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0 Introductory Remarks

The course consists of these notes; there is no need to look at any books, but it may be
of some use.
There will be 4 example sheets for this course.
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1 Proofs

Definition (Proof). A proof is a sequence of true statements without logical gaps,
establishing some conclusion.

We have to start somewhere, and have agreed assumptions (axioms).

We want to prove things because:

— We want to know they are true;

— We hope to gain insight into why they are true;

— We might be lucky and the proof is beautiful.

1.1 Examples of statements

(1) There are infinitely many primes p such that 2p+ 1 is also prime.

(2) There are infinitely many primes p such that one of p+ 2, p+ 4, . . . , p+ 246 is also
prime.

(3) There is always a prime between n and 2n for any integer n.

(4) There is no algorithm which will factor an n-digit integer in at most n3 steps.

(5) Every non-constant polynomial with complex coefficients has a root (in the complex
numbers).

(6) m× n = n×m for all integers m and n.

(7) 1 + 1 = 2.

Remarks

(1) No-one knows if it’s true.

(2) Was proved in 2014.

(3) Not obvious but true.

(4) Would be a disaster if false!

(5) The Fundamental Theorem of Algebra.

(6) Worth thinking about. . .

(7) Does it need proving?
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1.2 Some proofs and non-proofs

Assertion. For all positive integers n, n3 − n is a multiple of 3.

Proof. For any positive integer n, we have

n3 − n = n(n2 − 1) = n(n+ 1)(n− 1) = (n− 1)n(n+ 1)

One of the three consecutive integers n − 1, n and n + 1 must be a multiple of 3, and
hence, so must their product.

Notation. The symbol is used to mean “end of proof”

Assertion. For any positive integer n, if n2 is even then so is n.

“Proof”. Given a positive integer n, which is even, we can write n = 2k for some positive
integer k. Hence n2 = (2k)2 = 2(2k2), which is even.

Nonsense! We wanted to show “if A then B” but we have shown “if B then A”.s

Assertion. For any positive integer n, if n2 is a multiple of 9, then so is n.

This assertion is simply false: take n = 6. To guess that “if A then B” is false, then it
is enough to show that there is one instance where A is true and B is false.

“One counterexample is enough”

Back to: “if n2 is even, then n is even.”
Proof. Suppose on the contrary that n is not even. Then n is odd, so n = 2k + 1 for
some integer k. Thus

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

which is odd, contradicting the assumption that n2 is even. ××××
This is a proof by contradiction.

Notation (Contradiction).××××denotes some kind of contradiction in a proof.

To show “if A then B” we shows that there is no case where A is true and B is false. In
other words, showing A =⇒ B is the same as showing NOT B =⇒ NOT A.
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Assertion. The solution to x2 − 5x+ 6 = 0 is x = 2 or x = 3. This is in fact two
assertions:

(i) x = 2 and x = 3 are solutions;

(ii) there are no other solutions.

Proof.

(i) If x = 2 or x = 3,
then x− 2 = 0 or x− 3 = 0
so (x− 2)(x− 3) = 0
so x2 − 5x+ 6 = 0.

(ii) If x2 − 5x+ 6 = 0
then (x− 2)(x− 3) = 0
then (x− 2)(x− 3) = 0
so x− 2 = 0 or x− 3 = 0
so x = 2 or x = 3.

Or an alternative proof that is more concise:
Proof.

x = 2 or x = 3

⇐⇒ x− 2 = 0 or x− 3 = 0

⇐⇒ (x− 2)(x− 3) = 0

⇐⇒ x2 − 5x+ 6 = 0

It is vital that every step is ⇐⇒ !

Assertion. Every positive real is ≥ 1.

“Proof”. Let r be the least positive real. Then either r = 1 or r < 1 or r > 1.
If r > 1, then 0 < r2 < r, contradicting the assumption that r is the least positive real.
If r > 1, then 0 <

√
r < r, again ×××× . Hence r = 1.

Nonsense! We don’t know that there is a smallest positive real.

Moral. Every claim must be justified.
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1.3 Combining Assertions

Notation (Combining assertions). If A and B are assertions, we can (but we usually
don’t) write A ∧B for “A AND B”, A ∨B for “A OR B”, and ¬A for “NOT A”.

The truth of these assertions depends on the truth of A and B, summarised in the truth
table.

A B A ∧B

F F F
F T F
T F F
T T T

A B A ∨B

F F F
F T T
T F T
T T T

A ¬A
T F
F T

A B A =⇒ B

F F T
F T T
T F F
T T T

Note, for example, that ¬(A ∧ B) is equivalent to (¬A) ∨ (¬B), by comparing truth
tables.
Also, A =⇒ B is equivalent to (¬A) ∨B and hence B ∨ (¬A), and hence to (¬B) =⇒
(¬A).

1.4 Qualifiers and Negations

An assertion may involve “quantifiers”, for example ∀n (“for all n”), ∃x (“there exists
x”).

¬(∀xA(x)) means ∃x¬A(x)

¬(∃xB(x)) means ∀x¬B(x)

The order of quantifiers matters!
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2 Elementary Number Theory

Intuitively, the natural numbers consist of

1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . .

How do you know you have captured all natural numbers? How do you know they are
all distinct?

2.1 Our Axioms

We shall assume:
The natural numbers, written as N, is a set containing a special element ‘1’ with an
operation ‘+1’ satisfying

(i) ∀n ∈ N, n+ 1 ̸= 1;

(ii) ∀m,n ∈ N, if m ̸= n, then m+ 1 ̸= n+ 1;

(iii) for any property P (n), if P (1) is true and ∀n ∈ N, P (n) =⇒ P (n+1), then P (n)
is true for all natural numbers.

(i) - (iii) are known as the Peano axioms.
(iii) is called the induction axiom.
(i) & (ii) capture the idea that any two natural numbers are distinct; (iii) captures our
intuitive notion that the list is complete (take P (n) = “n is on the list”).

Notation. Now we can write 2 for 1 + 1, 3 for 1 + 1+ 1, etc, and we can define an
operation ‘+k’ for any natural number k in the following way:

for every natural number n, n+ (k + 1) = (n+ k) + 1.

(by induction, taking the statement P (k) = “ ‘+k’ is defined“). Similarly, we can
define multiplication, powers, etc.

One can check that the “normal” rules of arithmetic apply:

(1) ∀a, b we have a+ b = b+ a (+ is commutative);

(2) ∀a, b we have ab = ba (· is commutative);

(3) ∀a, b, c we have a+ (b+ c) = (a+ b) + c (+ is associative);

(4) ∀a, b, c we have a(bc) = (ab)c (· is associative);

(5) ∀a, b, c we have a(b+ c) = ab+ ac (multiplication is distributive over addition).
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Definition (Greater than). We define ‘a < b” if a+ c = b for some c ∈ N. One can
verify that

(6) ∀a, b, c a < b =⇒ a+ c < b+ c;

(7) ∀a, b, c a < b =⇒ ac < bc;

(8) ∀a, b, c a < b ∧ b < c =⇒ a < c;

(9) ∀a ¬(a < a).

Recall the induction axiom: If P (1) holds and ∀n ∈ N, P (n) =⇒ P (n+ 1), then P (n)
holds ∀n ∈ N. This is also known as the (Weak) Principle of Induction (WPI). A more
useful form is the following.

Definition (Strong Pinciple of Induction (SPI)). If

(i) P (1) holds and

(ii) ∀n ∈ N, we have P (m)∀m ≤ n =⇒ P (n+ 1),

then P (n) holds ∀n ∈ N.

In fact, WPI and SPI are equivalent. To see that WPI implies SPI, apply the former to
Q(n) = “P (m)∀m ≤ n′′.

Theorem (Well-ordering Principle (WOP)). If P (n) holds for some n ∈ N, then
there is a least natural number n ∈ N such that P (n) holds.

“Every non-empty subset of N has a minimal element.”

Assertion. SPI is equivalent to WOP.

Proof. To show that WOP implies SPI, we assume (i) and (ii), and show that P (n) holds
∀n ∈ N, using WOP.
Suppose, on the contrary, that P (n) is not true ∀n ∈ N. Then C = {n ∈ N :

P (n) is false} ≠ ∅. By WOP, C has a minimal element, m say. Now ∀k < m, k ̸∈ C
(by minimality of M), so P (k) holds ∀k < m. But by (ii) of SPI, P (m) holds, so
contradicting m ∈ C. Hence SPI holds.
To show that SPI implies WOP, suppose there is no least n ∈ N such that P (n) holds.

We want to show that P (n) does not hold for any n ∈ N, using SPI.
Consider Q(n) = “¬P (n)′′. Certainly P (1) is false (else 1 would be the minimal

element), so Q(1) holds.
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Given n ∈ N, suppose that Q(k) is true ∀k < n. Then P (k) is false ∀k < n. So P (n)
is false as otherwise n would be the minimal element for which P holds. Hence Q(n) is
true, and so (ii) of SPI holds, so Q(n) is true ∀n ∈ N. Thus P (n) is false ∀n ∈ N.
WOP enables us to prove P (n) is true ∀n ∈ N as follows: If not, then there is a minimal
counterexample, and we try and derive a contradiction.

2.2 The Integers

The integers, written Z, consist of all symbols

n,−n,where n is in the natural numbers, and 0.

In other words
Z = N ∪ {−n : n ∈ N} ∪ {0}.

Can define + and · etc on Z from N, and check that the usual rules of arithmetic hold.
We also have the following properties:

(10) ∀a ∈ Z a+ 0 = a (identity for +)

(11) ∀a ∈ Z, ∃b ∈ Z such that a+ b = 0 (inverses for +).

Define “a < b” if a+ c = b for some c ∈ N. Then rules (6), (8), (9) continue to hold,
but (7) must be modified:

(7’) ∀a, b, c ∈ Z a < b ∧ c > 0 =⇒ ac < bc.

2.3 The Rationals

The rationals, written Q, consist of all expressions of the form

a
b , where a, b are integers with b ̸= 0, and a

b and c
d are regarded as the same if ad = bc.

Define a
b +

c
d = ad+bc

bd , and one can check that it does not matter how we wrote a
b or c

d .

We similarly define multiplication, and define

“a
b < c

d” where b, d > 0 if ad < bc.

One can check that rules (6), (7’), (8) and (9) still apply.

In addition:

(12) ∀a ∈ Q, a ̸= 0, ∃b such that ab = 1 (inverses for ·)

Remark. N ⊂ Z ⊂ Q

Notation (Subsets). The symbol ⊂ means “contained in” or “is a subset of”.
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2.4 Primes

Given a, b ∈ Z we say “a divides b”if ∃c ∈ Z such that b = ac. We might also “a is a
divisor of b” or “a is a factor of b”, or “b is a multiple of a”. We write a | b.

