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1 Variational Principles

This is not intended to be a complete set of notes. These notes only consist of the things
that I wanted to make flashcards of and practise revising a little.

1.1 Euler Lagrange Equations

In this course, almost all of the problems will be about minimising something like (where
x is a function of ¢, so we call F' a functional):
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In the case where x must take predefined values at ¢ = a and t = b, we can get Fuler
Lagrange equations. The simplest form of Euler Lagrange:
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The derivation is to consider what we call the first variation of F:
OF = Flx 4+ dz] — F[z]
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Since dx is arbitrary, we must have
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First Integrals
There are also some useful first integrals of the equation which are true under certain
conditions on f.

In the case where f has no explicit x dependence (i.e. 8f = 0), we get an alternative
form of Euler Lagrange:
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In the case where f has no explicit ¢ dependence (i.e. %{ =
alternative form of Euler Lagrange, although the derivation is more involved.

% using multivariate chain rule:
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Multiplying the Euler Lagrange equation by & gives:
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Hence we obtain the first integral:
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), we can also get an
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