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0 Introduction

This course covers “linear algebra”, topics in algebra & geometry
It involves approaches that are

concrete & abstract
computational & conceptual

The key ideas to develop / build on are:
e Elementary geometry (Euclidean): points, lines, planes in 2d or 3d; length, angles
e Points described by coordinates
e Points described by vectors; what is a vector?

e Simple transformations e.g. rotations & reflections — linear maps.

0.1 Plan

1. Complex Numbers

2. Vectors in 3 dimensions

3. Vectors in General, R™ & C"
4. Matrices & Linear Maps

5. Determinants & Inverses

6. Eigenvalues & Eigenvectors

7. Changing Bases, Canonical Forms & Symmetries



1 Complex Numbers

1.1 Basic Definitions
The following terms will not be defined here but assumed to be understood:

e C, 4, x

e conjugate, modulus, argument

e complex plane / Argand diagram
Construct C by adding an element 4 to real numbers R, with

it =—1.
Any complex number z € C has the form
z=x+1y with x,y € R;

x = Re(z) is the real part; y = Im(z) is the imaginary part.
R C C consisting of elements x = i0 = z.
In following, use notation above &

21 =21 + 1y, 29 =x2+1iys etc.
1. Addition (& subtraction). Define
21+ 29 = (71 £ 32) +i(y1 = y2)
2. Multiplication. Define

2120 = (T122 — Y1y2) + i(T1y2 + 2291)

If z # 0, note that
-1 x Y

27 = —
$2+y2 $2+y2

satisfies 2z~ = 1.

3. Complex conjugate Define

z=z"=z—1y

Then: 1

Re(z) = 5(2 +2)
and 1

Im(z) = Z(Z —Z)

(z) = z & further
zZ1+ 22 =21+ 22

R172 = 2122



4. Modulus is defined by r = |z|, real & > 0, with 72 = |2]? = 22 = 2?2 + ¢/*
5. Argument 0 = arg(z) real, defined for z # 0 by
z =r(cosf +isinf)

for some real € (this is known as polar form)

g= 2 sinfg=—-—2
COSU = , sin 6 =
/l'2+y2 /$2+y2
0 tan@zg
xT

arg(z) is determined only mod 2 i.e. can change § — 6 + 2n7 for n € Z.

To make it unique we can restrict the range, e.g. the principal value defined by

—-T<0<n7

6. Argand diagram & Complex Plane Plot Re(z) & Im(z) on orthogonal axes, then
r = |z| & 6 = arg(z) are length & angle shown

A Im(z)




Example. Consider

2 2

z:—1+i\/§:2<—1+i\/§>

here z = 2 & arg(z) = %’T +2nm. Note tanf = —/3 = 0 = %’r + 2nm = arg(z) or
0 = —% + 2nmw = arg(—=z).

\J

Re

1.2 Basic Properties & Consequences

Aside (motivating the definitions leading to C)

Note that Z can be seen as a way to solve some equations involving Z, for example
x+3 = 0. Rational numbers can then be used to solve other equations such as bx+1 = 0,
and real numbers are used to solve some quadratics and other higher degree polynomials,
such as 22 —2. Finally, the complex numbers are used to allow us to solve more equations
that we couldn’t before, such as 22 + 4 = 0. This leads to the fundamental theorem of

algebra.

(i) C with operations +, x is a field.

i.e. C with + is an abelian group & distributive laws hold, i.e.

z1(z2 + 23) = 2122 + 2123.

(ii) Fundamental Theorem of Algebra A polynomial of degree n with coefficients in C
can be written as a product of n linear factors

P(z) =cp2" + -+ 1z +c ¢ €Cicp #0



=cp(z—a1) (2 —ayp) a; € C.
Hence P(z) = 0 has at least one root & n roots counted with multiplicity.

(iii) Addition & Subtraction as parallelogram constructions:

21+ 22
- -7 - /
22 -~ /
_ |~ - ~ /
- SO /
Z2 —z1-~ - /
~ /
~ 2
Re
Complex conjugation is reflection in real axis
z=x+1y
|
|
|
|
|
|
: Re
|
|
|
|
zZ=z—1wy

(iv) | Proposition (Composition Property). Modulus / length obeys

|z122| = |21]| 22

Proof. This result follows immediately by just expanding.



Proposition (Triangle Inquality).

|21 + 22| < |z1| + |22]

Proof. Compare
LHS? = (Zl + 22)(21 + ZQ)

RHS? = |21 + 2|21 |22] + 22|
Compare “cross terms”:
2173 + 2271 < 2|z1|22]
1 .
= Szt (a2)) < |alz|
<= Re(z122) < |z172]

as desired.

d

p
Proposition (Alternative form of triangle inequality). Replace z1 by zo — 21
and rearrange to get

|22 — 21| > |22| — |21]

or > |z1| — |22

SO
|22 = 21| 2 [[z2| = |1l

~

(v) | Proposition. z; = ri(cosf; + isinf;) and 29 = ro(cosfy + isinfy) implies
that

2129 = rira(cos(61 + 02) + isin(0; + 63))

~

Proof. Just expand and apply trig formulae. O

Theorem (De Moivre’s Theorem).
(cos@ +isinf)"™ = cosnb + isinnd Vn € Z

(for z#0,2°=1& 27" = (z" )" for n > 0.)

Proof. Use the proposition above and induct.



1.3 Exponential & Trigonometric Functions

Define exp, cos, sin as functions on C by

[ee] zn
exp(z) = e = Z o}
n=0

1 . )
cos(z) = (e + e %)

2
Lo, 14
:l—iz —l—@z + e
_l 1z 1z
sin(z) = - )
—z—l23+—z5+
3! 5!

These series converge Vz € C and such series can be multiplied, rearranged, and differ-
entiated.
Furthermore

From above
V=1 and (e*)" = e net
Proof. Induction for positive integers, and for negative integers use

z

et =1 = e %= ()}

Lemma. For z =z + iy
(i) e* = e*(cosy +isiny)
(ii) exp on C takes all complex values except 0.

(iii) e =1 < z =2nmi, n € Z.

Proof.
(i) ¥ = e%e® but e = cosy + isiny.
(ii) |e*| = e” takes all real values > 0. arg(e®) = y taking all possible values.
(iii)
=1 <= e*=1,cosy=1,siny =0
<= xz=0and y=2mn

as required.




Returning to polar form or mod / arg form (Subsection 1.1 (v)), this can be written

2 =r(cosf + isinf) = re

for r = |z| and 6 = arg(z).
De Moivre’s Theorem now follows from

(eie)n _ einG'

Roots of unity
z is an N-th root of unity if 2 = 1. To find all solutions:
z = re' satisfies 2V =1
PN iNo _
< ¥ =1and N0 = 2nn n ez

This gives N distinct solutions:

z = e2™/N n=0,1,...,N—1

2mn s 2mn
= COS —— + isin ——
N N
fr w’l’b
where w = 27/N,
L«.)2 w1
3 0 >
w w Re
w4 w5

10



1.4 Transformations; lines & circles

Consider the following transformations on C (maps C — C).

z—=z+a translation by a € C
Zr Az scaling by A € R
z e rotation by @ € R
Z—Z reflection in real axis
Z = — inversion

z

Consider general point on a line in C through 2o and parallel to w # 0 (fixed 2, w € C):

/
20
w
Re

zZ =20+ \w
for any real parameter \.
To eliminate A, take conjugate

Z=720+ \0

and then combine
wz — W2 = Wzp — W20

Consider general point on a circle with centre ¢ € C and radius p:

oA
N

\J

Re

11



z = c+ pe'® for any real «

Equivalently
2= =p

or |22|—¢z—cz = p?>—|c|?. (squaring sides above). Mobius transformations are generated

by translations, scalings, rotations and inversion. They can be viewed as acting on

Coo = CU {0}

which is geometrically a sphere (see IA Groups).

1.5 Logarithms & Complex Powers

Define
w = log z 2€C,z#0

by

e’ =expw =z

z+2n7ri)

i.e. log is inverse of exp but exp is many-to-one (e* = e and so log is multi-valued.

z=ref =087l = oo+ — Jog 2 = log(r + i) = log || + i arg ||
Multiple values of arg and log are related:
0 — 0+ 2nm

log z — log z + 2nmi

where n € Z. To make them single valued we can restrict e.g. 0 <0 <27mor — 7 <0 <7
(called the principal value).
Example.
-, 3(—2) _ elog367i7r/2+2n7ri _ elogSfiﬂ/2+2n7ri

Hence ]
log z = log 3 — % + 2nmi

3r/2 ifweuse0<60<2rm
arg z =
—7m/2 ifweuse —m<O<m

We define complex powers by
2 = elog? z2€C,z#0&a e C
This is multi-valued in general under the change argz — argz + 2nnw

PRI Zae27rznoz

12



(i) If « = P € Z then z“ = 2P unique.
(ii) fa= % € Q, then z® = 2P/7 takes finitely many values.

but in general we have infinitely many values.

Examples

o (1 +i)1/2: 14 =+/2eim/4 = 03 1082+i1/4 Hence

1 .
log(1+1) = 5 log2 + % + 2nmi

— (1 _|_Z~)1/2 _ e% log(141)

— o1 log2+im/8+nmi

_ 21/4€i7r/8(_1)n

1+
(1 +Z)1/2
Re
(144)1/2
R (_3Z~)i _ eilog(—3i)
_ ei(logS—iﬂ/2+2n7ri)
_ eilogSefr/272n7r nez

2 Vectors in 3 Dimensions

A vector is a quantity with magnitude and direction (e.g. force, electric and magnetic
fields) - all examples modelled on position.

13



Take geometrical approach to position vectors in 3D space based on standard (Eu-
clidean) notions of points, lines, planes, length, angle etc. Choose point O as the origin,
then points A, B have position vectors

- —

a=0A, b=0B

lengths denoted by |a| = |OA|. Also, o is the position vector for O.

2.1 Vector Addition and Scalar Multiplication

(i) Scalar Multiplication Given a, position vector for A, and a scalar A € R, Aa is
position vector of point A" on OA with

Aa| = |04 = |Al|ulal

as shown

A da, ) <0

Say a and b are parallel, a || b iff @ = \b or b = Aa. This definition allows A < 0,
and A =0so a || o for any a.

(ii) Given a, b position vectors of A, B, construct a parallelogram OACB

14



and define a + b = ¢, position vector of point C' provided a J b; if a || b then we
can write a = au, b = Pu for some u, and then

a+b=(a+pB)u

(iii) Properties For any vectors a, b, ¢
at+o=o0+a=a

so o is the identity for +. We also have that there exists some —a such that

a=(-a)=(-a)+a=o0
so there exists an inverse of every vector. We also have

at+b=b+a

so + is commutative. It is also associative, i.e.

a+(b+c)=(a+b)+c
We also have the following properties

Aa+0b) = Xa+ b

(A+ p)a = da+ pa
Apa) = (Au)a

All can be checked geometrically i.e. associativity from parallelepiped.

(iv) Linear Combinations and Span A linear combination of vectors a,b,...,c is an
expression

aa+ b+ +c

for some «, 3,...,7v € R. The span of a set of vectors is

Span{@a baag}
:{0@4‘5b+‘“+7§3aaﬁa---aVGR}

If a # a then span{a} = {Aa}, i.e. the line through O and A. If a | b then
Span{@7 b} = {CVQ+ /8@ : 047,3 € R}

i.e. the plane through O, A and B.

15



2.2 Scalar or Dot Product
(i) Definition: Given g and b let 6 be the angle between them; then

a-b=lal|b| cost

b

IS}

scalar or dot product or inner product (0 defined unless |a| or [b] = 0 and then

a-b=0.)
(ii) Properties
a-b=b-a
a-a=la?>0&=0ifa=0

1
u-b=—-a-b=1blcost
a

is component of b along a.

16



IS]

ISV |
\

We can resolve b = b” + b, whereag L biffa-b=0. Noteg-b:g-bu. (The

~

lla dla

expressions can be computed as b” =0b-uwu b, =b—(b-uwu.
In general, vectors a and b are orthogonal or perpendicular, written
alb<— a-b=0

definition allows a or b = 0; o L any vector.