Remark. For any b ∈ Z, ±1 and ±b are always factors; all other factors (if they
exist) are called proper or sometimes “non-trivial”.

Definition (Primes). A natural number n ≥ 2 is prime if its only factors are ±1
and ±n.

Definition (Composite numbers). If n ≥ 2 is not prime, then it is composite.

Proposition. Every natural number n ≥ 2 can be written as a product of primes.

Proof. By induction on n. True for n = 2. Let n > 2 and suppose that the claim holds
up to and including n−1. If n is a prime, then done. If n is composite, n = a ·b for some
1 < a, b < n. By the induction hypothesis, we have a = p1 · · · pk, b = q1 · · · ql for some
primes p1 · · · pkq · · · ql. Hence n = ab = p1 · · · pkq1 · · · ql is a product of primes.

Theorem. There are infinitely many primes.

Proof. (Euclid 300BC) Suppose there are finitely many primes, say p1, . . . , pk. Let
N = p1 · · · pk + 1. Then p1 ∤ N , else p1|N − p1 · · · pk = 1. Note that ∤ means “does
not divide”. Likewise, none of p2, p3, . . . , pk divide N , contradicting the fact that N can
be written as a product of primes. Can a number have more than one
factorisation into primes? Our proof that every number has a prime factorisation does
not give uniqueness.
Clearly, 21 = 3× 7 is unique.
What about 295869? = 3× 7× 73× 193
Why is 9040× 40099 ̸= 6701× 54151?

We will need the following claim:

Proposition (Euclid’s Lemma). If p is a prime and p | ab, then p | a or p | b.
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Definition (Highest Common Factor). Given a, b ∈ N, a natural number c is the
highest common factor (hcf), or greatest common divisor (gcd) of a and b if

(i) c | a and c | b (“c is a common divisor of a and b”)

(ii) d | a ∧ d | b =⇒ d | c “every common factor of a and b divides c”

We write “c = hcf(a, b)” or “c = gcd(a, b)”, or simply “c = (a, b)”.

Example. The factors of 12 are 1, 2, 3, 4, 6, 12 and the factors of 18 are 1, 2, 3,
6, 9, 18. So the common factors are 1, 2, 3, 6, hence hcf(12, 18) = 6. But if a and
b had common factors 1, 2, 3, 4, 6, then a and b would have no hcf (according to
(ii)). So we need to show that hcf(a, b) always exists.

Proposition (Division Algorithm). Let n, k ∈ N. Then we can write n = qk + r,
where q and r are integers with 0 ≤ r ≤ k − 1.

Proof. By induction on n. True for n = 1. Suppose n − 1 = qk + r for some q, r ∈ Z
such that 0 ≤ r ≤ k − 1. If r < k − 1, then n = (n− 1) + 1 = qk + (r + 1). If r = k − 1,
then n = (n− 1) + 1 = qk + (k − 1) + 1 = (q + 1)k.

Euclid’s Algorithm

INPUT a b a = 372 b = 162

q1r1 ∈ Z
STEP 1 a = q1b+ r1 0 ≤ r1 ≤ b− 1 372 = 2 · 162 + 48

2 b = q2r1 + r2 0 ≤ r2 < r1 162 = 3 · 48 + 18
3 r1 = q3 · r2 + r3 0 ≤ r3 < r2 48 = 2 · 18 + 12

...
n rn−2 = qnrn−1 + rn 0 ≤ rn < rn−1 18 = 1 · 12 + 6

n+ 1 rn−1 = rn=1rn + rn+1 = 0 12 = 2 · 6
OUTPUT rn 6

Note that the algorithm terminates in ≤ b steps, since b > r1 > r2 > · · · ≥ 0.

Theorem. The output of Euclid’s algorithm with input a, b is hcf(a, b).

Proof.

(i) Have rn | rn−1 (as rn+1 = 0 at STEP n+ 1)
so rn | rn−2 (STEP n)
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so rn | ri ∀i = 1, . . . , n− 1 (by induction)
Hence rn | b (STEP 2) and rn | a (STEP 1).

(ii) Given d such that d | a and d | b,
have d | r1 (STEP 1)
so d | r2 (STEP 2)
and d | ri∀i = 1, . . . , n by induction.

Definition (Coprime). When hcf(a, b) = 1, we also say that a and b are coprime.

Example (hcf(87, 52)).

87 = 1 · 52 + 35

52 = 1 · 35 + 17

35 = 2 · 17 + 1

17 = 17 · 1

so hcf(87, 52) = 1.
We can also reverse the algorithm:

1 = 35− 2 · 17
= 35− 2 · (52− 1 · 35)
= −2 · 52 + 3 · 35
= −2 · 52 + 3 · (87− 1 · 52)
= −5 · 52 + 3 · 87

Theorem. For all natural numbers a and b, there exists some integers x and y such
that

xa+ yb = hcf(a, b)

“We can write hcf(a, b) as a linear combination of a and b.”

Proof 1. Run Euclid’s algorithm with input a, b to obtain an output rn say. At STEP
n, have rn = xrn−1 + yrn−2 for some x, y ∈ Z. But rn−1 is expressible as xrn−2 + yrn−3

for some x, y ∈ Z, from STEP n − 1, whence rn = xrn−2 + yrn−3 for some x, y ∈ Z.
Continuing by induction, we have ∀i = 2, . . . , n− 1, rn = xri + yri−1 for some x, y ∈ Z.
Thus rn = xa+ yb for some x, y ∈ Z, from STEP 1 and 2.
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Remark. Euclid’s algorithm not only proves that x, y ∈ Z exist, but it gives us a
quick way to find them.

Proof 2. Let h be the least positive linear combination of a and b, i.e. the least positive
integer of the form xa+ yb for some x, y ∈ Z.
We will show that h = hcf(a, b).
To see that part (ii) of the definition of hcf holds, observe that given d such that d | a
and d | b, then we have that d | ax+ by ∀x, y ∈ Z, so in particular, d | h.
To verify part (i), suppose that h ∤ a. Then we can write a = qh + r for some q, r ∈ Z
with 0 < r < h (note that the strict inequality on the 0 comes from the fact that we
have assumed that h ∤ a). Hence r = a − qh = a − q(xa + yb) is also a positive linear
combination of a and b, and strictly smaller than h contradicting the definition of h.
Therefore h | a, and by the same argument h | b.
Therefore h = hcf(a, b).

Remark. Proof 2 also tells us that the hcf(a, b) exists and is a linear combination
of a and b, but gives no way to find hcf(a, b) or the coefficients x, y.

Is there a solution in integers x, y to the equation

320x+ 72y = 33?

No, as LHS always even and the RHS odd.
What about 87x + 52y = 33? Yes, as we had x′, y′ ∈ Z such that 87x′ + 52y′ = 1, so
x = 33x′, y = 33y′ is an integer solution.

Corollary 1 (Bézout’s Theorem). Let a, b ∈ N. Then the equation ax+ by = c has
a solution in integers x, y if and only if hcf(a, b) | c.

Proof. Let h = hcf(a, b).
To prove that “only if” direction, suppose there are x, y ∈ Z such that ax + by = c.
Then since h | a and h | b, then h | c.
Conversely, suppose h | c. But this implies that there exist x, y ∈ Z such that h = ax+by.
But then

c =
c

h
· h =

c

h
(ax+ by) = a

(
x · c

h

)
+ b

(
y · c

h

)
Now we will prove Euclid’s Lemma, which was stated earlier.

Proposition (Euclid’s Lemma). If p is a prime and p | ab, then p | a or p | b.
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Proof. Suppose p | ab but p ∤ a. We will show that p | b. Since p is prime, hcf(a, p) must
be either 1 or p, but since p ∤ a it cannot be p, hence we must have that hcf(a, p) = 1.
Thus there exist x, y ∈ Z such that xp+ ya = 1.
It follows that xpb+ yab = b hence b is a multiple of p (as each of p and ab is).

Remarks

(1) Similarly, p | a1a2 · · · an =⇒ p | ai for some i = 1, . . . , n. Indeed, the proposition
tells us that if p | a1a2 · · · an, then p | a1 or p | a2 · · · an. Proceed by induction on
the number of terms in the product.

(2) We do need p prime.

Theorem (Fundamental Theorem of Arithmetic). Every natural number n ≥ 2 is
expressible as a product of primes, uniquely up to reordering.

Proof. We have already proved existence of a factorisation, so we need only prove that
it is unique. To prove this, we use induction on n. It is clearly true for n = 2. Given
n ≥ 2, suppose n = p1p2 · · · pk = q1q2 · · · ql, where pi, qj are all prime. We want to
show that k = l, and after reordering pi = qi ∀i = 1, . . . , k. We have that p1 | n, hence
p | q1 · · · ql, so p1 must divide one of the factors in this product, so p1 | qi for some
i. Relabelling the qi, we may assume that p1 | q1. Since q1 is prime, we must have
p1 = q1, so

n
p1

= p2 · · · pk = q2 · · · ql < n. By the induction hypothesis, k = l, and after
reordering, p2 = q2, . . . , pk = qk, so the factorisations were the same.

Remark. There are “arithmetical systems” (permitting addition, subtraction, mul-
tiplication) where factorisation is not unique.
For example, consider Z[

√
−3], meaning all complex numbers of the form x+y

√
−3 =

x+y
√
3i, where x, y ∈ Z. We can add, subtract and multiply two elements of Z[

√
−3]

to get another element of Z[
√
−3]. For example

(1 +
√
−3) · (1−

√
−3) = 1 +

√
−3−

√
−3− (

√
−3)2 = 1 + 3 = 4.

In Z[
√
−3] we can define what it means to be a “prime”, and both 1 +

√
−3 and

1 −
√
−3 happen to be primes in this sense. But we can also write 4 = 2 · 2, so

factorisation is not unique.

2.5 Some Applications of the Fundamental Theorem of Arithmetic

(i) What are the factors of n = 23 · 37 · 11? All numbers of the form 2a · 3b · 11c, where
0 ≤ a ≤ 3, 0 ≤ b ≤ 7 and 0 ≤ c ≤ 1 are factors. There are no other others: if for
example, 7 | n, then we would have a factorisation of n involving 7, contradicting
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uniqueness. More generally, the factors of n = pa11 · · · pakk are precisely the numbers

of the form pb11 · · · pbkk , with 0 ≤ bi ≤ ai ∀i = 1, . . . , k.

(ii) What are the common factors of

23 · 37 · 5 · 113 and 24 · 32 · 11 · 13?

