$. \myskip \begin{flashcard}[Euler-Lagrange-no-x-dependence] In the case where $f$ has no explicit $x$ dependence (i.e. $\pfrac{f}{x} = 0$), we get an alternative form of Euler Lagrange: \[ \cloze{\pfrac{f}{\dot{x}} = \text{const}} \] \end{flashcard} \myskip In the case where $f$ has no explicit $t$ dependence (i.e. $\pfrac{f}{t} = 0$), we can also get an alternative form of Euler Lagrange, although the derivation is more involved. \begin{flashcard}[Euler-Lagrange-no-t-dependence] \prompt{Derivation of first integral for $\pfrac{f}{t} = 0$?} \cloze{ Consider $\dfrac{f}{t}$ using multivariate chain rule: \begin{align*} \dfrac{f}{t} &= \pfrac{t}{t} \ub{\pfrac{f}{t}}_{=0} + \pfrac{x}{t} \pfrac{f}{x} + \pfrac{\dot{x}}{t} \pfrac{f}{\dot{x}} \\ &= \dot{x} \pfrac{f}{x} + \ddot{x} \pfrac{f}{\dot{x}} \end{align*} Multiplying the Euler Lagrange equation by $\dot{x}$ gives: \begin{align*} 0 &= \dot{x} \pfrac{f}{x} - \dot{x} \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right) \\ &= \dfrac{f}{t} - \ddot{x} \pfrac{f}{\dot{x}} - \dot{x} \dfrac{}{t} \left( \pfrac{f}{\dot{x}} \right) \\ &= \dfrac{f}{t} - \dfrac{}{t} \left( \dot{x} \pfrac{f}{\dot{x}} \right) \\ &= \dfrac{}{t} \left( f - \dot{x} \pfrac{f}{\dot{x}} \right) \end{align*} } Hence we obtain the first integral: \[ \boxed{\cloze{f - \dot{x} \pfrac{f}{\dot{x}} = \text{const}}} \] \end{flashcard} \end{document}