2.3 Orthonormal Bases and Components

Choose vectors e1, ea, e3 that are orthonormal i.e. each of unit length and mutually

perpendicular.
, 1 ifi=j
e;j-j=
G170 i
Equivalent to choosing Cartesian axes along these directions, {e;} is a basis: any vector
can be expressed

a= g a;€; = aie] + agey = ases
i

and each component a; is uniquely determined.

a; =¢€;-a

17



18]

as

Each a can now be identified with set of components in

ai
(ab a27a3) or az
~—_——
row vector as
~——

column vector

Note

a-b=asdf (Zaiq) . ijﬁ
( J

= a1b1 + asby + asbs

and|a|* = a2 + a3 + a3 Pythagoras

e1, ez, ez are also often written i, j, k.

2.4 Vector or Cross Product

18



Definition. Given a and b, let € be angle between them measured in sense shown
relative to a unit normal n to the plan they span

n

1S

a

“right-handed sense”. (unit normal = unit vector L plane);

then
a X b= |al|b|sin On

(sometimes A is used instead of Xx) is wvector or cross product.

Note n is defined up to a choice of sign if a Jf b, but changing sign of n means
changing 6 to 27 — 6 so definition is undefined; n is not defined it a || b, and 6 is not
defined it |a| or |b] =0, but a x b = o in these cases.

Properties

Interpretations

e a X b is the vector area of the parallelogram shown

~

19



axb=1al|b|sind for sinf > 0 = “base” x “L height”

scalar area
Direction of normal n gives orientation of parallelogram in space.

e Fix a and consider z | a; then z — a X z scales |z| by a factor of |a| and rotates
z by 7/2 in plane L a as shown.

—> |2

]
IVIE]

Component Expressions

Consider e, ez, e3 orthonormal basis as in section 2.3 but assume in addition that

eLx ey =e3=—€Xel
e1 X e3=e = —e3 X e
€3 X €1 =€2= —¢€1 Xe3

(all equalities from any one) This is called a right-handed orthonormal basis. Now for

a= Z aie; = (a1e1 + azez + ages)
7

and

b= bjej = (bier + baea + byes)
j
we get

a x b= (azbz — azbs)ey
+ (a3b1 — albg)@
+ (albg — agbl)eig

2.5 Triple Products

Scalar Triple Product

20



Notation. Define

a-(bxc)=b-(cxa)=c-(axb)
=—a-(cxb)=-b-(axc)=—c-(bxa)

= [a, b, (]

Interpretation: |c-(axb)| is volume of parallelepiped shown = (area of parallelogram base)x

(L height) = |a x bljc]|cos 9

18]
X
IS
\
~
N
~

c-a x b “signed volume”; if ¢-a X b > 0 say a, b, c right-handed set.

Remark. a-bxc = 0if and only if a, b and ¢ are co-planar meaning one of them lies
in plane spanned by other two. For example ¢ = aa + b belonging to span{a, b}.

Example.
a = (anv_l) Q: (77_375)

= ax b= (05— (-1)(-3))ex
+((=1)-7—2.5)ey
+(2-(=3)—0.7)e3

= (—3,-17,—6)

Test whether a, b, ¢ coplanar with ¢ = (3,-3,7)

c-axb=3(=3)+ (=3)(~17) + 7(-6) = 0;

consistent with ¢ = b — 2a.

Vector Triple Product

ax(bxc)=(a-c)b—(a-b)c

21



(@xb) xc=(a-c)b—(b-c)a
Form of RHS is constrained by definitions above, or could check explicitly. Return to
these formulas using index notation and summation convention.
2.6 Lines, Planes and Other Vector Equations

(a) Lines
General point on a line through a with direction u(# o) has position vector

r=a=M\u AeER

parametric form

Alternative form without parameter A obtained by crossing with w:
UXT=UXa

Conversely
and this holds if and only if

for some real A\. Now consider
uxr=C

where u, ¢ are given vectors with u # 0. Note that
u-(uxr)=u-c=0

If u- ¢ # 0 then we hae a contradiction i.e. no solutions. If u-c¢ =0, try a particular
solution by considering

ux (uxc)=(u-c)u— (u-uc=—|u’c

22



Hence

r=a+ \u
(b) Planes
General point on a plane through a with directions u, v in plane (v Jf v) has position
vector

r=a+ \u+ ApeR

parametric form

Alternative form without parameters obtained by dotting with normal

n=uXv # (0since u Jf v but not necessarily a unit vector)

23



This gives
nr=n-a=k

where k is a constant. Note component of r along n is

n-r_k
_—=— (constant)
n|  |nf

is clearly a plane and moreover % is perpendicular distance of plane from o.

Ve

Y

Tal

o

-—

(c) Other Vector Equations
Consider equations for r (unknown) written in vector notation with given (constant)
vectors. Possible approaches:

e Can re-write and convert to some standard form, e.g.
Ir)> +r-a=k, constant

Then we can complete the square:
1

1 1 1
r+ Sal* = (r+ 5a) - (r+ 5a) =k + lal”

Equation of a sphere, centre —%g and radius 4/ k + %‘QP, provided k‘+i|g|2 > 0.

For equations linear in r.
e Try dotting and crossing with constant vectors to learn more (see examples).

e Can try expressing
r=aa+ pb+~c

for some non-w-planar a, b, ¢ and solve for «, 3, 7.

e Can choose basis and use index / matrix notation.

24



2.7 Index (suffix) Notation and the Summation Convention

(a) Components; ¢ and &
Write vectors a, b, ...in terms of components. a;, b;, ..., with respect to an or-
thonormal, right-handed basis

€1,€2,¢3

Indices or suffices i, 7, k, [, p, q, ... take values 1, 2, 3. Then

> ¢ = [aa + Bb] = aa;Bb;

for i = 1,2,3 (free index)

for 7 = 1,2,3 free index.

25



Definition (Kronecker Delta).

1 ifi=j
0ij = o
0 ifi#jy
01j = 071 (symmetric)

As an asdfasdf matrix

011 012 d13 1 0 0
do21 022 23] =10 1 O
031 032 033 0 0 1
Then
i =0y
and

a-b= <Zaiei> . ijﬁ
i j
= aibjei ¢
ij

26




Definition (Levi-Civita Epsilon).

+1 if (4,74, k) even permutation of (1,2, 3)
gijk = § —1 if (4,7, k) odd permutation of (1,2, 3)
0 else
i.e.
€123 = €231 = €312 = +1
€321 = €213 = €132 = —1
S = U if any two index values match

Note that €, is totally antisymmetric: exchanging any pair of indices produces
a change in sign. Then

e X e =) Eijnch
k

e.g.
€ Xe = Z@lkgk = €213€3
k
And
QXQZ (Zaiei) X ijej
( J
= Zalbjg X €;
ij
=D _aibj ) _cijken
ij k
- (Seusets ) e
k ij
Hence
(axb) = Z€ijkaibj
]
e.g.

(@ xb)sg= Z€ij3aibj
]

= €123a1ba + €213a2b1

= a1b2 — CLle

27



(b) Summation Convention
With component / index notation, we observe that indices that appear twice in a
given term are (usually) summed over. In the summation convention we omit >
signs for repeated indices: the sum is understood.

Examples
(i) a;0;j Z understood
i

=a101; + a2d2; + a3zds;
a; ifj=1

—{ay ifj=2
as lf] =3

or
aiéij = aj

true for j = 1,2, 3.

(ii) Here on the first line we have }, ; is understood, and on the second line we
have the ), is understood

(iii) Here ), is understood
(a x b)i = €ikazby

(iv) Here ), is understood
a-bxc=c¢gjrabjcy

(v) Here ), is understood

0ii = 011 + 022 + 033 = 3
(vi) On the last line we have that }_; is understood

[(a-c)b—(a-b)c)i = (a-c)b; — (a-b)e

= ajcjbi - ajbjci

Summation Convention Rules

(i) An index occurring exactly once in any term must appear once in every term
and it can take any value - a free index.

(ii) An index occurring exactly twice in a given term is summed over - a repeated
or contracted or dummy index.

28



(iii) No index can occur more than twice.

Application: proof of the vector triple product identity. Consider

la x (b x ¢)]i = eijra;(b X )k
= €ijk0jEkpabpCq

= €ijkEpqktjbpCq
Now
EijkEpagk = OipOjq — OigOjp
(see section (c) velow). Then
[Q X (b X Q)]z = (5ip5jq — 5iq5jp)ajbpcq
= a;j0ipbpdjqCq — a;j0pbpdiqCq
= ajbicj — CijjCZ'

= (ajc;)b;i — (a;bj)e;
= (a-c)b; — (a-b)c;
=[(a-c)b—(a-b)c;

True for i = 1,2, 3 hence

ax(bxc)=(a-c)b—(a-b)ec

(c) £ e identities

e Expected to know this and quote it:
€ijkEpak = Oipdjg — Oigdjp = Ekij€hpg
Check: RHs and LHS are both antisymmetric (change sign) under
147 or P> q

SO both sides vanish if ¢ and j or p and ¢ take same values. Now suffices to
check
t=p=1 and j=q=2

LHS = 1936123 = +1
RHS = 011092 — 012021 = +1
ort=qgq=1land j=p=2
LHS = ¢e193e913 = (+1)(—1) = -1
RHS = 612621 — 011022 = —1

All other index choices work similarly.

29



® &;ikEpjk = 205, contract result aove

EijkEpjk = 5z‘p5jj - 5ij5jp
= 30;p — Oip
= 20;p

[} Eijksijk = 6.

30



3 Vectors in General; R" and C”
3.1 Vectors in R”
(a) Definitions
If we regard vectors as sets of components, it is easy to generalise from 3 to n dimensions.
o Let R" = {z = (x1,..., 2, : x; € R} and define
(i) addition
z+y=(21+yL,. s Tn+Yn)

(ii) scalar multiplication

Az = (Ax1,...,\zp)
for any z,y € R" and A € R.

e Inner product or scalar product on R™ is defined by

Toy=> Ty =T+ Tl
i
Properties
(i) Symmetricc-y=y-z

(ii) Bilinear (linear in each vector)
AX+XN2) -y =Mz y) + N2 - y)

and
z-(py+p'y =pz-y) +p(z-y)

z-gzzx» >0
7

and is equal to 0 if and only if z = 0. The length or norm of vector x is
|z[(> 0) defined by |z =z - z.

(iv) For z € R™ we can write

(iii) Positive definite

SN

where
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call {e;} the standard basis for R™. Note that it is orthonormal:

1 ifi=j
ei-ej=0ij = e
— 0 ifi#£j

(b) Cauchy-Schwarz and A Inequalities Proposition

Proposition (Cauchy-Schwarz).

|z - y| < |z|ly]

for z,y € R and equality holds if and only if z = Ay or y = Az (z || y) for some
AeR.

Deductions reveal geometrical aspects of inner product:

(i) Set
z -y = |z|[y|cosd

to define angle 6 between z and y

(ii) A inequality holds
z +y| < |z[ + [yl

Now we present a proof of the Cauchy-Schwarz inequality
Proof. If y = o, result is immediate.
If y # o, consider

lz — Myl = (2 — \y) - (& — \y)
= [z® —2Xz -y + N’|y[> > 0

This is a quadratic in real A with at most one real root, so discriminant satisfies
(—2z - y)* — 4|z[*|y[* <0

Equality holds if and only if disc = 0 which holds if and only if Ay = x for some A € R.
[0 Now we present a proof of the A inequality.

Proof.
LHS* =z +yP = |z]* + 22y + |y
RHS? = (|z| + |y))? = [a]* + 2lzlly| + [y
and compare using Cauchy-Schwarz. 0
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(c) Comments

Inner product on R™.
a-b=d;ja;b;

Component definition matches geometrical definition for n = 3 (section 2.2).
In R? also have a cross product with component definition

(a x b); = €ijra;by

(geometrical definition given in section 2.4)
In R™ we have ¢;; _; totally antisymmetric. (see chapter 5). Cannot use this to define
vector-valued product except in n = 3. But in R? have €45 with

e12=—€n =1
and can use this to define an additional scalar cross product in 2D.

la,b] = e;;a;b;

= a1by — agby for a,b € R?