All numbers of the form 2a · 3b · 5c · 11d · 13e, where e = c = 0 and 0 ≤ a ≤ 3,
0 ≤ b ≤ 2 and 0 ≤ d ≤ 1. Thus the hcf is 23 ·32 ·11. In general, the hcf of pa11 · · · pakk
and pb11 · · · pbkk , where ai, bi ≥ 0, is p

min{a1,b1}
1 · · · pmin{ak,bk}

k .

(iii) What are the common multiples of the two numbers in the previous example? All
numbers of the form a2a · 3b · 5c · 11d · 13e, where a ≥ 4, b ≥ 7, c ≥ 1, d ≥ 3, e ≥ 1,
times any integer! Hence 24 · 37 · 5 · 113 · 13 is a common multiple, and any other
common multiple is a multiple of it. We say that it is the least common multiple
(lcm) of our two numbers. In general, the lcm of pa11 · · · pakk and pb11 · · · pbkk , with

ai, bi ≥ 0, is p
max{a1,b1}
1 · · · pmax{ak,bk}

k . Since

min{ai, bi}+max{ai, bi} = ai + bi,

we have
hcf(x, y) · lcm(x, y) = x · y,

for any x, y.

(iv) Another proof of the infinitude of primes, due to Erdős (1930):
Let p1, . . . , pk be primes. Any number which is a product of just these primes is of
the form (∗) = pj11 · pj22 · · · pjkk = m2 · pi11 · pi22 · · · pikk where ik = 0, 1. Let M ∈ N. If
a number ≤ M is of the form (∗), then m2 ≤ M , i.e. m ≤

√
M . So there are at

most
√
M · 2k numbers of the form (∗) that are ≤ M .

If M >
√
M · 2k, i.e. M > 4k, then there must be a number ≤ M which is not of

the form (∗), which must have a prime factor not amongst the p1, . . . , pk (because
otherwise we could write it in the form (∗)). The first proof we saw of the infinitude

of primes told us that the k-th prime is < 22
k
. This proof by Erdős tells us that

the k-th prime is < 4k. In fact, we know that the k-th prime is ∼ k log k, by the
Prime Number Theorem.

2.6 Modular Arithmetic

Let n ≥ 2 be a natural number. Then the integers modulo n, written Zn or Z/nZ,
consist of the integers, with two regarded as the same if they differ by a multiple of n.
For example, in Z7, 2 is the same as 16. If x and y are the same in Zn, we write

x ≡ y (mod n) or x ≡ y(n) or x = y in Zn

16



The first two are read as “x is equivalent to y modulo n” and the last one is read in the
obvious way. For example 2 ≡ 16 (mod 7). Thus

x ≡ y (mod n) ⇐⇒ n | x− y

⇐⇒ x = y + kn for some k ∈ Z

17



Similarly to visualising the natural numbers using the number line, we can view Zn

as a circle:

0

1

2

n− 1

n

Remark. If a ≡ a′ (mod n) and b ≡ b′ (mod n), then

n | (a− a′) + (b− b′) = (a+ b)− (a′ + b′) =⇒ a+ b ≡ a′ + b′ (mod n)

Similarly,

n | (a− a′) · b+ a′ · (b− b′) = ab− a′b′ =⇒ ab = a′b′ (mod n).

So we can arithmetic modulo n.

Example. Does 2a2 + 3b3 = 1 have a solution with a, b ∈ Z?

Answer. There are no solutions

Proof. If there is a solution, then 2a2 ≡ 1 (mod 3), but 2 · 02 ≡ 0 2 · 12 ≡ 1, 2 · 22 ≡ 2
(mod 3).

2.7 Solving Congruences

Example. Solve 7x ≡ 2 (mod 10).
We note that 3 · 7 ≡ 1 (mod 10), so 3 · 7x ≡ 3 · 2 (mod 10) hence x ≡ 6 (mod 10).

Given a, b ∈ Z, we say that b is an inverse of a modulo n if ab ≡ 1 (mod n). We say
a is invertible modulo n, or is a unit modulo n, if it has inverse.
For example, in Z10, the inverse of 3 is 7 and both 3 and 7 are units modulo 10.
On the other hand, 4 is not a unit modulo 10 since 4x ̸≡ 1 (mod 10) ∀z ∈ Z.

18



Remarks

If a is a unit modulo n then. . .

(1) Its inverse is unique. Proof: suppose ∃b, b′ such that ab ≡ ab′ ≡ 1 (mod n), then
b ≡ bab ≡ bab′ ≡ b′ (mod n).

(2) We can write a−1 for its inverse.

(3) And ab ≡ ac (mod n) always implies that b ≡ c (mod n) “We cancel units, multi-
plying both sides by a−1.” This is not true in general: 4 · 3 ≡ 4 · 8 (mod 10) but
3 ̸≡ 8 (mod 10).

Proposition. Let p be prime. Then every a ̸≡ 0 (mod p) is a unit modulo p.

Proof. Have (a, p) = 1, so ∃x, y ∈ Z such that ax+py = 1. Hence ax = 1−py, so ax ≡ 1
(mod p) for some x ∈ Z.

Proposition. Let n ≥ 2. Then a is a unit modulo n if and only if (a, n) = 1.

Proof. (a, n) = 1 ⇐⇒ ax+ ny = 1 for some x, y ∈ Z
⇐⇒ ax = 1− ny

⇐⇒ ax ≡ 1 (mod n) for some x ∈ Z.

Corollary 2. If (a, n) = 1, then the congruence ax ≡ b (mod n) has a unique
solution. In particular, if (a, n) = 1, then there is a unique inverse of a, a−1 modulo
n.

What if ax ≡ b (mod n) with (a, n) ̸= 1, say (a, n) = d > 1?
Then n | ax− b so d | ax− b and d | a, so if there is a solution, then d | b.
Conversely, if d | b, then n = d · n′, a = d · a′, b = d · b′, and

ax ≡ b (mod n) ⇐⇒ ax− b = kn for some k ∈ Z
⇐⇒ d · a′ · x− d · b′ = k · d · n′

⇐⇒ a′x− b′ = kn′

⇐⇒ a′x ≡ b′ (mod n′).

Note (a′, n′) = 1.
So if (a, n) = d > 1, the congruence ax ≡ b (mod n) has no solution unless d | b, in
which case the solutions are exactly those of a

dx ≡ b
d (mod n

d ).
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Examples

(1) Solve 7x ≡ 4(30).
We have (7, 30) = 1, so by Euclid 13 · 7 − 3 · 30 = 1. Hence 13 · 7 ≡ 1 (mod 30),
whence x ≡ 4 · 13 ≡ 22 (mod 30).
Suppose x′ is also a solution, that is, 7x′ ≡ 4 (mod 30). Then 7x ≡ 7x′ (mod 30),
so x ≡ x′ (mod 30) since 7 is a unit modulo 30.
Short form:

7x ≡ 4 (mod 30)

⇐⇒ 13 · 7x ≡ 13 · 4 (mod 30)

⇐⇒ x ≡ 22 (mod 30).

(2) Solve 10x ≡ 12 (mod 34).

10x ≡ 12 (mod 34) ⇐⇒ 10x = 12 + 34y for some y ∈ Z ⇐⇒ 5x = 6 + 17y

⇐⇒ 5x ≡ 6 (mod 17)

so now we’re back in situation (1), and solve as before.

2.8 Solving Simultaneous Congruences

Note

x ≡ 5 (mod 12) =⇒

{
x ≡ 1 (mod 4)

x ≡ 2 (mod 3)

Is the converse true, i.e. does x ≡ 1 (mod 4) and x ≡ 2 (mod 3) imply x ≡ 5 (mod 12)?
We inspect:

x ≡ 1 (mod 4) x ≡ 1 5 9 (mod 12)

x ≡ 2 (mod 3) x ≡ 2 5 8 11 (mod 12)

Note that 5 is a common solution.
What about {

x ≡ 1 (mod 4)

x ≡ 2 (mod 6)
?

Theorem ((12) The Chinese Remainder Theorem). Let m, n be coprime, and a, b ∈
Z. Then there is a unique solution modulo mn to the simultaneous congruences

x ≡ a (mod m) and x ≡ b (mod n).

That is, there is a solution x to x ≡ a (mod m) and x ≡ b (mod n), and y is a
solution if and only if x ≡ y (mod mn).
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Proof. Existence: Since (m,n) = 1, ∃s, t ∈ Z with sm+ tn = 1. Note

sm ≡ t (mod n) and tn ≡ 1 (mod m)

sm ≡ 0 (mod m) tn ≡ 0 (mod n).

Hence x = a(tn) + b(sm) ≡ a (mod m) and x = a(tn) + b(sm) ≡ b (mod n).
Uniqueness: Suppose y is also a solution, that is,

y ≡ a (mod m) and y ≡ b (mod n)

⇐⇒ y ≡ x (mod m) and y ≡ x (mod n)

⇐⇒ m | y − x and n | y − x

⇐⇒ mn | y − x since (m,n) = 1

⇐⇒ y ≡ x (mod mn)

Remark. Theorem 12 can be extended, by induction, to more than two moduli: if
m1,m2, . . . ,mk are pairwise coprime, then ∀a1, a2, . . . , ak ∈ Z,

∃x ∈ Z such that x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

We denote by φ(m) the number of integers a such that 1 ≤ a ≤ m and (a,m) = 1, that
is, the number of units modulo n. We call φ the Euler totient function. Define φ(1) = 1.
For example when p is prime, φ(p) = p− 1, and φ(p2) = p2 − p. When p, q are distinct
primes,

φ(pq) = pq − p− q + 1.

How do powers of an integer behave modulo p?

Example. Modulo 7, 21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2 then repeat 4, 1, 2, 4, 1, 2, . . . .
Modulo 11 21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 5, 25 ≡ 10, 26 ≡ 9, 27 ≡ 7, 28 ≡ 3, 29 ≡ 6,
210 ≡ 1, then repeats.

Theorem ((13) Fermat’s Little Theorem). Let p be prime. Then ap ≡ a (mod p)
for all a ∈ Z. Equivalently, ap−1 ≡ 1 (mod p) for all a ̸≡ 0 (mod p).
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Proof. If a ̸≡ 0 (mod p), then a is a unit modulo p. Thus ax ≡ ay (mod p) if and only
if x ≡ y (mod p). Hence the numbers a, 2a, 3a, . . . , (p − 1)a are pairwise incongruent
(distinct) modulo p and ̸≡ 0 (mod p), so they are 1, 2, 3, . . . , p− 1 in some order. Hence

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p)

so
ap−1(p− 1)! ≡ (p− 1)! (mod p)

But (p − 1)! is a unit modulo p (since it is a product of units), so we can cancel it to
obtain

ap−1 ≡ 1 (mod p)

Theorem (Fermat-Euler Theorem). Let (a,m) = 1. Then aφ(m) ≡ 1 (mod m).