Geometrically, this gives (signed) area of parallelogram

la,b] = |a||b|siné

Compare with

(signed) volume of parallelepiped.

3.2 Vector Spaces

(a) Axioms; span; subspaces

Let V' be a set of objects called vectors with operations
(i) vtweV
(ii) dweV
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(the above expressions are defined Vv, w € V and VA € R)
Then V is a real vector space if V' is an abelian group under + and

Ao +w) = v+ w

A+ v = v+ pw
Alpp) = (Ap)y

lv =

S

These axioms or key properties apply to geometrical vectors with V' 3D space or to
vectors in V = R", as above, as well as other examples.
For vectors v1,v2,...,v, € V we can form a linear combination

Ao+ Agvg + -+ A €V
for any \; € R; the span is defined

span{vi,va, ..., U} = {Z)‘iﬂ:)‘i € R}

A subspace of V' is a subset that is itself a vector space.
Note V' and {0} are subspaces.

span{vi,va, ..., v}

is a subspace for any vectors v1,...,v,. Note: a non-empty subset U C V' is a subspace
if and only if
vwelU = dv+pwelU VA ueR

Example. In 3D or R? a line or plane through o is a subspace but a line or plane
that doesn’t contain o is not a subspace. For example

1 1 1
v=|(0]n=|1/[nrn=]1
~1 —2 1

span{vy, vo} ={r:n-r =0}

which is a plane and subspace. But
{ulr :n-r=1}

is a plane but not a subspace (r, r’ on plane then (r 4+ r’) - n = 2)
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(b) Linear Dependence and Independence

For vectors v1,ve,...,v, € V, with V' a real vector space, consider the linear relation
Av1 + Agv2 + -+ Avp =0 (*)

If (x) = A\; = 0 for every i then the vectors form a linearly independent set (they
obey only the trivial linear relation with A\; = 0).
If (%) holds with at least one A; # 0 then the vectors form a linearly dependent set (they
obey a non-trivial linear relation.)

Examples

is linearly dependent because

o)+ o -

1\ . T,
Note that we cannot express <0> in terms of the others, but it is still linearly
dependent.

e Any set containing o is linearly dependent. For example

)0
o) o) -

e {a,b,c} in R? linearly independent if a - b x ¢ # 0. Consider

we have

non-trivial linear relation.

aa+ Bb+yc=o0

Take dot with b x ¢ to get

IS

aa-bxec=0 —= a=0

and we can get § = v = 0 with a similar argument.
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(c) Inner Product

This is an additional structure on a real vector space V', also characterised by axioms.
For v,w € V write inner product v-w or (v, w) € R. This satisfies axioms corresponding
to the properties in section 3.1(a)

(i) symmetric
(ii) bilinear

(iii) positive definite

Lemma. In a real vector space V with inner product, if vq,..., v, are non-zero and

orthogonal:
(vi,vi) #0 and (vi,v;) =0
—_—— —_——

fixed 7 i#]

then vq,...,v, are linearly independent.

Proof.
Z o;V; = 0
i
(viy Y aivi) = Y ai(vj,vi)
i i
= a;(vj, ;)
=0
— a5 = 0
as claimed. O
3.3 Bases and Dimension
For a vector space V', a basis is a set
B = {ela"'ven}

such that

(i) B spans V, i.e. any v € V can be written

n
VvV = E v;€;

=1

(ii) *B is linearly independent.
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Given (ii), the coefficients v; in (i) are unique since
/
E vie; = E V€
i i
/
= g (v; —vj)e; =0
i

= V; = U;
v; are components of v with respect to 5.
Examples
Standard basis for R™ consisting of
1 0 0
0 1 :
€1 = ,€2 = . ’ ,€n = )
: 0
0 0 1
is a basis according to general definiion.
z1
W x=1:|=xer+- - +Tpey
T,
(il) x=01if and only if x1 =29 =--- =2, = 0.

Many other bases can be chosen, for example in R? we have bases

o) WG (G

or {a,b} for any a,b € R? with a | b.
In R3, {a,b,c} is a basis if and only if

a-bxc#0.
Consider previous example of plane through 0, subspace in R3
1
n-r=20 with n=1|1];
1

we have {v1,va} basis with

1 1
V] = 0 , Vo = 1
-1 -2
not normalised or L but could choose orthonormal basis
1 1
{uy,uz} with u=—|-11/, and uy =

V2 o
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n=m.

Theorem. If {e;,...,e,} and {f},... £, } are bases for a real vector space V, then

Definition. The number of vectors in any basis is the dimension of V', dim V.

s N
Note. R" has dimension n (!)
L J
Proof.
f, = Z Agie;
i
and
€ = Z Biafa
a
for constants A,; and B;, and we use ranges of indices 7,7 =1,...,nand a,b=1,...,m

[since {e;} and {f,} are bases]

= f, = Z Aqi <Zb: Bibfb)
(3]

But coefficients with respect to a basis are unique so

Z AaiBib = 6ab

Similarly
e, = Z <Z BiaAaj> €;
J a
and hence
> BiaAdj = 6i;
Now

Z AaiBm = Z 6aa =m
= ZBiaAai = 2511 =n

= m = n, as required.
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O
The steps in the proof above are within the scope of the course; but the proof without
prompts is non-examinable.

( N
Note. By convention the vector space {0} has dimension 0. Not every vector space

is finite dimensional!
L p,

Proposition. Let V' be a vector space of dimension n (for example R™).

(i) Y ={wi,...,wy,} spans V, then m > n and in the case where m > n, we
can remove vectors can be removed from Y to get a basis.

(ii) If X = {uy,...,u} are linearly independent then £ < n and in the case k < n
we can add vectors to X to get a basis.

3.4 Vectors in C"

(a) Definitions

Let C" ={z = (#1,...,2n) : zj € Z} and define:
e addition z +w = (21 + w1, ..., 2y + wy)

e scalar multiplication A\z = (Az1,...,Az,) for any z,w € C".

Taking real scalars A\, u € R, C" is a real vector space obeying axioms or key properties
in section 3.2(a).

Taking complex scalars A, u € C, C™ is a complex vector space - same axioms or key
properties hold, and definitions of linear combinations, linear (in)dependence, span,
bases, dimension all generalise to complex scalars.

The distinction matters, for example
z=(z1,...,2,) €C"

with z; = z; +iy;, x;,y; € R then
zZ = ijej + Zyjfj
J J
(real linear combination) where

e;j=(0,...,1,...,0)
N—

position j
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f;=(0,...,i,...,0)
—_——

position j

therefore {ey,...,e,, f1,...,f,} basis for C" as a real vector space. So real dimension is
2n. But

Z:Z:Zjej and {e1,...,en}
J

is a basis for C" as a complex vector space, dimension n (over C).

(b) Inner Product
Inner product or scalar product on C" is defined by

(z,w) = E Zjwj = 71wy + -+ + Zowy,
J

Properties

(i) hermitian (w,z) = (z,w).

(ii) Linear / anti-linear

(z, 2w + N'wW') = ANz, w) + N(z, W)
(uz+ e, w) = (2, w) + 7 (2, w)

(iii) positive definite
(z,z) =Y, |2i|* is real and > 0, and 0 if and only if z = 0.

Defined length or norm of z to be |z| > 0 with |z|*> = (z,z).
Define z,w € C" to be orthogonal if (z, w) = 0.
Note: the standard basis {e;} for C" (see part (a)) is orthonormal

(ei, ej) = dij

Also, if z1,2z2, ..., 2y are non-zero and orthogonal in sense above, then they are linearly
independent over C (same argument as in real case).
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Example. Complex inner product on C (n =1) is
(z,w) = Zw
Let z = a1 + iag (real and imaginary part) and w = by + iby. Then
a = (ar,as),b = (b1, by) € R corresponding vectors.
zZw = (a1by + agba) + i(arbs — agby)
=a-b+ifa,b]

recover scalar dot and cross product in R2.
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4 Matrices and Linear Maps

4.1 Introduction
(a) Definitions
A linear map or linear transformation is a function
T:V->W
between vector spaces V' (dim n) and W (dim m) such that
T(Ax + py) = AT(x) + uT(y)

for all x,y € V and A\, u € R or C for V', W both real or complex vector spaces. [mostly
concerned with V'=R" or C", W = R™ or C"]

( I
Note. A linear map is completely determined by its action on a basis {e,,...,e,}

for V, since

is the image of x € V

Im(T) = {x' € W :x' =T(x) for some x € V}

is the image of T'.
L J

Lemma. Ker(T') is a subspace of V and Im(T") is a subspace of W.

Check. x,y € Ker(T) = T(Ax+ py) = \T'(x) + pT'(y) = 0 and 0 € Ker(7T') so the
result follows.
Also 0 € Im(T') and x',y’ € Im(T) then

TOx + py) = NT(x) + pT(y) = Xx' + py’ € Im(T)
for some x,y € V. O

Examples

(i) zero linear map 7' : V. — W is given by T'(x) = 0 Vx € V. Then Im T = {0},
KerT=V.
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(ii) For V = W, the identity linear map T': V' — V is given by
T(x)=x vxeV
then Im "=V, Ker T' = {0}.
(iii) V =W =R3, x' = T(x) given by
x| = 3z1 + @2 + b
xbh = —x1 — 223

Xg = 221 + x2 + 3x3

2
Ker(T)=<¢ A | -1 (dim 1)
-1
3 1
Im(T)=<A|{—-1]+un|0 (dim 2)
2 1

(b) Rank and Nullity
dim Im(7) is the rank of T (< m) and dim Ker(T) is the nullity of T (< n)

Theorem (Rank-nullity). For
T:V W

a linear map (as in (a) above)

rank(7) + null(T) =n =dim V

Examples - refer to part (a) above
(i) null(T) + rank(T) =n+0=mn
(ii) null(T") +rank(7) =0+n=n

(iii) null(T") + rank(7)=1+2=3

Note that the following proof is non-ezaminable.
Proof. Let ey, ...,e; be a basis for Ker(T) so T'(e;) = 0 for i = 1,...,k. Extend by
€11, --,€n to get a basis for V. Claim

B = {T(ek+1, v 7T(en)}

is a basis for Im(7"). The result then follows since null(7T) = k and rank(7T) = n — k,
implying null(T") 4 rank(7T") = n.
To check the claim:
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e ‘B spans Im(7') since

n

X = E xr;e;
1
n

= T(x) = Z z;T(e;)

i=k+1

e ‘5 is linearly independent since

zn: /\I'T(ei) =0

i=k+1
n
- T( Z )\iel-) =0
i=k=1
n
= Z Aie; € Ker(T)
i=k+1
n k
= Z Ai€j = Z,Uiez‘
i=k+1 =1
But ey, ..., e, are linearly independent in V'

= N\ =0 (i=k+1,...,n)
= u; =0 (i=1,...,k)
hence B is linearly independent.

Therefore B is a basis.

4.2 Geometrical Examples
(a) Rotations
In R?, rotation about O through angle 6 is defined by

e; — €] = (cosf)e; + (sinf)es

e > ey = —(sinf)e; + (cosf)ey
€y €2
e
0
0
e1
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In R3, rotation about axis given by es is defined as above, with
e3 — eg = €3

Now consider rotation about axis n (unit vector).
Given x, resolve || and L to n:
X+X)+x1

with x| = (x - n)n, and hence n-x; = 0. Under rotation

X” —> Xh = X”

x| — x| = (cosf)x, + (sinf)n x x
by considering plane 1 n, comparing to rotation in R? and noting that

|x; =|n X n x x|

Re-assemble:
X+ x = X/H + x| = (cos0)X + (1 — cosf)(n-x)n + sinfn x x.