Proof. Let U = {x ∈ N : 0 < x < m : (x,m) = 1} be the set of units modulo m. Label
the elements u1, u2, . . . , uφ(m). Then au1, au2, . . . , auφ(m) are all distinct and invertible
modulo m (since a is a unit), and hence they are u1, u2, . . . , uφ(m), in some order.
It follows that

au1 · au2 · · · auφ(m) ≡ u1 · u2 · · ·uφ(m) (mod m)

that is
aφ(m)z = z (mod m)

where z = u1u2 · · ·uφ(m) is a product of units modulo m, whence itself is a unit. We

may cancel it to obtain aφ(m) ≡ 1 (mod m).

What is (p− 1)! modulo p?

Example. When p = 5, 4! = 24 ≡ −1 (mod 5) and when p = 7, 6! = 720 ≡ −1
(mod 7).

Lemma 1 (14). Let p be a prime. Then x2 ≡ 1 (mod p) ⇐⇒ x ≡ ±1 (mod p).

Remark. Modulo 8, 12 = 32 = 52 = 72 = 1, so this lemma is not true in general.

Proof.

x2 ≡ 1 (mod p) ⇐⇒ x2 − 1 ≡ 0 (mod p)

⇐⇒ (x+ 1)(x− 1) ≡ 0 (mod p)
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Recall Euclid’s Lemma: if p is prime and p | ab, then p | a or p | b, so if p is prime, then
ab ≡ 0 (mod p) if and only if a ≡ 0 (mod p) or b ≡ 0 (mod p).
Hence

x2 ≡ 1 (mod p) ⇐⇒ x+ 1 ≡ (mod p) or x− 1 ≡ 0 (mod p)

⇐⇒ x ≡ −1 (mod p) or x ≡ 1 (mod p)

Remark. More generally, a non-zero polynomial of degree k over Zp has at most k
roots in Zp.

Theorem (Wilson’s Theorem). Let p be a prime. Then (p− 1)! ≡ −1 (mod p).

Proof. True for p = 2, so assume p > 2.
Note that the units modulo p come in pairs whose product is 1, together with some
elements that are self inverse, i.e. x such that x ·x ≡ 1 (mod p). But by Lemma 14, the
elements of Zp that are self-inverse are +1 and −1, so the remaining p − 3 elements of
Zp come in inverse pairs.
For example when p = 11 the pairs are (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (10, 10).
Hence (p − 1)! is the product of p−3

2 pairs of inverses together with +1 and −1, so
(p− 1)! ≡ −1 (mod p).

When is −1 a square modulo p? (If ever.)

Example. When p = 5, 22 ≡ 4 ≡ −1 (mod 5). When p = 7, 02 = 0, 11 = 1,
22 = 4, 32 = 2 modulo 7, and we don’t need to check 4, 5, 6 as (−x)2 = x2. So −1
is not a square number modulo 7. When p = 13, 52 ≡ −1 (mod 13). No luck when
p = 19.

Proposition (16). Let p be an odd prime. Then −1 is a square modulo p if and
only if p ≡ 1 (mod 4).

Proof. Suppose p ≡ 1 (mod 4). By Wilson’s Theorem,

−1 ≡ (p− 1)! (mod p)

≡ 1 · 2 · 3 · · ·
(
p− 1

2

)(
−p− 1

2

)
· · · (−3)(−2)(−1) (mod p)

≡ (−1)
p−1
2

((
p− 1

2

)
!

)2

(mod p)
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But if p = 4k + 1 for some k ∈ Z, then

−1 ≡ (−1)2k((2k)!)2 (mod p),

so −1 is a square modulo p.
Suppose, on the other hand, that p ≡ −1 (mod 4), i.e. p = 4k + 3 for some k ∈ Z.
If −1 were a square modulo P , i.e. if there were z ∈ Z such that z2 ≡ −1 (mod p), then
by Fermat’s Little Theorem,

1 ≡ zp−1 ≡ z4k+2 ≡ z2(2k+1) ≡ (−1)2k+1 ≡ −1 (mod p)

a contradiction.

Remark. When p ≡ 1 (mod 4), Wilson’s Theorem tells us a solution to the equa-
tion x2 ≡ −1 (mod p). For example, when p = 29 = 4 · 7 + 1, x = (2 · 7)! works.

2.9 Public Key Cryptography

Let us agree to write messages as sequences of numbers, for example A → 00, B → 01,
. . . , Z → 25, ! → 26, etc.
I wish for my IA students to be able to send me messages in encrypted form in such a
way that I can decrypt them easily but the same is not true of any third-party observer.
We use the RSA Scheme.

RSA Scheme (Rivest, Shamir, Adlemann)

I think of two large primes p, q. Let n = pq, and pick an encoding exponent e coprime
to ϕ(n) = (p− 1)(q − 1).
I publish the pair (n, e).
To send me a message (i.e. a sequence of numbers) you chop it into pieces / numbers
M < n and send me M e (mod n), computed quickly by repeated squaring (binary
exponentiation).

To decrypt, I work out d such that ed ≡ 1 (mod ϕ(n)), i.e. some d such that ed =
kϕ(n) + 1 for some k ∈ Z. Then I compute

(M e)d ≡ Mkϕ(n)+1 ≡ M (mod n)

by Fermat-Euler.

Note that in order to decrypt in this way, needed n and d, or n, e and ϕ(n). Finding
ϕ(n) is as hard as finding the prime factors of n, which is believed to be computationally
hard.
It is not known if RSA can be broken without factorisation.
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CHAPTER III: The Reals

25



1 Motivation

We had seen N ⊂ Z ⊂ Q.
Why not stop here?

Proposition 1. There is no rational x with x2 = 2.

Proof 1. Suppose x2 = 2. Note we can assume x > 0 since (−x)2 = x2. If x is

rational and position, then x = a
b for some a, b ∈ N. Thus a2

b2
= 2, or a2 = 2b2. But the

exponent of 2 in the prime factorisation of a2 is even while the exponent of 2 in the prime
factorisation of 2b2 is odd, contradicting the Fundamental Theorem of Arithmetic.

Note. The same proof shows that if ∃x ∈ Q with x2 = n for some n ∈ N, then n
must be a square.

Proof 2. Suppose x2 = 2 for some x = a
b with a, b ∈ N. Then for any c, d ∈ Z, cx+ d is

of the form e
b for some e ∈ Z. Thus if cx + d > 0, then cx + d ≥ 1

b . But 0 < x − 1 < 1
as 1 < x < 2 so if n is sufficiently large,

0 < (x− 1)n <
1

b

But for any n ∈ N, (x−1)n is of the form cx+d for some c, d ∈ Z, since we can binomially
expand and use x2 = 2. This is a contradiction.

So “Q has a gap”.
How do we express this fact making reference only to Q?

Q
-2 -1 0 1 2

all x such that x2 < 2

2 is an upper bound for the set of x such that x2 < 2, but so is 1.5, and 1.42, . . .

Crucial point. In Q, there is no least upper bound.
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2 Reals

The real numbers, written R are a set with elements 0 and 1 (0 ̸= 1), equipped with
operations + and ·, and an ordering < such that

(1) + is commutative and associative with identity 0, and every x has an inverse under
+;

(2) · is commutative and associative with identity 1, and every x ̸= 0 has an inverse
under ·;

(3) · distributive over +, that is, for all a, b, c ∈ R

a(b+ c) = ab+ ac;

(4) ∀a, b, exactly one of a < b or a = b or a > b holds, and ∀a, b, c,

a < b and b < c =⇒ a < c;

(5) ∀a, b, c, a < b =⇒ a+ c < b+ c and a < b =⇒ ac < bc if c > 0.

(6) Given any set S of reals that is non-empty and bounded above, S has a least upper
bound. (This is known as the least upper bound axiom.)

We say that a set S is bounded above if ∃x ∈ R such that x ≥ y ∀y ∈ S. Such an x is
called an upper bound for S. x is the least upper bound for S if x is an upper bound for
S and every other upper bound x′ satisfies x′ ≥ x.
When x is a least upper bound for S, we may write “LUB(S) = x” or “supremum(S) =
x” or “sup(S) = x”.

Remarks

(i) From (1)-(5), we can check, for example, that 0 < 1. Indeed, if not, then 1 < 0
(0 ̸= 1) so

0 = 1− 1 < 0− 1 = −1

so
0 = 0 · (−1) < (−1)(−1) = 1,

a contradiction.

(ii) We may consider Q as contained in R, by identity a
b ∈ Q with a · b−1 ∈ R.

(iii) Q does not satisfy (6), for example the set of x such that x2 < 2 does not have a
supremum.

(iv) In (6), the words “non-empty” and “bounded above” are crucial:

• If S is empty then every x ∈ R is an upper bound for S, so there is no least
upper bound.
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• If S is not bounded above, then it has no upper bound, and certainly no least
upper bound.

(v) It is possible to construct R “out of” Q and check (1)-(6) hold, but it takes a lot
of effort.

Examples

(1) S = {x ∈ R : 0 ≤ x ≤ 1} = [0, 1] (“the set of x ∈ R such that 0 ≤ x ≤ 1”)

R
-2 -1 0 1 2

Is 2 an upper bound for S? Yes: ∀x ∈ S, x ≤ 2.
Is 3

4 an upper bound for S? No: 7
8 ∈ S and 7

8 > 3
4 .

The least upper bound of S is 1 because

• 1 is an upper bound (as ∀x ∈ S, x ≤ 1)

• every other upper bound y has y ≥ 1 (as 1 ∈ S).

Hence sup(S) = 1.

(2) S = {x ∈ R : 0 < x < 1} = (0, 1)

R
-2 -1 0 1 2

Is 2 an upper bound for S? Yes: ∀x ∈ S, x ≤ 2.
Is 3

4 an upper bound for S? No: 7
8 ∈ S and 7

8 > 3
4 .

We have sup(S) = 1 because

• 1 is an upper bound (as ∀x ∈ S, x ≤ 1);

• no upper bound c is such that c < 1. Indeed, c is certainly greater than 0 (in
fact c ≥ 1

2 since 1
2 ∈ S), so if c < 1, then 0 < c < 1, so c+1

2 ∈ S with 1+c
2 > c.

0 1c

1+c
2

Hence sup(S) = 1.

Remark. If S has a greatest element, then sup(S) = max(S) ∈ S. But sup(S)
can exist when max(S) does not, in which case sup(S) ̸∈ S.