(b) Reflections

Consider reflection in plane in R3 (or line in R? through 0 with unit normal n.
Given x, resolve || and L to n:

XH —> Xh = —X”

XLI—>X/J_:XL
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y— .
”.‘u\i/' ""§2S'

x—x =x—2(x-n)n
(c) Dilations
A dilation by scale factors «, 3,  (real, > 0) along axes e, €3, e3 in R? is defined by
X = x1€1 + Toeg + T3e3 —> x = azrie) + froes + yrses
[unit cube — cuboid]

(d) Shears

Given a, b orthogonal unit vectors (|a] = |b| = 1 and a-b = 0) define a shear with
parameter A by
x—x =x+\x-b)a

Definition applies in R and u’ = u for any vector u L b.

/ ’

—b": bf,)\i':

7
I»

\J
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4.3 Matrices as Linear Maps R" — R”

(a) Definitions

Consider a linear map 7' : R™ — R™ and standard bases {e;} and {f,}. Let x' = T'(x)
with

x1 x

. / /
X = E Ti€e; = : ,X = E Tt =
7 a

Tn x!

m
Linearity implies T' is determined by
T(e;)=¢e,=C;eR"(i=1,...,n);
take these as columns of an m X n array or matriz with rows
R, eR"(a=1,...,m).

M has entries M,; € R where a labels rows and ¢ labels columns.

1 1 «~ R —
C - C| =M= :
+ + ~ R, —

(Ci)a - Mai - (Ra)i
Action of T is given by matrix M multiplying vector x

x' = Mx defined by x/, = My;z; (> convention) ‘

This follows from definitions above since

X/ =T (Z :cz-ei) = ZCL‘ZCZ

Now regard properties of 1" as properties of M.
Im(T) = Im(M) = span{C;y,...,C,}
image of M (or T') is span of column S.
Ker(T) = Ker(M) = {x: R, -x =0 Va}

kernel of M is subspace L all rows
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(b) Examples
(Refer to sections 4.1 and 4.2)
(i) Zero map R™ — R™ corresponds to zero matriz M = 0 with M,; = 0.

(ii) Identity map R™ — R™ corresponds to identity matriz

[0\

(iii) R? — R3, x' = T(x) = Mx with

ME

~

with I’L’j == 51]

3 1 5 3 1 5
M=|-10 —2|,ci=|-1],Cco=]0],C5=1[-2
2 1 3 2 1 3

Im(T") = Im(M)
= span{Cl, CQ, Cg}
= span{Cl, CQ} since Cg = 2Cl — CQ

Ri=(3 1 5)
Ry=(-1 0 -2
R3=(2 1 3)

RQXR3:(2 -1 —1):
and we can notice that u is perpendicular to all rows. In fact
Ker(T) = Ker(M) = {Au}.

(iv) Rotation through # about 0 in R?
cos
= (o) = (i) =@

cosf —sin 0)

Y
_ o

sinf cos@

e



(v) Dilation x’ = Mx with scale factors «, 3, v along axes in R3:

M =

oo R

0
B
0

=2 O O

(vi) Reflection in plane 1 n (unit vector) matrix H:
x' = Hx =x—2(x-n)n
X; = x; — 2xnN;

= (0ij — 2ninj)x;

Hij = (51']' — 2nmj
For example

1 nin; = 5 Vi,j

1 1 -2 -2
H = 3 -2 1 =2
-2 =2 1
(vii) Shear x' = Sx =x+ A(b-x)a
Xj = Sijj

with
Sij = 57;j + )\aibj

1

()

viii) Rotation win R3 with axis n and angle 6,
g

for example in R? with a = <(1)> and b = <O>

x' = Rx z; = Rijx;

where R;; = ;5 cosf + (1 — cos0)n;n; — (sinf)eijkny (see Example Sheet 2).

49



(c) Isometries, area and determinant in R?
Consider linear map R? — R? given by a 2 x 2 matrix M:
x = x = Mx

(i) When is M an isometry preserving lengths |x/| = |x|. This is equivalent to pre-
serving inner products

x’-y/:x-y

(since x -y = $(|x +y|* — [x|> — |y|?)). Necessary conditions are

M 1) _ C.OSQ for some 6; most general unit vector in R?
0 sin 0

M <(1)> =+ <—C(s)18n€9> general unit vector perpendicular to other

Simple to check that these conditions are also sufficient and have two cases:

M=R= C.OS 6 —sing rotation
sinf cos@
or
cosf sinf )
M=H= <sinc9 — cos c9> reflection

Compare with expression for reflection in Section 4.3(b)(vi)

Hij = 5@' — Qnmj

o= (1) = (o)

o < 1—2sin%6/2 2sin0/200s0/2>

and note for

we get

2sinf/2cosf/2 1 —2cos?60/2
agreeing with H above. This is reflection in a line in R? as shown

Z2

/2

L1
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(i) How does M change areas in R? (in general)? Consider unit square in R?, mapped
to parallelogram as shown, with area

[Mel, Meg]

“scalar cross product”

My M12>]
, = M1 Mooy — Mo Moy = det M
[<M21> <M22 11 Ma2 12Mo1

where det M is the determinant of 2 x 2 matrix

My M12>
M =
<M21 Moo

This is factor (with sign) by areas are scaled under M.
Now compare with (i):

det R = +1, det H =—1

In either case |det M| = +1. Consider shear

1A
=0 )

this has det S = +1 but it does not preserve lengths.

4.4 Matrices for Linear Maps in General

Consider a linear map

T:V W

between real or complex vector spaces of dimension n, m, respectively and choose bases
{e;} with i =1,...,n for V and {f,} with a = 1,...,m for W. The matrix M for T
with respect to these bases is an m x n array with entries M,; € R or C . It is defined
by
T(el) — ZfaMai
a

o1



note index positions. This is chosen to ensure that T'(x) = x’ where
X = Z xI;e;
i
and
x = Z 2 f,
a

if and only if

/ z :
JIa = Mm‘xi
7

i.e.
/
Ty M11 e Mln I
!
Ty My -+ My, T
-

Moral. Given choice of bases {e;} and {f}
e V is identified with R™ (or C")
e W is identified with R™ (or C™)

o T is identified with m x m matrix M

Note. There are natural ways to combine linear maps.
If S:V — W is also linear, then so is

ol +pS:V —>W

defined by
(aT 4 5S)(x) = aT'(x) + BS(x)

Orif §: U — V is also linear, then so is
ToS:U—W

composition of maps.

4.5 Matrix Algebra
(a) Linear Combinations

If M and N are m x n matrices, then aM + BN is an m X n matrix defined by

(aM + ﬁN)ai = aMgy + ﬁNai
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(a=1,...,m; i = 1,...,n) [If M, N represent linear maps 7,5 : V. — W, then
aM + BN represents a1 + 5, all with respect to same choice of bases.]

(b) Matrix Multiplication

If A is an m X n matrix, entries A,; (€ R or C) and B is an n X p matrix, entries B,
then AB is an m X p matrix defined by

(AB>ar = AuiBir
The product AB is not defined unless

# cols of A = # rows of B

a=1,....m
1=1,....n
r=1,...,p.

Matrix multiplication corresponds to composition of linear maps
[(AB)x], = (ABgy)xy
and compare

[A(Bx)], = Aui(Bx);

:A(li(BiT‘xT)
:(AaiBir)xr
Example.
1 3
A=1|-5 0], B:@ _01 _31>
2 1
7 -3 8
AB=[-5 0 5
4 -1 1

Helpful points of view

(i) Regarding x € R™ as a column vector or n x 1 matrix, definition of matrix multi-
plying a matrix as vector agree.
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(ii) For product AB (A is m x n, B is n x p) have columns
C.(B) eR"
C,(AB) e R™
related by
C,(AB) = AC,(B)

(i) ; T
AB= |+ RyA4) —| |-+ C.(B)
: i

A(B)ar = [Ra(A)]i[CT(B)]i
= R, (A) - C,(B)

dot product in R™ for real matrices.

Properties of matrix products
(AM 4+ uN)P = A(MP)+ u(NP)
P(AM + uN) = AM(PM) + u(PN)
(MN)P = M(NP)

(c) Matrix Inverses
Consider a m x n matrix and B, C' n x m, B is a left inverse for A if
BA=1 (n X n);
C is a right inverse for A if
AC =1 (m x m).
If m = n, and A is square, one of these implies the other and B = C' = A~! the inverse.

AAT = A" TA =T,

Not every matrix has an inverse; if it does it is called invertible or non-singular.
Consider map RN — R” given by real matrix M. If X' = Mx and M~ exists then
x =M%
For n =2,
xy = Mz + Migxs
xy = Moy + Moy
— Mgzx/l — M12.7}/2 = (det M)ZCl
and — Myx] + My2h, = (det M)
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So, if det M = M71 Moo — Mo Msy # 0 then

Ml 1 May  —DMio
det M \—M21 My

Examples

R(O) — (0089 —sin0>

sinf cosf

R(6)™' = R(-6)
cosf) sinf
H(0) = <sin0 —cos@)
H() ™' = H(H)
= (32
S(A) = 8(=N)

(d) Transpose and Hermitian Conjugate

(i) If M is an m x n matrix, then transpose M is an n x m matrix defined by

(M")iq = My
“exchange rows and columns”
a=1,...myi=1,...,n
Properties
(a+BB)" =aA" + BT (A, B m x n)
(AB)"' =BTAT
Check:

[(AB)T]M = (AB)ar
= AaiBiT
= (AT)ia(BT)ri
= (BT)M'(AT)M

=(BTA"),, as required.
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Note.
x1
x=|: column vector, n x 1 matrix
T,
= x| =(z1,...,2n) row vector, 1 X n matrix

Inner product on R"™ is
X y=x'y scalar 1 x 1 matrix

but yx' = M, n x n matrix with M;; = yiz;.
L J

ii) If M is square, n x n, then M is symmetric if and only if M" = M or M;; = M
J J

and antisymmetric if and only if M = —M or M;; = —Mj;. Any square can be
written as a sum of symmetric and antisymmetric parts:

M=5+A
where S =3(M +M ") and A= J(M - MT").

Example. If A is 3 x 3 antisymmetric, then it can be re-written in terms of

vector a
0 as —as
A= —as 0 al
as —ai 0
1
Aij = 5,;jkak and ap = §5kiinj
Then

(AX)Z = Aijxj
= EijkakTj
= (x x a);

(iii) If M is m x n matrix the hermitian conjugate M is defined by
(MT)ia — Mai

or

Properties
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Note.
21
z=| : column vector, n x 1 matrix
Zn
= 2z =(z1,...,%) row vector, 1 X n matrix

Inner product on C™ is

(z,w) =z'w scalar 1 x 1 matrix

.

J

(iv) If M is square n x n then M is hermitian if M = M or M;; = Mj; and anti-

hermitian if MT = —M or M;; = —M ;.

(e) Trace

For any square n x n matrix M, the trace is defined by
Te(M) = M;; = M1+ -+ Mnn (sum of diagonal entries)
Properties
tr(aM + BN) = atr(M) + Btr(N)
tr(MN) = tr(NM)
check:
(MN);ji = M;gNg;
= NaiMiq
= (NM)aq
tr(M) =tr(M")
tr(I) =n for I n x n.
Iij = 6ij and In = 5“ =N

Previously decomposed

M=S+A symmetric / antisymmetric parts

Let T = S — 2(tx(S))I or Ti; = Si — Ltr(S)S;;, then T;; = tr(T) = 0; and note

tr(M) = tr(S) and tr(4) = 0. So

1
M = T + A +— tr(M)I
~— <~ N ~—
symm and traceless  antisymm part pure trace
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Example.

123 13 2 0 -1 1
M=1[4 56|, S=(354], A=[1 0 2
123 2 4 3 -1 -2 0

-2 3 2
T=13 2 4
2 40

M=T+A+3I

Furthermore Ax = x x a where a = (2,—1, —1).

Orthogonal and Unitary Matrices
A real n x n matrix U is orthogonal if and only if
U'v=0U"=1

i.e.

UT _ U—l
These conditions can be written
UkiUkj = UikUji, = 6ij

(the left implies the columns are orthonormal, and the middle implies that the rows are
orthonormal). [recall [C;(U)]x = Uy; = [Ri(U)]i]

: t
: 3
\—/_/ U
UT
Ci~Cj=(5ij

Equivalent definition U is orthogonal if and only if it preserves the inner product on R"
(Ux)-(Uy)=x-y ¥x,y e R"
To check equivalence, write this as

(Ux)"(Uy) =x"y
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LHS = (x"U")(Uy)
=x (U'U)y
= RHS Vx,y
if and only if UTU = I. Note, since C; = Ue;, columns are orthonormal is equivalent to

(Uei) - (Uej) = ;- ej = dy;

Examples
In R? we found all orthogonal matrices (section 4.3(c)):
. cosf —sinf
rotations R(0) = (sine cos 0 )
' cosf sinf
and reflections H(6) = (sin@ — cos 9)
Clearly

R(0)" = R(—0) = R(0)""
H(0)" = H(0) = H(0)™
In R? found matrix R(#) for rotation through # about axis n
R(O)" = R(—0)

since

and can check explicitly
R(O)"R(A) = R(—O)R(H) =1
or
R(0)kiR(0)1; = 04
A complex n x n matrix U is unitary if and only if
UlU=0U" =1

i.e.
ut=u-!
Equivalent definition: U is unitary if and only if it preserves the inner product on C"
(Uz,Uw) = (z,w) Vz,w € C"
To check equivalence write this as

(Uz) (Uw) = z'w

LHS = (2'UT)(Uw)
=2 (UTU)w
= RHS Vz,w

if and only if UTU = I.
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5 Determinants and Inverses

5.1 Introduction

Consider a linear map

T:R*" - R"
If T is invertible then
Ker T'= {0} and Im 7"=R"
— LY
because T’ T'is onto
one-to-one

These conditions are equivalent by rank-nullity. Conversely, if these conditions hold,
then
el =T(e1),...,e, =T(e,)

n

is a basis (where {e;} standard basis) and we can define a linear map T~! by

T ) =ei,....,T7(e,) =e,

How can we test whether the conditions hold from matrix M representing 7"
T(x) = Mx

and how can we find M~ when they do hold? -
For any M (nxn) we will define a related matrix M (nxn) and a scalar, the determinant
det(M) or |M| such that

MM = (det M)I (%)

Then if det M # 0, M is invertible with

-1 1 =
 det M

For n = 2 we found in section 4.4(c) that (%) holds with

M1 Mlg) —~ ( Moo —M12>
M = and M =
(Mgl Moo —Msy1 My

and

My Myo
My Mao
= M1 Mag — M2 Mo
= [Mey, Mes]

= [C1(M), Co(M)]

= g4jMi1 Mjo

det M =
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Factor by which areas are scaled under M
det M #0 <= {Me;, Mey} linearly independent <= Im(M) = R?
For n = 3 consider similarly

[Me1, Mey, Meg] = [C1(M),Ca(M),Cs(M)] scalar triple product
= €ijxMiy Mjo My
= det M, definition for n = 3

This is factor by which volumes are scaled under M and
det M #0 <= {Me;, Mey, Me3} linearly independent <= Im(M) = R?

Now define M from M using rows / column notation:

Rl(M> = CQ(M) X C3(M)

RQ(M) = Cg(M) X CI(M)
Rg(M) = Cl(M) X CQ(M)
and note that
(MM)i; = Ri(M) - C;(M)
= (C1(M) - C2(M) x C3(M)) 6i;

det M

as required.
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Example.

1 3 0
M=10 -1 2
4 1 -1
3 0 -1
C2 X C3 = -1 X 2 = 3
1 -1 6
0 1 8
Cg X Cl = 2 x 0] =1]-1
-1 4 -2
1 3 4
Cl X CQ =0 x|-1]= 11
4 1 -1
s -1 3 6
M=18 -1 -2
4 1 -1
and MM = (det M )I where
dethCl 'CQ X C3 = 23.
5.2 ¢ and Alternating Forms
(a) € and Permutations
Recall: a permutation o on the set {1,2,...,n} is a bijection from this set to itself,

specified by list
o(1),0(2).....0(n)
Permutation ¢ form a group, the symmetric group S,, of order n!. The sign or signa-

ture (o) = (—1)* where K is the number of transpositions (this is well-defined). The
alternating or € symbol in R™ or C" is defined by

+1 if4,4,...,1l is an even permutation
€ij... = —1 if4,7,...,1is an odd permutaiton
n indices O else
If o any permutation of 1,2,...,n then

E0(1)0(2)-o(n) = E(0)
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Lemma 1.
To(i)o(j)-o() = E(0)€ij-1

(e totally antisymmetric is a corollary)

Proof. If i, j,...,1 is not a permutation of 1,2, ...,n then RHS = LHS = 0. If i = p(1),
j=p(2),...,1=p(n) for some permutation p then

RHS =¢(o)e(p) =€e(op) = LHS

as required. O

(b) Alternating Forms and Linear (In)dependence

Given vi,...,v, € R™ or C" the alternating form combines them to produce scalar,
defined by

[Vl, Vo,... ,Vn] = Eij...l(Vl)i(Vg)j e (Vn)l

= (o) (vV1)o) (V2)o(2):(Vn)a(n)

(3=, means sum over all o € Sy,)

Properties

(i) Multilinear
Vi, .., Vp—1,au+ BW, Vpi1, ..., V] =[Vi, ..., Vp_1, U, Vpil,. .., Vp)
+ﬁ[vl7"'>vp—luw7wp+17'")V’n]
il) Totally antisymmetric
(ii) Totally antisy tri
[Vo(1)s -+ s Vom)] = €(0)[V1, ..., V)

(iii) [e1,e2,...,e,] = 1 for e; standard basis vectors. Properties (i), (ii), (iii) fix the
alternating form, and they also imply

(iv) If v, = v, for some p # g then
[Vi,eooy, Voo oy Vg, ooy V] =0
(from (ii), exchanging v, <+ v, changes sign of alternating form).

(V) If Vp = Zz;ép )\ivi then
Vi, ..y Vp, ..., V] =0

(sub in and use (i) and (iv)).
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Example. In C,

7 0
V] = 0 V9o = 0
0]’ 51|
2 0
3 0
| 2 0
V3 = 0 s V4 = i
0 1

= [v1,V2, Vs, V4] = 5i[vy, €3, V3, 4]
= bifie] + 2ey4, €3,3€1 + 2ieq, —ie3 + 4]
= bifie] + 2e7, e3,3e1 + 2ies, e4]
= bifie1, e3, 3e1 + 2iey, e4)
= (5i-i-2i)|er,es, eq,ey]
= —10i(—1)
= 102

[ Note. Properties (i) and (iii) immediate from definition.

Proof of property (ii).

Vo) Vo] = D €0) Vo)l pt) -+ [Vorm)ptn)
p

each term can be rewritten

- Z e(P)Vilpo—1(1) - Valpo1(m)
p

= Z 5(0)5(p')[V1]p'(1) e [Valp )
p

=2(0) >0 )vilyay Wl

o

=e(0)[vi,...,Vy]

as claimed.

Proposition.

[Vi,...,Vp] #0 < vy,..., v, linearly indendent
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Proof. To show “=" use property (v). If vi,..., v, are linearly dependent then ) a;v; =
0 where not all coefficients are zero. Suppose without loss of generality that o, # 0,
then express v, as a linear combination of v; (i # p) and

[Vi,...,Vy] =0.

To show “<” note that vy,..., v, linearly independent means they also span (in R"™ or
C™) so we can write standard basis vectors as

e; = Auiva
for some A,; € R or C. But then
[e1,...,en] = [Aa1Va, Ap2Ve, - - ., Aen Ve
= Aa1Ap2 - Acn[Va, Vb, - -+, V]
= Aa1Ap2 - AcnEabc[V1, Vo, ..o, Vi)
and LHS = 1, so [v1,Va,...,v,] # 0. Example in C* above: vy, va, v3, v4 linearly
independent. O

5.3 Determinants in R" and C”
(a) Definition
For an n X n matrix M with columns
C, = Me,
the determinant det M or |M| € R or C is defined by

det M = [Cy, Ca, ..., Cy)
= [Mey,Mey,..., Me,]
= &ij.. M Mjz - - - My,

Proposition (Tanspose Property).

det M = det M "

So

det(M) = [Ry, Ro, ..., Ry
= €ijod M1 Maj - - My

= Z 6(O-)‘Z\410(1)]\42a(2) T Mncr(n)
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Example. In R3? or C3

det M = SijkMileQng

Moy Mog
M3y Mss

, Mo M3
M3y Mss

Mo Mis
Moy Mos

= My 31

Properties

det M is a function of rows or columns of M that is
(1) multilinear
(ii) totally antisymmetric (or alternating)

(ifi) detI =1

Theorem.

det M #0 <= cols of M are linearly independent

<= rows of M are linearly independent
<= rank M =n (M nxn)

<= Ker M = {0}

— M! exists

Proof. All equivalences follow immediately from earlier results including discussion in
section 5.1. 0

Proof of Transpose Property. Suffices to show

Zg(U)Mo‘(l)l T Mo’(n)n = Z E(U)Mlo'(l) T M20'(2)

o g

But in a given term on the left hand side,

Ma(l)l T Ma(n)n = Mlp(l) T an(n)

by re-ordering factors, where p = o~1. Then (o) = (p) and Y equivalent to >y SO
result follows. O
(b) Evaluating Determinants: Expanding by Rows or Columns

For M n x n, for each entry M;, define the minor M to be the determinant of (n —
1) x (n — 1) matrix obtained by deleting row ¢ and column a from M.
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Proposition.
det M =) (=1)" M, M* a fixed
i

= (=1)FM, M i fixed

called expanding by (or about) column a or row ¢ respectively.

Proof. See section 5.4.
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Example.

: 0 3 0
0 0 2 0
M= 0 5 0 —3
2 0 0 1

Expand by row 3 to find

det M =Y (=1)*F Mz, M

M3 = M3s3 = 0;
i 30
Msy =5, M>?2=10 2i 0
2 0 1
i 0 3
My =—i, M*=10 0 2i
2 0 0
2 0 0 0
32 _ — 7(97) — —
M =4 0 1‘ 3‘2 1 i(21) 2 (row 1)
0 2i 00
34 __ - _
M —Z‘O 0 +3‘2 O‘—O (row 1)

det M = (—1)>T25i(—2) = 10i

Alternatively we can expand by column 2:
det M = Z(—1)2+iMi2Mi2
i

_ (—1)2+3M32M32
=10z

(Calculated this previously as example of alternating form in C™)

Lemma. If

v (319)

block form with A an r x r matrix; I an (n—r) X (n—r) identity, then det M = det A.

Proof. For r = n — 1, result follows by expanding about column n or row n, and for
r < n — 1, continue process. U
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(c) Simplifying Determinants: Rows and Column Operations

From the definitions of det M in terms of columns (a) or rows (i) and the properties
above (including section 5.2(b)) we note the following

e Row or Column Scalings
If R; — AR, for some (fixed) i or C, — AC; for some (fixed) a then det M
Adet M. If all rows or columns are scaled, so M — AM, then det M +— A" det M.

e Row or Column Operations
IfR; — R; + AR for i # j or C, — C, + ACy, for a # b, then det M +— det M.

e Row or Column Exchanges
If R; <+ R; for i # j or C, <+ Cy, for a # b then det M — — det M.

69



Example.