(3) S = {1− 1
n : n ∈ N} = {0, 12 ,

2
3 ,

3
4 , . . . }.
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−1 0 1
R

Clearly 1 is an upper bound. Is there an upper bound < 1?

Proposition 2 (Axiom of Archimedes). N is not bounded above in R.

R
1 2 3 4

Proof. Suppose on the contrary that N is bounded above. Let c = sup(N). By
definition c − 1 is no an upper bound for N, so ∃n ∈ N such that n > c − 1. But
then n + 1 ∈ N with n + 1 > c, contradicting the fact that c was an upper bound.

Corollary 3. For all t > 0, ∃n ∈ N with 1
n < t.

R

0 t1
n

Proof. Given t > 0, by Proposition 2, ∃n ∈ N such that n > 1
t . Hence

1
n < t. A

set S is said to be bounded below if ∃x such that x ≤ y ∀y ∈ S. Such an x is called a
lower bound for S. If S is non-empty and bounded below, then −S = {−y : y ∈ S} is
non-empty and bounded below, then −S = {−y : y ∈ S} is non-empty and bounded
above, so it has a least upper bound, c say. Hence −c is the greatest lower bound of
S. We denote it by “GLB(S)”, or “infimum(S)” or “inf(S)”.
Corollary 3 immediately implies that inf({ 1

n : n ∈ N}) = 0.
Proposition 2 and Corollary 3 show that there are no “infinitely large” or “infinitely
small” numbers in R.

Back to Example (3): we have sup(S) = 1, for suppose c < 1 is an upper bound for
S. Then 1− 1

n < c ∀n ∈ N, so 0 < 1− c < 1
n ∀n ∈ N contradicting Corollary 3.

Theorem (4). There exists x ∈ R with x2 = 2.

Proof. Let S = {x ∈ R : x2 < 2}.

-2 -1 0 1 2
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Note that S is non-empty since for example 1 ∈ S. It is also bounded above, for example
by 2. Hence S has a supremum, which we denote by c, say.
Observe that 1 < c < 2. We claim that c2 = 2. Suppose on the contrary that c2 < 2.
For 0 < t < 1, have

(c+ t)2 = c2 + 2ct+ t2

< c2 + 5t

< 2

for small t (namely, t < 2−c2

5 ). But this contradicts the assumption that c was an upper
bound for S (since c+ t ∈ S). Suppose now that c2 > 2. For 0 < t < 1, have

(c− t)2 = c2 − 3ct+ t2

≥ c2 − 4t

> 2

for small t (namely, t < c2−2
4 ). This contradicts the assumption that c is the least upper

bound for S (since c− t is an upper bound for S).

Remark. The same proof shows that n
√
x exists ∀n ∈ N, ∀x ∈ R, x > 0. (i.e.

∀n ∈ N, ∀x ∈ R, x > 0; ∃y ∈ R such that yn = x.)

A real that is not rational is called irrational. For example,
√
2,

√
3,

√
5,

√
6 are ir-

rational. Also, 2 + 3
√
5 is irrational. Indeed, if 2 + 3

√
5 = a

b with a, b ∈ N, then√
5 = a−2b

3b ∈ Q, ××××.

The rationals are dense in R, in the sense that ∀a < b ∈ R, ∃c ∈ Q with a < c < b.

0 a c b

Indeed, we may assume that a ≥ 0. By corollary 3, ∃n ∈ N with 1
n < b − a. By the

Axiom of Archimedes, ∃N ∈ N such that N > b. Let T = {k ∈ N : k
n ≥ b}, then Nn ∈ T ,

so T ̸= ∅. By the Well-Ordering Principle, T has a least element m. Set c = (m− 1) · 1
n .

Since m−1 ̸∈ T , c < b. If c ≤ a, then m
n = c+ 1

n < a+b−a = b. ××××Hence a < c < b.

Notation. ∅ denotes the empty set.

Notation. For some sets S1 and S2, S1 \ S2 denotes the set of elements in S1 but
not S2.

The irrationals are also dense in R, i.e. ∀a < b ∈ R, ∃c ∈ R \Q with a < c < b. Indeed
take a rational c with a

√
2 < c < b

√
2, then a < c√

2
< b.
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3 Sequences

Definition. A sequence is an enumerated collection of objects in which repetitions
are allowed and order matters. We write a1, a2, a3, . . . or (an)

∞
n=1.

What does it mean for a sequence a1, a2, . . . to tend to a limit ℓ? It is not enough that
the terms an get closer to ℓ, for example, would not want 1

2 ,
3
4 ,

4
5 , . . . to tend to 37.

And it is not enough that the an get arbitrarily close to ℓ, ∀ε > 0, ∃n ∈ N such that
ℓ− ε < an < ℓ+ ε, for example would not want 1

2 , 10,
2
3 , 10,

3
4 , 10, . . . to tend to 1.

We want the sequence to get and stay within ε of ℓ.

Definition (Limits). We say that the sequence a1, a2, a3, . . . tends to the limit
ℓ ∈ R as n tends to infinity if, ∀ε > 0, ∃N ∈ N such that ∀n ≥ N , ℓ−ε < an < ℓ+ε.

ℓ− ε ℓ ℓ+ ε

More compactly: ∀ε > 0,∃N ∈ N such that ∀n ≥ N ,

|an − ℓ| < ε.

Notation. The absolute value |x| of x ∈ R is defined by

|x| =

{
x if x ≥ 0

−x if x < 0
.

We think of |a−b| as the “distance between a and b on the number line”, for example
|2− 9| = |9− 2| = 7. It is easy to check the triangle inequality

|a− b| ≤ |a− c|+ |c− b|.

When an tends to ℓ as n tends to infinity, we also write “an → ℓ as n → ∞” or
“limn→∞ an = ℓ” or “(an)

∞
n=1 converges to ℓ”. If there is a limit ℓ but it is not specified,

we simply say “(an)
∞
n=1 converges”.

If (an)
∞
n=1 does not converge , then we say it diverges.

Examples

(1) 1
2 ,

2
3 ,

3
4 ,

4
5 , . . . , so an = 1 − 1

n . Given ε > 0, choose N > 1
ε (by the Axiom of

Archimedes). If n ∈ N, then

|an − 1| =
∣∣∣∣1− 1

n
− 1

∣∣∣∣ = 1

n
≤ 1

N
< ε.
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Hence an → 1 as n → ∞.

(2) 0, 12 , 0,
1
4 ,

1
6 , . . . defined by

an =

{
1
n n even

0 n odd

Given ε > 0, pick N > 1
ε . If n ≥ N , then

|an − 0| ≤ 1

n
≤ 1

N
< ε.

Hence an → 0 as n → ∞.

(3) 1
2 ,

1
2 + 1

4 ,
1
2 + 1

4 + 1
8 , . . . , and we can verify by induction that an = 1 − 1

2n . Given
ε > 0, choose N > 1

ε . If n ≥ N , then

|an − 1| = 1

2n
≤ 1

n
≤ 1

N
< ε.

Hence an → 1 as n → ∞.

(4) −1, 1,−1, 1,−1, 1, . . . defined by an = (−1)n

−1 0 1

If an does not tend to ℓ, we write “an ̸→ ℓ”. We say that it is divergent (note: it
does not mean “goes off to infinity”).

We implicitly assumed that if a limit exists, then it is unique. We’ll prove this now.
Proof. Suppose an → ℓ and an → k as n → ∞, with l ̸= k. Choose ε = 1

2 |ℓ − k|. Then
∃N ∈ N such that |an − ℓ| < ε ∀n ≥ N and ∃M ∈ N such that |an − k| < ε ∀n ≥ M .
But then for any n ≥ max{N,M},

2ε = |ℓ− k| ≤ |an − ℓ|+ |an − k| < 2ε ××××

A sequence is bounded if there is a real number B such that |an| ≤ B for all n ∈ N.

Notice that a convergent sequence is bounded; for if an → ℓ as n → ∞, then ∃N ∈ N
such that ∀n ≥ N , |an − ℓ| < 1. Hence |an| ≤ max{|a1|, |a2|, . . . , |aN−1|, |ℓ|+ 1}.

We say a sequence (an)
∞
n=1 is monotonic if it is either increasing or decreasing. It is

increasing if an+1 ≥ an ∀n ∈ N.

Theorem (5). Every bounded monotonic sequence converges.

32



Proof. Suppose (an) is increasing. Then the set {an : n ≥ 1} is non-empty and is bounded
above (because (an) is bounded), so it has a supremum ℓ, say. Given ε > 0, ℓ− ε is no
an upper bound for {an : n ≥ 1}, so there is some N ∈ N with aN > ℓ− ε ∀n ≥ N. Thus
ℓ− ε < an < ℓ ∀n ∈ N. Hence for all n ≥ N , |an − ℓ| < ε, so an → ℓ. Decreasing case is
similar.

Remarks

(1) Note that for an increasing sequence to converge, we only need to know that it is
bounded above.

(2) The sequence (an) with an = n is increasing but not bounded (and in fact, it
diverges).

(3) Theorem 5 is in fact equivalent to the least Upper Bound Axiom.

(4) Can show that every sequence has a monotonic subsequence.

Proposition (6). If an ≤ d ∀n and an → c as n → ∞, then c ≤ d.

Proof. Suppose c > d. Let ε = |c − d|. Then ∃N ∈ N such that ∀n ≥ N , |an − c| < ε.
But |an − c| < ε =⇒ an > d. ××××

Remark. If an < d ∀n and an → c as n → ∞, we need not have c < d. For
example, 1

2 ,
1
2 + 1

4 ,
1
2 + 1

4 + 1
8 , . . . Each term is < 1, but limn→∞ an = 1.

Proposition (6). If an → c as n → ∞ and bn → d as n → ∞, then an+ bn → c+ d
as n → ∞.

Proof. Given ε > 0 ∃N ∈ N such that ∀n ≥ N , |an − c| < ε
2 and ∃M ∈ N such that

∀n ≥ M , |bn − d| < ε
2 . Choose N∗ = max{M,N}. Then ∀n ≥ N∗,

|an + bn − (c+ d)| ≤ |an − c|+ |bn − d|

≤ ε

2
+

ε

2
= ε
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3.1 Series

In the reals, the sum of two numbers is defined, so by induction, finite sums are defined.
But infinite sums are not! Nevertheless, for example

1− 1

2
+

1

3
− 1

4
+

1

5
− · · · = log 2.

Let (an) be a sequence. Then sk =
∑k

n=1 an is the k-th partial sum of the series whose
n-th term is an. We write

∑∞
n=1 an = limk→∞ sk if the limit exists.