1 1
A=1a 1 aeC
1 a

— =9

Considering C; — C; — C3, which keeps the determinant invariant, we get:

l—a 1 a
detA=det|a—1 1 1
0 a 1
1 1 a
=(1—-a)det [ -1 1 1
0 a 1
Now we consider Cy — Cy — C3:
1 1—a a
det A=(1—a)det | -1 0 1
0 a—1 1
1 1 a
=(1—a)®det[-1 0 1
0o -1 1
And ﬁnally R;i — Ri+ Ry + Ras:
0 0 a+2
det A= (1—a)?det | -1 0 1
0 -1 1
Ry -1 0
=(1-a) (a+2)’0 1

=(1-a)?@a+2)

(d) Multiplicative Property

Theorem. For n x n matrices M and N,

det(MN) = det(M) det(N).

This is based on the following lemma.

Lemma.
5i1...inMi1a1 to Minan = (det M)5a1...an
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Proof of Theorem.

det(MN) = E€iy..in (MN)ill cee (MN)znn
= €iy.inMiyky Niky1 - Mk Nion
= €iy.inMiyky - Mi, ke, Nky1 Nion
= (det M)ery ..k Nky1 -+ Nipn
= (det M)(det N)

as required. O

Proof of Lemma. Use total antisymmetry of left hand side and right hand side and then
check by taking a1 =1,...,a, =n. O

Examples

(i) I

Al O
= (517)
(block form) with A an r x r and B an (n —r) X (n — ), then

det M = det A-det B

(o15)- (61 7) (o1%)

and we can use Lemma above.

Since

(i) MM =1 = det(M~1)det(M) = det(I) = 1 so det(M 1) = (det M)~
(iii) For R real and orthogonal,
R'R=1 — det(R")det(R) = (det R?) = 1
= det R = +1
(iv) For U complex and unitary
U'U =UI = det(U") det(U) = det(U) det(U) = |det(U)* = 1

= |detU| =1
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5.4 Minors, Cofactors and Inverses
(a) Cofactors and Determinants

Consider column C, of matrix M (a fixed) and write C, = ), M;.e; in definition of
determinant:

det M = [Cl,...,Ca_l,Ca,Ca+1,...,Cn]
=[C1,...,Ca1, Y Mige;, Cay, ..., Cy]

%

= E M;al\;, Nno sum over a

where the cofactor A;, is defined by

Aia. = [91» Q‘L;---; ga.-m g’b ga’"‘"" Q“_J

et (Al

o

<

colc-—
>} O

=TT O e — o \1
- (_,ly**' |o~

e 1 ole}(gﬁ\

introduced earlier. We have deduced

det M = Z MiaAia

_ Z Mza H—aMza
proving proposition in section 5.3(b). [Similarly, considering row 4, find other expression].

(b) Adjugates and Inverses
Reasoning as in (a) with C, = ). M;ye;

[C1,.-.Ca1,Cp, ..., Cas1,- -, Cul = > MipAiq

_ Jdet M ifa=0b
o ifasb
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Hence

Z MpAiq = (det M)dgp
And similarly

E:A@aAw::@th05U

Let A be the matriz of cofactors with entries A;,, and define adjugate M = adj(M) =
AT. Then relations above because

and .
MjaAm = (MM)JZ = (det M)(SU

This justifies (%) in section 5.1 with
(M) =AT
and ‘ ‘
Aia — (_1)z+aMza

we have

MM = MM = (det M)I
Hence if det M # 0 then it is invertible and

-1 1 =
~ det M
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Example. Consider

A=

— Q =
Q = =
— =

previously found det A = (a—1)?(a+2). Hence A~! exists if a # 1, a # —2. Matrix
of cofactors is

l-a 1—a a®-1

A=|ad’>-1 1—a 1-a

l—-a a>—-1 1-—a
e.g.
a 1
1 1

Alg = (—1)1+2A12 =1-—a

A12 —

a1

Adjugate A=AT and
1 I e

= Jeta
. 1 —(1+a) 1
— —(1 Y Py _(11+ ) i —(11-1- a)

ifa+£1, a2

5.5 Systems of Linear Equations
(a) Introduction and Nature of Solutions

Consider a system of n linear equations in n unknowns z; written in vector / matrix
form

Ax=Db x,b € R"

and A an n X n matrix, i.e.

Anxr+ -+ Ay, = by

Apizr + -+ Appxn = by,

There are three possibilities:
(i) det A# 0 = A~! exists = unique solution x = A~!b
(ii) det A=0and b ¢ Im A = no solution.

(iii) det A=0and b € Im A = infinitely many solutions.
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Elaboration: a solution exists if and only if
Axy = b for some xg <= belm A
Then x is also a solution if and only if u = x — X satisfies
Au=0
homogeneous problem. Now

det A#0 <= Im A=R"
<= Ker A= {0}

So in (i) there is a unique solution and it can be found using A~!. But

det A=0 <= rank(A) <n
<= null(A) >0

and then either b € Im A as in case (ii) or b € Im A as in case (iii). If uy,...,u; is a
basis for Ker A then general solution of homogeneous problem is

k
u = E )\iui
=1

Example
Ax = b with A as in section 5.4 and

b=|c
1
with a,c € R.
e a#£1,-2
Then A~! exists and we have a solution for any c:
1 2—c—ca
X:A_lb:—l B cC—a
G-a+2) | ¢
e ag=1
1 1 1
A=(1 1 1
1 1 1
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1 -1 -1
ImA=<¢A |1 Ker A = span 11,10
1 0 1
b € Im A if and only if ¢ = 1, particular solution
1
Xp = 0
0
general solution
1—A—p
X=Xg+u= A
I

case (ii). For a =1 and ¢ # 1 have no solutions: case (iii).

o g=—2
1 1 -2
A=1|-2 1 1
1 -2 1
1 1 1
Im A = span —2 , 1 Ker A=< |1
1 -2 1
b € Im A if and only if ¢ = —2, particular solution
1
Xp = 0
0
general solution
14+ A
X=Xp+u= A
A
For ¢ # —2 no solutions.
(b) Geometrical Intepretation in R3
Let Ry, Ro, R3 be rows of A (3 x 3).
R1 -u=20
Au=0 <= <Ry -u=5f0
R3 -u=20

(these are 3 equations of planes through 0, normals R;, assuming # 0). So solutions of
homogeneous problem (finding Ker A) given by intersection of these planes.

rank(A) = 3 = normals linearly independent and planes intersect in 0

rank(A) = 2 = normals span a plane and planes intersect in a line
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K X

oo -N{) ong 'GCSOF ‘nlersechons

o plases.

dim Ker A = 1.

rank(A) =1 = normals are parallel and planes coincide

O(iNl Kar A:Z

Now consider instead

Rl'X:bl
Ax =b <— Ry -x=1bo
R3-X:b3

planes with normals R; but not passing through 0 unless b; = 0.
rank(A) =3 <= det A #0,

normals linearly independent; planes intersect in a point and get unique solution for any
b.
rank(A) = 2 = planes may intersect in a line (as in homogeneous case)

but they may not, e.g.
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N
><of

no so [whion

/|

rank(A) =1 = planes may coincide (as in homogeneous case)

but they may not, e.g.

AV

N o s&llﬂ,/"nV‘\

Gaussian Elimination and Echelon Form

Consider Ax = b with x € R" and b € R™ and A an m xn matrix. Gaussian elimination
is a direct approach to solving system of equations:

Anxr+ -+ Ay, = by

Apixr + - 4+ Apn®n = by
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Example.

3x1 + 220 + x3 = b1 (1)
6x1 + 3z + 3x3 = by (2)
6x1 + 229 + 43 = b3 (3)

Step (1): subtract multiples of (1) from (2) and (3) to eliminate x1:
0— 29+ 23 = by — 2b1 (2"
0 — 2z9 + 223 = by — 2b; (3"
Step (2): repeat this using (2') to eliminate xs:
040+ 0= b3 — 2by + 2By (3")
Now consider new system (1), (2), (3)
bs — 2bs 4+ 2b; # 0 = no solution

bs — 2by 4+ 2b; = 0 then infinitely many solutions

x3 is arbitrary and then z and x; determined from (2') and (1). In general case we
aim to carry out steps as in example until we obtain equivalent system

Mx =d with M = ( M | numbers
0 0

with M an m x n (block form), with

X M, numbers

M = Ce
0 Mrr

M;; # 0 for each j. M obtained from A by row operations including row exchanges
and column exchanges which relabel variables x;. Note x,41,...,x, undetermined,
drs1,--.,dm = 0 else no solution. And if this is satisfied then z1, ..., z, determined
successively.

r =rank M = rank A
If n = m then det A = +det M and if r = n = m then

det M = Myy - My, #0

= A and M invertible

M as above is an example of echelon form.
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6 Eigenvalues and Eigenvectors
6.1 Introduction
(a) Definitions

For a linear map T : V. — V (V a real or complex vector space) a vector v € V with
v # 0 is an eigenvector of T with eigenvalue X if

T(v) =Av
If V=R" or C" and T given by an n x n matrix A, then
Av=Xv <= (A-A)v=0

and for given A this holds for some v # 0 if and only if det(A — A\I) = 0 characteristic
equation i.e. A is an eigenvalue if and only if it is a root of xa(t) = det(A — tI)
characteristic polynomial. x 4(t) polynomial of degree n for A n xn. We find eigenvalues
as roots of characteristic equation and then find corresponding eigenvectors.

(b) Examples
(i) V =C? and

then

@ﬂA—AD—w2_A !

(92 _1—
N 2_A‘(z AN —1=0

if and only if A =1 or 3. To find eigenvectors v = <21): A=1:
2

= (1) ()

:>v:a<1) any a # 0.

(i) V =R?
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det(A—)J):‘l_)\ L '

0 1-A
— =1

. 0 1 (% .
=0 (2o
V1 . 1
— (U2> =« (0> for any o # 0.
cosf) —sind
U= (sin& cos 6 )

xu(t) = det(U — tI) = t* — 2tcos O + 1

9 and eigenvectors

v:a<;i> (a #0)

=(1-X>=0

Eigenvector:

(iii) V = R2 or C?

Eigenvalues \ = e**

(c) Deductions involving x (%)

For A an n x n matrix, characteristic polynomial has degree n:

An—t A - A
Ar Agey - Aoy
xA(t) = det . . ) .
Anl AnZ T Ann—t

n .
=>_ot!
=0
= (=Dt =) (=)
(i) There exists at least one eval (one root of y4); in fact there exists n roots counted
with multiplicity (Fundamental Theorem of Algebra)
(ii) tr(A) = As = Y, A sum of reals by comparing terms of order n — 1 in ¢.
(ili) det(A) = xa(0) =[], i (product of eigenvalues)
(iv) If A is diagonal:
AN - 0
A= : . :
0 - A
with diagonal entries eigenvalues; (ii) and (iii) are then immediate.

(v) If A is real, coefficients ¢; are real and x4(A\) =0 <= xa(A) = 0: non-real roots
occur in conjugate pairs.
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6.2 Eigenspaces and Multiplicities
(a) Definitions
For an eigenvalue A\ of matrix A, define the eigenspace
Ey={v:Av=)\v} =Ker(A - \);
the geometric multiplicity
my = dim Ey = null(4 — AI).

(# linearly independent eigenvalues eigenvectors with eval \);
the algebraic multiplicity

M), multiplicity of A as a root of x4

Le. yalt) = (t — NMAf(t) with f(\) 2 0.

Proposition. My > my

[Further discussion in section 6.3]

(b) Examples

(i) Define:
-2 2 =3
A= 2 1 -6
-1 -2 0

xa(t) +det(A —tI) = (5 —t)(t + 3)?
so we have roots 5 and —3, with M5 =1 and M_35 = 2.

e For A\ = 5 we have:

-7 2 -3 I
(A-5)x=1[2 -4 —6 z2 | =0
-1 -2 -5 xr3

e For A\ = —3 we have

1 2 -3 T
(A+3D)x=| 2 4 -6 x2 | =0
-1 -2 3 3
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Solve to find:

—2x9 + 323
X = i)
x3
or
-2 3
E,'g, = 4§« 1 + ﬁ 0
0 1

So
dimE5 = ms5 = 1 :M5

dim E,3 =m_3 = 2= M,3

(ii) Consider

-3 -1 1
A=[-1 -3 1
-2 -2 0
Then
xa(t) = det(A —tI) = —(t +2)3
roots are A = —2, with M_y = 3. To find eigenvectors:

-1 -1 1 T
A+2)x=[-1 -1 1 zo | =0
(

-2 =2 2 T3

—X9 + T3
— X = )
x3
-1 1
= F s=1<« 1 +610
0 1

sodimF_9 =m_9 =2 but M_9 = 3. (So we do have M_y > m_,.)