Examples

(1) The series whose n-th term is an = rN , for some |r| < 1, is known as the geometric
series.

sk = r + r2 + r2 + · · ·+ rk

= r · 1− rk

1− r

→ r

1− r

as k → ∞ since rk → 0. Hence
∑∞

n=1 r
n = r

1−r .

(2) The series whose n-th term is given by an = 1
n is known as the harmonic series.

sk = 1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
each ≥ 1

4

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
each ≥ 1

8

+
1

9︸︷︷︸
≥ 1

16

+ · · ·+ 1

2k

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+ · · ·+ 1

2k

In general,
1

2m + 1
+

1

2m + 2
+ · · ·+ 1

2m+1
≥ 2m

2m+1
=

1

2
.

Hence S2k ≥ 1 + k
2 . So the partial sums are increasing and unbounded, so

∑∞
n=1

1
n

diverges.

(3) an = 1
n2

S2k−1 = 1 +
1

22
+

1

32︸ ︷︷ ︸
≤2· 1

22

+
1

42
+

1

52
+

1

62
+

1

72︸ ︷︷ ︸
≤4· 1

42

+ · · ·+ 1

(2k − 1)2

In general,

1

(2m)2
+

1

(2m + 1)2
+ · · ·+ 1

(2m+1 − 1)2
≤ 2m

(2m)2
=

1

2m
,
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so

s2k−1 ≤ 1 +
1

2
+

1

22
+ · · ·+ 1

2k−1
< 2

by example (1). By Theorem 5,
∑∞

n=1
1
n2 converges as partial sums increasing and

bounded above. In fact
∑∞

n=1
1
n2 = π2

6 .

3.2 Decimal Expansions

Let (dn) be a sequence with dn ∈ {0, 1, 2, . . . , 9}. Then
∑∞

n=1
dn
10n converges to some

limit r, where 0 ≤ r < 1, because the partial sums sm =
∑m

n=1
dn
10n are increasing and

bounded by
∞∑
n=1

9

10n
=

9

10
· 1

1− 1
10

= 1.

We say that 0.d1d2d3 . . . is the decimal expansion of r.

Does every x, 0 ≤ x < 1, have a decimal expansion?

Pick d1 ∈ Z maximal such that d1
10 ≤ x < 1. Then d1 ≤ 9 because x < 1 and x− d1

10 < 1
10

because d1 maximal. Now pick d2 ∈ Z maximal such that

d2
100

≤ x− d1
10

.

Then d2 ≤ 9 because x− d1
10 < 1

10 and

x− d2
10

− d2
100

<
1

100

because d2 maximal. Inductively, pick dn ∈ Z maximal with

dn
10n

≤ x−
n−1∑
j=1

dj
10j

so 0 ≤ x−
∑n

j=1
dj
10j

< 1
10n . Since

1
10n → 0 as n → ∞, x−

∑n
j=1

dj
10j

→ 0, i.e.

x =
∞∑
j=1

dj
10j

= 0.d1d2d3 . . .

Remarks

(1) Decimal expansions need not be unique, e.g. 0.47999 · · · = 0.48000 . . .
Suppose 0.a1a2a3 · · · = 0.b1b2b3 . . . . We may suppose aj = bj for j < K for some K
and aK < bK . Then

∞∑
j=k+1

aj
10j

≤
∞∑

j=k+1

9

10j
=

9

10k+1
· 1

1− 1
10

=
1

10k
.

Hence we must have bk = ak + 1 and aj = 0, bj = 0 ∀j > K.
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(2) A decimal expansion is periodic if, after a finite number of terms, say l digits, it
repeats in blocks, of length k say, i.e. ∃l, k such that dn+k = dn ∀n > l.

A periodic decimal is rational, for example

x = 0.7832147147147147 . . .

104x− 7832 = 0.147147147147 . . .

= 147
∞∑
j=1

1

103j

= 147 · 1

103
· 1

1− 1
103

so x ∈ Q.

Conversely, if x ∈ Q, then x has a periodic decimal expansion. To see this, we write
x = p

2a5bq
where a, b, p, q ∈ Z, a, b, q ≥ 0, (q, 10) = 1. Then 10max(a,b)x = t

q = n = c
q ,

where n ∈ Z, c ∈ Z and 0 ≤ c < q. By Fermat-Euler, 10ϕ(q) ≡ 1 (mod q) or
10ϕ(q) − 1 = kq for some k ∈ N. Hence

c

q
=

kc

kq
=

kc

10ϕ(q) − 1
= kc

∞∑
j=1

1

(10ϕ(q))j

Since 0 ≤ kc < kq, we can write kc as a ϕ(q)-digit number d1d2 . . . dϕ(q). Then

c

q
= 0.d1d2 . . . dϕ(q)d1d2 . . . dϕ(q)d1 . . .

and so x is periodic.

3.3 Euler’s number e

Define

e = 1 +
1

1!
+

1

2!︸︷︷︸
= 1

2

+
1

3!︸︷︷︸
≤ 1

4

+
1

4!︸︷︷︸
≤ 1

8

+ · · ·

Note that by Theorem 5 this series converges, because the partial sums are increasing
and bounded by

1 + 1 +
1

2
+

1

4
+

1

8
+ · · · = 3

If we define 0! = 1, then

e =

∞∑
j=0

1

j!
.
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Proposition (7). e is irrational.

Proof. Suppose e were rational, i.e. e = p
q where p, q ∈ N and q > 1 since 2 < e < 3.

Then q!e ∈ N. But

q!e = q! +
q!

1!
+

q!

2!
+

q!

3!
+ · · ·+ q!

q!︸ ︷︷ ︸
∈N

+
q!

(q + 1)!
+

q!

(q + 2)!
+ · · ·︸ ︷︷ ︸

show: < 1

= N + x

where

x =
∞∑

j=q+1

q!

j!

=
∞∑
j=1

q!

(q + j)!

=
1

q + 1
+

1

(q + 1)(q + 2)︸ ︷︷ ︸
≤ 1

(q+1)2

+
1

(q + 1)(q + 2)(q + 3)︸ ︷︷ ︸
≤ 1

(q+1)3

+ · · ·

an in general q!
(q+j)! ≤

1
(q+1)j

, so

x ≤ 1

q + 1
+

1

(q + 1)2
+

1

(q+)3
+ · · · = 1

q
< 1

as q ≥ 2. Hence 0 < x < 1, contradicting that q!e ∈ N, so e is irrational.

We say a real number x is algebraic if it is a root of a (non-zero) polynomial with integer
coefficients (or rational coefficients - same thing!).

Examples

(1) Every rational number is algebraic:

x =
p

q
=⇒ qx− p = 0

(2)
√
2 is algebraic: it satisfies x2 − 2 = 0.

A real number is transcendental if it is not algebraic.

Theorem ((9) Liouville 1851). The number L =
∑∞

n=1
1

10n! is transcendental.

We will need two facts about polynomials.
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Lemma (Fact A). For any polynomial p, ∃ constant K such that

|p(x)− p(q)| ≤ K|x− y| ∀0 ≤ x, y ≤ 1.

Proof. Suppose
p(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0.

Then

p(x)− p(y) = ad(x
d − yd) + ad−1(x

d−1 − yd−1) + · · ·+ a1(x− y)

= (x− y)[ad(x
d−1 + xd−2y + · · · yd−1) + · · · a1]

so
|p(x)− p(y)| ≤ |x− y|[(|ad|+ |ad−1|+ · · ·+ |a1|) · d].

Lemma (Fact B). A non-zero polynomial of degree d has at most d roots.

Proof. Given a polynomial p of degree d, we may assume that the fact holds for all
polynomials of degree < d and that p has a root a, say (otherwise we’re done). By long
division, we may write

p(x) = (x− a)q(x)

for some polynomial q of degree d− 1. So each root of p is either a or a root of q. But
by the induction hypothesis, q has at most d− 1 roots.

Proof of Theorem 9. Write

Ln =
n∑

k=0

1

10k!

so Ln → L. Suppose there is a polynomial p of which L is a root. Then by Fact A, there
exists K such that |p(x)− p(y)| ≤ K|x− y| ∀0 ≤ x, y ≤ 1. Note

|L− Ln| =
∞∑
k=n

1

10k!
≤ 2

10(n+1)!
.

Suppose p has degree d, i.e. p(x) = adx
d+ad−1x

d−1+ · · ·+a1x+a0 with ai ∈ Z, ad ̸= 0.
Notice that

Ln =
s

10n!

for some s ∈ N, so p(Ln) =
t

10dn! for some t ∈ N. By Fact B, for sufficiently large n, Ln

is not a root of p. Hence

|p(Ln)| ≥
1

10dn!
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i.e. |p(Ln)− p(L)| ≥ 1
10dn! . Therefore

1

10dn!
≤ K

2

10(n+1)!
.

a contradiction for sufficiently large n.

Remarks

(1) The same proof shows that any real number x such that ∀n ∈ N, ∃ rational p
q with

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qn

is transcendental.
“x has a very god rational approximation =⇒ transcendental”

(2) Such x are known as Liouville numbers.

(3) This proof does not show that e is transcendental, but in fact it is.

(4) We will give another proof of the existence of transcendental numbers in Chapter
IV.

3.4 Complex Numbers

Since polynomials have no real roots, e.g. x2 + 1. We will try to define x with x2 = −1
“into existence”.

R

(0, 1) = i
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Definition (Complex numbers). The complex numbers, written C, consist of R2

(the set of all ordered pairs (a, b) with a, b ∈ R) together with operations + and ·
defined by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc)

We can view R as contained in C by identifying a ∈ R with (a, 0) ∈ C. Note that

(a, 0) + (b, 0) = (a+ b, 0)

(a, 0) · (b, 0) = (ab, 0)

Now let i = (0, 1). Then

i2 = (0, 1) · (0, 1) = (−1, 0).

Note that every z ∈ Z is of the form a = bi with a, b ∈ R. Indeed,

(a, b) = a(1, 0) + b(0, 1) = a+ bi.

Remarks

(1) C obeys all the usual rules of arithmetic. In particular, it obeys (1)-(3) as set out
for R, including that ∀z ̸= 0, ∃w such that zw = 1. Indeed, given z = a + bi, note
that

(a+ bi)(a− bi) = a2 + b2 =⇒ (a+ bi)
a− bi

a2 + b2
= 1.

A structure obeying rules (1)-(3) is called a field, e.g. C, R, Q, Zp with p a prime,
but not Z!

(2) Every non-zero polynomial (even allowing complex coefficients) has a root in C. This
is known as the Fundamental Theorem of Algebra.
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CHAPTER III: Sets, Functions and Relations
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4 Sets, Functions and Relations

A set is a collection of mathematical objects. For example R, N, {1, 5, 9}, [−2, 3]. The
order of elements in the set is immaterial, and elements are only counted once. For
example

{1, 3, 7} = {1, 7, 3} and {3, 4, 48} = {3, 4, 8}.

We write x ∈ A if x is an element of the set A, and x ̸∈ A if not. Two sets are equal
if they have the same elements. That is, if ∀x, x ∈ A ⇐⇒ x ∈ B, then A = B. In
particular, there is only one empty set ∅. A set B is a subset of A, written “B ⊆ A” or
“B ⊂ A”, if every element of B is an element of A.

AB

B is said to be a proper subset of A if B ⊆ A and B ̸= A (also write B ⊊ A).
Note that A = B if and only if A ⊆ B and B ⊆ A. If A is a set and P is a property of
(some) elements of A, we can write {x ∈ A : P (x)} for the subset of A comprising those
elements for which P (x) holds. For example {n ∈ N : n is prime} = {2, 3, 5, 7, 11, . . . } ⊆
N.
If A and B are sets, then their union A ∪B is

A ∪B = {x : x ∈ A or x ∈ B}

A B

Their intersection A ∩B is defined to be

A ∩B = {x : x ∈ A and x ∈ B}.

A B
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We say A and B are disjoint if A ∩ B = ∅. Note that we can view intersection as a
special case of subset selection:

A ∩B = {x ∈ A : x ∈ B}.

Similarly, have the set difference A \B = {x ∈ A : x ̸∈ B}. “A but not B” or “A minus
B”.

A B

Note that ∪ and ∩ are commutative and associative. Also, ∪ is distributive over ∩, i.e.

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

and ∩ is distributive over ∪, i.e.

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

To prove A∩ (B ∪C) = (A∩B)∪ (A∩C), show that LHS ⊆ RHS and RHS ⊆ LHS,
so LHS = RHS.
If x ∈ A∩ (B∪C), then x ∈ A and x ∈ B∪C, so x ∈ A and (x ∈ B or x ∈ C). If x ∈ B,
then x ∈ A∩B, and if x ∈ C, then x ∈ A∩C. Hence, in any case, x ∈ (A∩B)∪ (A∩C).
Conversely, if x ∈ (A ∩ B) ∪ (A ∩ C), then x ∈ A ∩ B or x ∈ A ∩ C. If x ∈ A ∩ B,
then x ∈ A and x ∈ B ∪ C. If x ∈ A ∩ C, then x ∈ A and x ∈ B ∪ C, so in any case
x ∈ A ∩ (B ∪ C).

If A1, A2, A3, . . . are sets, then

∞⋂
n=1

An = A1 ∩A2 ∩A3 ∩ · · ·

= {x : x ∈ An for all n ∈ N}

Similarly,

∪∞
n=1An = A1 ∪A2 ∪A3 ∪ · · ·

= {x : x ∈ An for some n ∈ N}

Remark. ∪∞
n=1An is not the “limit” of anything!
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More generally, given an index set I and a collection of sets Ai indexed by I, we write⋂
i∈I

Ai = {x : x ∈ Ai ∀i ∈ I}

and
∪i∈IAi = {x : x ∈ Ai for some i ∈ I}.

Given sets A and B, we can form their Cartesian product

A×B = {(a, b) : a ∈ A, b ∈ B},

which is the set of ordered pairs (a, b) with a ∈ A, b ∈ B. Here (a, b) = (a′, b′) ⇐⇒ a =
a′ ∧ b = b′. [Note we can define (a, b) = {a, {a, b}}]. We can extend to ordered triples
and so on, for example

R3 = R× R× R
= {(x, y, z) : x ∈ R, y ∈ R, z ∈ R}

For any set X, can form the power set P(X) consisting of all subsets of X, that is,

P(X) = {Y : Y ⊆ X}

For example, if X = {1, 2}, then P(X) = {∅, {1}, {2}, {1, 2}}.

Remark. Given a set A, we can form {x ∈ A : P (c)} for any property P . But we
cannot form {x : P (X)}. Indeed suppose

X = {x : x is a set and x ̸∈ x}

were a set. Then X ∈ X implies that X ̸∈ X ×××× , but X ̸∈ X implies that X ∈ X
×××× . This is known as Russell’s Paradox. Similarly, there is not ‘universal’ set Y ,

meaning that ∀x, x ∈ Y . Otherwise we could form X above by subset selection:

X = {x ∈ Y : x ̸∈ x}.

Moral. To guarantee that a given set exists, it should be obtained from known sets
(e.g. N, R) in one of the ways described above.

4.1 Finite Sets

Write
N0 = N ∪ {0} = {0, 1, 2, 3, . . . }

Given n ∈ N0, we say a set A has size n if we can write A = {a1, a2, . . . , an} with the
elements ai distinct. For example, {1, 3, 7} has size 3, ∅ has size 0.

We say A is finite if ∃n ∈ N0 such that A has size n, and A is infinite otherwise.
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Proposition 1. A set of size n has exactly 2n subsets.

Proof 1. May assume that our set is {1, 2, . . . , n}. To specify a subset S of {1, 2, . . . , n}
we must say if 1 ∈ S or 1 ̸∈ S, then if 2 ∈ S or 2 ̸∈ S, and so on. Hence the number of
choices for S is

2︸︷︷︸
1∈S?

· 2︸︷︷︸
2∈S?

· 2︸︷︷︸
3∈S?

· · · 2︸︷︷︸
n∈S?

= 2n.

Proof 2. By induction on n. Clearly true for n = 0. Given n > 0, and T ⊆ {1, 2, . . . , n−
1}, how many S ⊆ {1, 2, . . . , n} are there such that S ∩ {1, . . . , n − 1} = T? There are
exactly 2, namely T and T ∪ {n}. Hence the number of subsets of {1, 2, . . . , n} is

2× number of subsets of {1, 2, . . . , n− 1} = 2 · 2n−1 = 2n

If A has size n we write “|A| = n” or “#A = n”.
So Proposition 1 says that |A| = n =⇒ |P(A)| = 2n.

Given n ∈ N0 and 0 ≤ k ≤ n, we write
(
n
k

)
“n choose k” for the number of subsets of an

n-element set that are of size k. In other words,(
n

k

)
= |{S ⊆ {1, 2, . . . , n} : |S| = k}|.

(
n
k

)
is called a binomial coefficient. For example, the subsets of size 2 of {1, 2, 3, 4} are

precisely
{1, 2}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

so
(
4
2

)
= 6. Note that by definition

(
n
0

)
= 1,

(
n
n

)
= 1,

(
n
1

)
= n (n > 0) and also(

n

0

)
+

(
n

1

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n.

Also, we have
(
n
k

)
=

(
n

n−k

)
∀n ∈ N0, 0 ≤ k ≤ n. For example

(
8
3

)
=

(
8
5

)
. Indeed,

specifying which k elements to pick is the same as specifying which n− k elements not
to pick. Moreover,(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
∀n ∈ NN, 1 ≤ k ≤ n− 1.

For example,
(
8
3

)
=

(
7
2

)
+

(
7
3

)
. Indeed, the number of subsets of {1, 2, . . . , n} of size k

that do not include n is
(
n−1
k

)
, while the number of subsets of {1, 2, . . . , n} of size k that
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do include n is
(
n−1
k−1

)
.

We obtain Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

· · ·

The n-th row contains the numbers
(
n
k

)
. Each row starts and ends with a 1, and the

remaining entries are the sum of the two terms immediately above.

Proposition 2.(
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · 2 · 1
=

n!

k!(n− k)!
.

Proof. Given a set of size n, there are n(n−1)(n−2) · · · (n−k+1) ways to pick k elements,
one by one, in order. But each subset of size k is picked in k(k − 1)(k − 2) · · · 2 · 1 ways
by this method. Hence the number of subsets of size k in {1, 2, . . . , n} is

n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1)(k − 2) · · · 2 · 1
.

Note that the formula tells us, for example, that(
n

2

)
=

n(n− 1)

2
∼ n2

2(
n

3

)
=

n(n− 1)(n− 2)

6
∼ n3

6

for large n.

Theorem 2 (Binomial Theorem). For all a, b ∈ R, n ∈ N

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an− 2b2 + · · ·+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn.

Proof. When we expand

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)
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we obtain terms of the form an−kbk (0 ≤ k ≤ n) and the number of terms of the form
an−kbk is

(
n
k

)
as we must specify k brackets from which to pick b. Hence

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk.

Example.

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 +

(
n

3

)
x3 + · · ·+

(
n

n− 1

)
xn−1 + xn

so for small x, a good approximation to (1+x)n is 1+nx, for example (1.00001)8 ≈
1.00008. A better approximation is 1 + nx + n(n−1)

2 x2, for example (1.00001)8 ≈
1.00008 + 28(0.00001)2.

What can we say about the relationship between sizes of unions and intersections of
finite sets?
For example

|A ∪B| = |A|+ |B| − |A ∩B|

Also,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|.

Theorem (Inclusion-Exclusion Principle). Let S1, S2, . . . , Sn be finite sets. Then

|S1 ∪ S2 ∪ · · · ∪ Sn| =
∑
|A|=1

|SA| −
∑
|A|=2

|SA|+
∑
|A|=3

|SA| − · · ·+ (−1)n+1
∑
|A|=n

|SA|,

where SA =
⋂

i∈A Si and
∑

|A|=k is taken over all A ⊆ {1, 2, . . . , n} of size k.
Equivalently,

| ∪n
i=1 Si| =

n∑
k=1

(−1)k+1
∑

A⊆{1,2,...,n}
|A|=k

∣∣∣∣∣⋂
i∈A

Si

∣∣∣∣∣ .

Proof. Let x ∈ S1 ∪ S2 ∪ · · · ∪ Sn, say x ∈ Si for k of the Si. We want x to be counted
exactly once in the RHS. Indeed,

#{A : |A| = 1 with x ∈ SA} = k,

and

#{A : |A| = 2 with x ∈ SA} =

(
k

2

)
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and in general,

#{A : |A| = r with x ∈ SA} =

(
k

r

)
for r ≤ k, and = 0 for r > k. Thus the number of times x is counted on the RHS is

k −
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)k+1

(
k

k

)
= 1−

(
1− k +

(
k

2

)
−
(
k

3

)
+ · · · − (−1)k+1

(
k

k

))
= 1− (1− 1)k

= 1

for k ≥ 1 (and k = 0 doesn’t happen since x is in the union).