(c) Linear Independence of Eigenvectors

Proposition. (i) Let vq,...,v, be eigenvectors of matrix A (n x n) with eigen-
values A1,...,A.. If the eigenvalues are distinct, A\; # A; for ¢ # j, then the
eigenvectors are linearly independent.

(ii) With conditions as in (i), let By, be a basis for E},, then
B)q UBAQU”'UB)\T

is linearly independent.
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Proof.

(i)

6.3

Note

w:iajvj
(A= ADw Z%A — AV

First, suppose eigenvectors are linearly dependent, so there exists linear relations
w = 0 with number of non-zero coefficients p > 2. Pick a w for which p is least
and assume (without loss of generality) that o # 0. Then

(A=MDw = a;j(Aj — \)v; =0,

Jj>1

a linear relation with p — 1 non-zero coefficients, Xk (p was least).
Alternative second proof,
w=20

= [[i#kA-NDw=ox [ [T =) | vik =0
J#k

(for some chosen k).
= ap =0

so the eigenvectors are linearly independent.
It suffices to show that if
wW=w;+wy+ --+w.=0

with w; € E); then
= w; = 0.

This follows by same arguments as in (i).

Diagonalisability and Similarity

(a) Introduction
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Proposition. For an n x n matrix A acting on V = R" or C", the following
conditions are equivalent

(i) There exists a basis of eigenvectors for V', vi,va,..., v, with
AVl' = )\ivi
(no summation convention here!)
(ii) There exists an n X n invertible matrix P with

M cee 0
PlAP=D=|: o
O aco O

If either of these conditions holds, A is diagonalisable.

Proof. Note that for any matrix P, AP has columns AC;(P) and PD has columns
AiCi(P) for each i. Then (i) and (ii) are related by

vi=ci(P): PT'AP=D <= AP = PD <= Av, =\,

Example
Refer to section 6.1(b):

cos@ —sinb
U= (sinG cosd >

+i0 and eigenvectors (

eigenvalues e > Linearly independent over C so

F1

/11 11
P(—z’ i):>P 2(1 —i>

16
-1 (€ 0
PlUP = (0 e_w)

U diagonalisable over C but not over R.

and

(b) Criteria for Diagonalisability
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Theorem. Let A be an n X n matrix and Ay, ..., A, all its distinct eigenvalues.

(i) A necessary and sufficient condition: A is diagonalisable if and only if

My,

7

=my, fori=1,...,r

(ii) A sufficient condition: A is diagonalisable if there are n distinct eigenvalues,
ie. r=n.

Proof. Use Proposition in section 6.2(c)

For (ii) if » = n we have n distinct eigenvalues and hence n linearly independent eigen-
values, which form a basis (for R or C").

For (i), choosing bases By, for each eigenspace,

By, UBy, U---UB,,
is a linearly independent set of
my, +my, + - +my,
vectors. It is a basis (for R” or C") if and only if we have n vectors. But
my, < My,

and
M)\1+M)\2+~--—|-M/\T:n.

Hence we have a basis if and only if

My, = my, for each 1
O
Examples
Refer to section 6.2(b)
(i) -2 2 -3
A=|12 1 -6
-1 -2 0

)\:5,—3,—3 M5:TTL5:]_ M,32m73:2

hence A diagonalisable.

1 -2 3 (1 2 -3
P=(2 1 0o}, Pl==-[-24 ¢
-1 0 1 8\1 2

5 0 0

PlAP=10 -3 0

0 0 -3

as expected.
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.. -3 -1 1
() A= —i) -3 1
-2 -2 0
A=-2-2-2 M_y=3>m_9=2
hence A is not diagonalisable. Check: if it was then
P'AP = 21

— A=P(-2)P"!' = —2Bx

(c) Similarity
Matrices A and B (n x n) are similar if
B=P AP

for some invertible P (n x n). This is an equivalence relation.

Proposition. If A and B are similar, then

)
)

(iii) tr(B) = tr(A).
) det(B) = det(A).
)

B(t) = xa(?).

<

Proof. (i) and (ii) immediate. (iii):
tr(B) = tr(P~1AP)

=tr(APP™)
= tr(A)
For (iv):
det(B) = det(P~1AP)
= det(P1) det(A) det(P)
= det(A)
For (v):
det(B — tI) = det(P~YAP — tI)
= det(P~Y(A — tI)P)
= det(A — tI)
as in (iv).
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6.4 Hermitian and Symmetric Matrices
(a) Real Eigenvalues and Orthogonal Eigenvectors

Recall: matrix A (n x n) is hermitian if

AT=A"=4 o A;=4;

special case: A is real and symmetric

A

Il
b
b
4
Il
b
S
—N—

Recall: complex inner-product for v,w € C" IS
VTW = Zvﬁwi
i
and for v,w € R" this reduces to

viw=v-w= E V; W
i

Observation: if A is hermitian then
(Av)Tw = vi(Aw) Vv, w e C"

[since LHS = (viANw = viATw = viAw = RHS]

Theorem. For a matrix A (n x n) that is hermitian
(i) Every eigenvalue A is real

(ii) Eigenvectors v, w with distinct eigenvalues A, p respectively (A # u) are
orthogonal
viv=0

(iii) If A isreal and symmetric then for each A in (i) we can choose a real eigenvector

v and (ii) becomes

viw=v-w=0

Proof.
(i) wi(Av) = (Av)Tv
— viQwv) = (Owv)v
— Aviv=2vlv

for v an eigenvector with eigenvalue \. But v # 0 so viv # 0 and A = \.
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(ii) vi(Aw) = (Av)Tw
— vi(uw) = (W) )w
— uviw = Aviw
= \viw
from (i). But A # p so viw = 0.
(iii) Given Av = Av with v € C" and A, X real, let
w=u+ i

with u,u’ € R". Then Au = Au and Au’ = Au’ but v # 0 implies one of u or u’
is nonzero, so there is at least one real eigenvector.

O]

Unitary and Orthogonal Diagonalisation
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Theorem. Any n x n hermitian matrix A is diagonalisable (as in section 6.3(a))

(i) There exists a basis of eigenvectors
ug,...,u, € C"

with
Aui = )\z u;

; or equivalently

(ii) There exists n x n invertible matrix P with

Al - O
PT'AP=D=|: .. :|;
U o0 Jo

columns of P are eigenvectors u;.

In addition: the eigenvectors u; can be chosen to be orthonormal

T s
u;u; = ;.

or equivalently the matrix P can be chosen to be unitary
Pt=p' — PAP=D

Special case: for n x n real symmetric A, can choose eigenvectors uy,...,u, € R
with
T =w - us = .
u; Uj = U; - Uj = O

equivalently, the matrix P can be chosen to be orthogonal

PT=p1 — pTAP=-D

Proof of diagonalisability is not ezaminable and remaining statements follow by combin-
ing results of section 6.2, 6.3 and choosing orthonormal basis for each eigenspace.

Examples

(i) Consider hermitian (AT = A) as in section 6.1(b):

then A\ = 1 and Ao = 3 and choose
1 <1) 1 < 1 >
uy=—9.]», U = — .
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to ensure u{ul = ugug =1 and note

1 1
T —_ — y j—
ujuy = 2(1 i) ( 2> =0.

Let

then P = P~! unitary and

(ii) Consider symmetric matrix

11 (1 (1

w=—|-1], w= 1], w=—|1

Let P be matrix with columns uy, us, us then PT = P! orthogonal

-1 0 0
P'AP=10 -1 0
0 0 2

6.5 Quadratic Forms
Consider F : R? — R? defined by
F(x) = 223 — 4a129 + 525

This can be expressed
F(x) = 2 4 6%

where

1
'/L‘/I = %(2:17]_ + 332)
, 1
Ty = —5(—1'1 + 2x3)

with 22 + 22 = 2% + 23. To understand this better, note

F(x) =x'Ax
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where
2 =2
= (%)

and we can diagonalise A because A\; = 1, Ao = 6, and then we can compute

wm () e )

Then

give the simplified form for F. In general, a quadratic form is a function F : R” — R?
given by
.F(X) = XTAX = a:iAijxj

where A is an n X n real symmetric matrix. From section 6.4,

AN - 0
P'AP=D=|: -.
0 - A\
where \; are eigenvalues of A and P orthogonal with columns u; orthonormal eigenvec-
tors. Let x’ = PTx or x = Px’. Then

F has been diagonalised. Now
x’zx’lel—i—---—i—x;len
and

X =x1€1 + -+ xTre,

/ /
=riu+---+x,Uuy

since z, = u; - x <= % PTx. Thus, z, are coordinates with respect to new axes
given by orthonormal basis vector u; and these called principal azes of F. Relation to
original axes along standard basis vectors e; and coordinates x; is given by an orthogonal
transformation

/

\X|2 = xx; = ),

92



(b) Examples in R? and R3
In R?

F(x)=x'Ax

1= 2)

eigenvalues \1 = a + 3, Ao = a — . Eigenvectors:
11 s

F(x) = az? + 282129 + axd
= (a+B)2f + (a - B)2f

with

with

(i) =3, 8=—3. Then Ay =1, Ay = 2.
Fx)=a? 4227 =1

defines an ellipse.

1 /\xI)
K4

oo

(i) o =—3%, 8=3. Then A\; =1 and Xy = —2
F(x)=a? —2:% =1

defines a hyperbola.
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In R3

F(x) = x" Ax = M\ + Xoa? + Mgaf

after diagonalisation.

(i) If A has eigenvalues A1, A2, A3 > 0 then F = 1 defines an ellipsoid.
(ii) From section 6.4,
011
A=1[1 0 1
1 1 0
has eigenvalues Ay = Ay = —1, A3 = 2. Hence

F = 2x129 + 22973 + 22371

= —:L'/12 — x’22 + 2x§2

F=1 <+ 228 =142 + 2

hyperboloid:
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F=-1 <<= o2+l =1+22%
2 sheeted hyperboloid:

A

'€

6.6 Cayley-Hamilton Theorem
If Ais an n X n complex matrix and
ft)=cotcit+- + ot
polynomial of degree k, then
fA) =col +c1A+ -+ cp AP
We can also define power series of matrices subject to convergence, for example
eXpA:I—i—A—i—--'—i—%AT%-"-

converges for any A. Note

(i) If
PVEEE
0 ---
is some diagonal matrix, then
A0
DT(E
0o ---

and
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(ii) If B = P~LAP for invertible P, i.e. A and B are similar then
B"=P'AP and  f(B)=f(P'AP) =P lf(A)P
Recall, the characteristic polynomial is
xa(t) =det(A—tl) =co+cit+ - cpt”

where ¢y = det A and ¢, = (—1)".

Theorem (Cayley-Hamilton).
XA(A)=col +c1 A+ +c, A" =0

“a matrix satisfies its own characteristic equation”

( I
Note. Cayley-Hamilton implies

col = —A(ci I+ -+ c, AV

and if ¢y = det A # 0 then

Al = —i(cll + e AV,

o
\ )

Proof.

(i) General 2 x 2 matrix

A= <Z 2) — ya(t) =t? — (a + d)t + (ad — bc)

then check by substitution that x4 = 0 (on example sheet 4).

(ii) Diagonalisable n x n matrix:
consider A with eigenvalues \; and invertible P such that

A - 0
PlAP=D=|: ;
0 An
and hence
XA()\l) ce 0
xa(D) = E : =0
0 xa(An)
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since \; are eigenvalues. Then

xa(A) = xa(P~'DP)
= P 'xA(D)P

as required.

(iii) The non diagonalisable case is beyond the scope of this course, but one can use an
analytical argument to extend the diagonalisable case.

O]
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7 Changing Bases, Canonical Forms and Symmetries

7.1 Changing Bases in General
(a) Definitions and Proposition

Recall Section 4.4: given linear map 7' : V. — W (real or complex vector spaces) and

choice of bases
{ei} i=1,...,n forV

{fo} a=1,...,m for W
the matrix A (m x n) with respect to these bases is defined by

T(ez) = ZfaAai

This definition is chosen to ensure
y=T(x) < ya= Y _ Auiri = Agi;
i

where

x=Y mei, y=_ afa,
7 a
which holds since

T(Z :riei) = Z xiT(ei)
= Z :L‘Z(Z faAai)

)

N—————

— yq as required
Same linear map T has matrix A’ with respect to bases
{ef} i=1,...,n forV
{f} a=1,....,m for W
defined by
T(ef) = AL
a

To relate A and A’ we need to say how bases are related, and change of base matrices
P (n xn)and @ (m x n) are defined by

e => ePi, £=> fQu
J b
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( I
Note. P and @ invertible; in relation above we can exchange {e;} and {e}} with

P — P~! and similarly for Q.
N\ J

Proposition. With definitions as above

A =Q AP

change of basis formula for matrix of a linear map.

Example. n =2, m =3

T(el) = f1 + 2f2 — f3 = Z faAal

T(eg) = —f; + 229 + f3 = Z f,Au

New basis for V'

! /
e] =ey —ey = E e; P e, =e;+ey = E e; P
5 .

11
:P_<—1 1>

New basis for W

1 01

= @=10 10

-1 0 1

Change of basis formula:
1 1

) 5 0 —3 1 -1 11 2 0
A=Q"AP=|0 1 0 2 2 (_1 1) 0 4
% 0 % -1 1 00

Direct check

which agrees.
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(b) Proof of Proposition

T(e}) = T(Z e; Pji) definition of P
J
= ZT(ej)sz‘ T linear
J
=2 faAo; Pji definition of A
7 a
T(ef) =Y Ay definition of A’
b
= Z Z £.QauvAp; definition of @
b a

Comparing coefficients of f, (since it’s a basis):
Z AqjPji = Z QabAp;
J b

or

AP = QA

as required.

(c) Approach using vector components

Consider
X = E xjej
J
=Y ale
i
— .. I .
= <§ PM%) €;
j i
/
= Tj = Li%;
Write
x1 x
X = and X' =1:
Tn, x,
then

X =PX' or X' =plx

100



Note: some care needed if V =R", e.g. n =2 with

=) ()
o (B ewe
()

has x = 3e; + 2e9 so

Similarly
y=> whh=> v.f
b a
= UYp = Qbayéz
Then
Y=QY" o Y =Q'Y
where
U1
U
Y = : and Y = ( )
: !
Ym "

Now, marices A, A’ are defined to ensure

Y =AX and Y = AX'

But
YV =Q'Y
=Q'AX
— Q7' AP)X’
— A/X/
and true Vx so
A =Q AP

Comments

(i) Definition of matrix A for T': V' — W with respect to bases {e;} and {f,} can be
expressed; column ¢ of A consists of components of T'(e;) with respect to basis {f,}.
[For T : R™ — R™ with standard bases, columns of A are images of standard basis
vectors.] Similarly, definitions of P and @ say: columns consist of complements of
new basis vectors with respect to old.
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(i) With V = W and same bases and e; = f;, e, = £/ we have
P=Q and A =P'AP

Matrices representing the same linear map with respect to different bases are sim-
ilar; conversely if A and A’ are similar then we can regard them as representing
same linear map with P defining change of basis. In section 6.3, we observed

tr(A") = tr(A),
det(A’) = det(A),

xar(t) = xal(t)

so these are properties of linear map.

(iii) V=W =R" or C", with e; standard basis - matrix A is diagonalisable if and only
if there exists basis of eigenvectors

ei =V;
with
Av; = \v; no summation convention!

and then

N - 0

A =P 1AP=D = :

0 An

and

V; = E eiji
J

eigenvectors are columns of P. Specialising further AT = A implies exists basis of
orthonormal eigenvectors

ef=w; and Pl=p7!

7.2 Jordan Canonical / Normal Form

This result classifies n X n complex matrices up to similarity.
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Proposition. Any 2 x 2 complex matrix A is similar to one of the following:

(ii) For some A,

(iii) For some A,

(i) For some \; # A2

r (A1 O
=5 %)

xA(t) = (t = A1) (t — A2)

()

xa(t) = (t—X)?

SO

SO

SO

Proof. x a(t) has 2 roots over C.

(i)

(if)
(i)

For distinct roots or eigenvalues, A1, A2, we have M7 = m; = My = mg = 1 and
eigenvectors vi, vo provide a basis.

For repeated root / eigenvalue A\, if My = my = 2, then same argument applies.

For repeated root / eigenvalue A\, with M) = 2 and m) = 1, let v be eigenvector
for A and w any linearly independent vector. Then

Av = v

Aw = av + Sw

say. Matrix of map with respect to basis {v,w} is

A«
0 B
But 5 = A (otherwise case (i)) and a # 0 (otherwise case (ii)). Now set u = av

and note
Au = \u

Aw =u+ \w

so with respect to basis {u, w} matrix is
Al
A=
(0 3)
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as claimed.
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Example (using a slightly different approach).

and
Choose

not an eigenvector and then

But (A —3I)? =0, and
Au = 3u

Aw =u+ 3w
so basis {u, w} gives JCF. Check:

(21 (0 -1
P_<—1 0>:>P _(1 —2)

1 (31
PAP_<03

Generalisation to larger matrices can be consired, starting with

and

010 0
00 1 0
N=]0 o0 0
000 -+ 0

n X n. When applied to standard basis vectors get
Wt e, 1t—---t—e—0
Note
J=A+N

then
xs(t) =(A—-1)"

but my =1 (M) = n).
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Theorem. Any n X n complex matrix A is similar to a matrix A" with block form

where each diagonal block is a Jordan block with form

A1 0 - 0
0o X 1 - 0
J,N =10 0 A 0
00 0 --- A
pXp
with nq 4+ ---n3 = n and Aq,..., \, are eigenvectors of A and A’ (same eigenvalue

may appear in more than one block). A is diagonalisable if and only if A’ consists
of 1 x 1 Jordan blocks only.

Proof. See Linear Algebra and GRM in Part IB. O

7.3 Quadrics and Conics

(a) Quadrics in General

A quadric in R" is a hypersurface defined
Qx)=x"Ax+x'x+2=0

for some A, n x n real symmetric, non-zero matrix, b € R", ¢ € R. So
Q(x) = Ajjzix; + bz +c=0

Consider classifying solutions up to geometrical equivalence: no distinction between
solutions related by isometries (length preserving maps) in R”, i.e. related by

(i) translation - change in origin

(ii) orthogonal transformation about origin - change in axes.
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If A is invertible (no zero eigenvalues) then by setting y = x + %Ailb we have
T LT L,
=x'Ax+b'x+ %bTAflb
[since (A~'b)T =bT (A7) and (AT = (AT)™! = A_; in this case.] Then Q(x) =
0 < F(y) =k with F(y) =y Ay. (quadratic form with respect to new origin y = 0)
and k = %bTA_lb — c. Diagonalise F as in section 6.5: orthonormal eigenvectors give

principal axes, eigenvalues of A and value of k determine nature of quadric. Example in
R3 given in section 6.5(b)

(i) eigenvalues > 0 and k > 0 get ellipsoid
(ii) eigenvalues of different sign and k # 0 get hyperboloid

If A has one or more zero eigenvalues then analysis changes and simplest standard form
may have both linear and quadratic terms.

(b) Conics
Quadrics in R? are curves, conics.

det A # 0.
By completing square and diagonalising we get a standard form

Mz + Xz =k

ellipse for k > 0
A1, A2 >0 = ¢ point for k=0

no solution for k < 0

h bola for k > 0or k <0
A S0 <0 — yPer o.a ork>0ork<
pair of lines for k = 0

e.g.
2 — 2 = (z1 —x2) (w1 +22) =0

det A = 0 Suppose A1 > 0 and Ay = 0; diagonalise A in original formula to get
M 4 by + by +e=0
= Mz{?+bhah+ =0

where

1
50,1/:$/1+Rb/1 and d=c——=
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If b, = 0 then we get a pair of lines for ¢ < 0, single line for ¢ = 0 and no solutions for
d > 0. If b, # 0 then equation becomes

Mz + bhal =0
parabola where
"o 1 1 /
Ty =Ty + 5C
by
7.4 Symmetries and Transformation Groups
(a) Orthogonal Transformation and Rotations in R”
R orthogonal — R'R=RR' =1
< (Rx) - (Ry)=x-y Vx,y

<= columns or rows of R orthonormal vectors
The set of such matrices forms the orthogonal group O(n).
ReO(n) = detR=+1
[det(RT)det(R) = [det(R)]? = 1]
SO(n) ={R € O(n) : det R = +1}
is a subgroup, the special orthogonal group.
R € O(n) = R preserves lengths and |n-dim vol|

R € SO(n) = R also preserves orientation

SO(n) consists of all rotations in R".

Reflections belong to O(n) \ SO(n), any element of O(n) is of the form
R or RH with R € SO(n)

e.g. if n is odd, we can choose H = —1.
Active and Passive Points of View
For a rotation R (matrix), the transformation

x; = Rijx;
can be viewed in two ways.
Active view point: rotation transforms vectors
x}, components of new vector

x' = Rx with respect to standard basis {e;}

e.g. R?
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x| = [x|”

Passive view point: rotation changes basis

7, components of same vector x but with respect to new basis {u;}

2
eg. R
T2 ,
T3
uz
€2 X
1
€1
ui
!
Ty
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u; = Z Rijej
J
_ -1
=Y e(R);s
J
(compare to section 6.5: P = R™1)

(b) 2D Minkowski Space and Lorentz Transformations

Define a new “inner product” on R? by

(x,y =x' Jy = zoyo — 1141

1 0
= 4)
where we now label components

Zo Yo
= d =
=) w = ()

This is not positive definite, since

where

(x,x) =x'Jx =22 — 22

but still bilinear and symmetric. Standard basis vectors are “orthonormal” in generalised

sence:
ey = 1 and e = 0
= \o . 1=
obey
(eo,eo) =1
(el,el) =—1
(eo,el) =0

New inner product is called the Minkowski metric and R? equipped with it is called
Minkowski space. Consider
M= <M00 M01>

Mg M

giving a linear map R? — R?. This preserves the Minkowski metric if and only if

(Mx, My) = (x,y Vx, athbfy € R?
— (Mx)"J(My)=x"(M"JM)y
= XTJy X,y € R?

— M'JM=J
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The set of such matrices forms a group. Now

det(MTJM) = det M " det .J det M
= detJ = (det M)? =1
= det M = =1
Furthermore, |Myg| > 1, so
MOO > 1 or M()() < —1.
The subgroup with
det M = +1 and Moy > 1

is the Lorentz group in 2D.
General form for M: require columns Mey and Me; to be orthonormal, like e, ey (with
respect to new inner product). This implies

coshf® sinh6
M(9) = (sinh0 cosh@)

First column fixed by requiring (Mey, Me;) = 1 or M}, — M? =1 and My > 1. The
second column is then fixed by Meop, Me;) = 0, (Me;,Me;) = —1 and det M = +1
(fixes overall sign). For such matrices

M(61)M(02) = M (61 + 02)

Zo

curves with (x,x) = k, constant, as shown.
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Physical application
Set

me) =) () )
v = tanh 6
y(w) = (1=o")2 el <1
Rename xy — t time coordinate and x; — = space coordinate.

t' =~y(t + vx)

x' = Mx <
' =(x + vt)

Lorentz transformation or boost relating observes moving with relative velocity b accord-
ing to Special Relativity (units with ¢ = 1). Factor y(v) = (1 — v?)~1/2 gives rise to
effects such as time dilation and length contraction.
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