4.2 Functions

Given sets A and B, a function f from A to B is a “rule” that assigns to every x ∈ A a
unique element f(x) ∈ B.

More formally, a function from A to B is a subset f ⊆ A × B such that for all x ∈ A,
there is a unique y ∈ B such that (x, y) ∈ f .
If f is a function from A to B, we write f : A → B. If (x, y) ∈ f , we can write f(x) = y
or x 7→ y.

Examples

(1) f : R → R, x 7→ x2 is a function.

(2) f : R → R, x 7→ 1
x is not a function (f(0) =?)

(3) f : R → R, x 7→ ±
√

|x| is not a function.

(4) f : R → R, x 7→

{
1 if x is rational

0 otherwise
is a function.

(5) f : {1, 2, 3, 4, 5} → {1, 2, 3, 4} given by

1

2

3

4

5

1

2

3

4
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(6) f : {1, 2, 3} → {1, 2, 3}

1

2

3

1

2

3

(7) f : {1, 2, 3} → {1, 2, 3, 4}

1

2

3

1

2

3

4

(8) f : {1, 2, 3, 4} → {1, 2, 3}

1

2

3

4

1

2

3

We say f : A → B is injective if ∀a, a′ ∈ A, a ̸= a′ =⇒ f(a) ̸= f(a′). Equivalently, f
is injective if f(a) = f(a′) =⇒ a = a′. Examples (5) and (8) are not injective, but (6)
and (7) are.

We say f : A → B is surjective if ∀b ∈ B, ∃a ∈ A such that f(a) = b. Examples (5) and
(7) are not surjective, but (6) and (8) are.

We say f : A → B is bijective if it is both injective and surjective. Example (6) is the
only bijection. If f : A → B is a bijection, then everything in B is “hit” exactly once
(that is, f pairs the elements of A and B). A permutation of A is a bijection A → A.

49



Given f : A → B, we say A is the domain of f and B is its range. The image of f
is the set f(A) = {f(a) : a ∈ A} = {b ∈ B : f(a) = b for some a ∈ A}. The image
of f is also sometimes denoted Im(f). For example, if f : R → R, x 7→ x2, then
Im(f) = {y ∈ R : y ≥ 0}.

When specifying a function we must specify its domain and range. For example “Is the
function f(x) = x2 injective?” is meaningless, as f : N → N, x 7→ x2 is injective, but
f : Z → Z, x 7→ x2 is not.

Observations

(1) f is surjective if and only if f(A) = B. In particular, if |B| > |A| then there can be
not surjection from A to B.

(2) There can be no injection from A to B is |A| > |B|.

(3) If f : A → A, then f is injective if and only if f is surjective.

(4) There is no bijection from A to any proper subset of A.

Note that (3) and (4) do not hold for infinite sets:

(a) f : N → N, x 7→ x+ 1 is injective but not surjective.

1

2

3

4

...

1

2

3

4

...

N N

(b) g : N → N, x 7→

{
x− 1 if x ̸= 1

1 if x = 1
is surjective but not injective.
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1

2

3

4

...

1

2

3

4

...

N N

(c) h : N → N \ {1}, x 7→ x+ 1 is a bijection from N to a proper subset.

1

2

3

4

...

2

3

4

5

...

N N \ {1}

Further Examples

(i) For any set X, we have the identity function idX : X → X, x 7→ x.

(ii) Given a set X and A ⊆ X, we have the indicator function (or characteristic

function) of A, 1A : X → {0, 1}, x 7→

{
1 if x ∈ A

0 if x ̸∈ A

(iii) A sequence of reals x1, x2, . . . , is a function N → R, n 7→ xn.

(iv) The operation + on N is a function N× N → N, (a, b) 7→ a+ b.

(v) A setX has size n if and only if there is a bijection {1, 2, . . . , n} → X = {a1, . . . , an},
i 7→ ai.

Given f : A → B and g : B → C, the composition g ◦ f : A → C is defined by
a 7→ g(f(a)).

Notation. The notation “g ◦ f” can be read as “g composed with f”, or “g circle
f” or “g after f”.
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For example if f : R → R, x 7→ 2x and g : R → R, x 7→ x+ 1 then g ◦ f(x) = g(f(x) =
g(2x) = 2x + 1 and f ◦ g(x) = f(g(x)) = f(x + 1) = 2(x + 1). So in general, ◦ is not
commutative. In the example above, f ◦ g ̸= g ◦ f since f ◦ g(1) = 4 ̸= 3 = g ◦ f(1).

However, ◦ is associative, i.e. given f : A → B, g : B → C, h : C → D, we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f . Indeed, for every x ∈ A,

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x)))

and
((h ◦ g) ◦ f)(x) = h ◦ g(f(x)) = h(g(f(x))).

We may therefore drop the brackets and write h ◦ g ◦ f without ambiguity.

We say f : A → B is invertible if ∃g : B → A such that g ◦ f = idA and f ◦ g = idB.

Example. f : R → R, x 7→ 2x+ 1 and g : R → R, x 7→ x−1
2 . Indeed, ∀x ∈ R,

(g ◦ f)(X) = g(2x+ 1) =
2x+ 1− 1

2
= x

so g ◦ f = idR. Also, ∀x ∈ R,

(f ◦ g)(x) = f

(
x− 1

2

)
= 2

(
x− 1

2

)
+ 1 = x,

so f ◦ g = idR. Hence f is invertible with inverse g.

Note. For f : N → N, x 7→ x+ 1 and g : N → N, x 7→

{
x− 1 if x ̸= 1

1 if x = 1
. We have

g ◦ f = idN but f ◦ g ̸= idN because f ◦ g(1) ̸= 1.

We had said f : A → B is invertible if ∃g : B → A such that g ◦f = idA and f ◦g = idB.

Given f : A → B, when is there a map g : B → A such that g ◦ f = idA? If such a g
exists, and a, a′ ∈ A are such that f(a) = f(a′), then gf(a) = gf(a′), so a = a′. Thus
f must be injective. Conversely, if f is injective, we can find g such that g ◦ f = idA:
b ∈ f(A), let g(b) = a, where a is the unique element of A with f(a) = b; if b ̸∈ f(A),
let g(b) be anything you like.

Given f : A → B, when is there a map g : B → A such that f ◦ g = idB? We need
f(g(B)), so f must be surjective. Conversely, if f is surjective, we can find f : B → A
with f ◦ g = idB: for each b ∈ B, pick some a ∈ A with f(a) = b and put g(b) = a.

It follows that f : A → B is invertible if and only if f is bijective. We write f−1 : B → A
for the inverse of f when it exists.
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Note. Given f : A → B and U ⊆ B, we sometimes write

f−1(U) = {a ∈ A : f(a) ∈ U}

for the preimage of U . This does not mean that f has an inverse!

4.3 Relations

A relation on a set X is a subset R ⊆ X×X. We usually write aRb for (a, b) ∈ R. (This
is read as “a is related to b”.)

Examples

of relations on N.

(i) aRb if a, b have the same final digit;

(ii) aRb if a | b;

(iii) aRb if a ̸= b;

(iv) aRb if a = b = 1;

(v) aRb if |a− b| ≤ 3;

(vi) aRb if either a, b ≤ 4 or a, b ≥ 5.

There are three properties that a relation might have that are of special interest:

• R is reflexive if ∀x ∈ X, xRx.

• R is symmetric if x, y ∈ X, xRy =⇒ yRx.

• R is transitive if ∀x, y, z ∈ X, xRy and yRz =⇒ xRz.

Example 1 2 3 4 5 6

reflexive ✓ ✓ ✗ ✗ ✓ ✓

symmtric ✓ ✗ ✓ ✓ ✓ ✓

transitive ✓ ✓ ✗ ✓ ✗ ✓

A relation R is an equivalence relation if it is reflexive, symmetric and transitive. We
often write a ∼ b for aRb. So (1) and (6) are equivalence relations. We have already
seen another one:

(7) X = Z with a ∼ b if a ≡ b (mod 5).
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This equivalence relation partitions Z into “pieces” consisting of related elements, namely

{x ∈ Z : x ≡ 0 (mod 5)}, {x ∈ Z : x ≡ 1 (mod 5)}, . . . , {x ∈ Z : x ≡ 4 (mod 5)}.

Given a set X a partition of X is a collection of pairwise disjoint subsets (called “parts”)
whose union is X.

If ∼ is an equivalence relation on X, then the equivalence class of x ∈ X is

[x] = {y ∈ Y : y ∼ x}.

For example in (1), [376] = {all natural numbers ending in 6}. In (7), [12] = {y : y ≡ 2
(mod 5)}.

Observation. Given a partition of X, there is an equivalence relation R whose
equivalence classes are precisely the parts of the partition: just define a ∼ b if a and
b lie in the same part.

Theorem 5. Let ∼ be any equivalence relation on X. Then the equivalence classes
form a partition of X.

Proof. Since ∼ is reflexive, we have x ∈ [x] ∀ x ∈ X. Thus⋃
x∈X

[x] = X.

It remains to show that ∀x, y ∈ X, either [x]∩ [y] = ∅ or [x] = [y]. Suppose [x]∩ [y] ̸= ∅,
and let z ∈ [x]∩ [y]. Then z ∼ x, so by symmetry x ∼ z, and z ∼ y. Thus by transitivity,
x ∼ y. Let now w ∈ [y], so y ∼ w. Since x ∼ y and y ∼ w, by transitivity, x ∼ w. Thus
w ∈ [x]. Hence if [x] ∩ [y] ̸= ∅, then [y] ⊆ [x].
This is a useful viewpoint: it is now easy to see that there is an equivalence relation

on N with 3 equivalence classes, of which 2 are infinite and 1 is finite - simply take a
partition of N with this property.

Given an equivalence relation R and a set X, the quotient of X by R is

X/R = {[x] : x ∈ X}.

For example in (7), X/R has size (5), in (1), X/R has size 10. In fact, this explains why
we sometimes write Z/5Z instead of Z5. The map q : X → X/R, x 7→ [x] is the quotient
map (or projection map).

Another example on Z× N, define (a, b)R(c, d) if ad = bc. It is easy to see that is an
equivalence relation. For example

[(1, 2)] = {(1, 2), (2, 4), (3, 6), . . . }

so we could regard Z × N/R as a copy of Q, by identifying [(a, b)] with a
b ∈ Q. The

quotient map q : Z× N → Z× N/R, (a, b) 7→ a
b .
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5 Countability

We would like to talk about sizes of infinite sets, for example N “looks smaller than” Z,
and a lot smaller than Q, which in turn looks smaller than R.

We say a set X is countable if X is finite or there is a bijection X → N. That is, X is
countable if and only if we can list the elements of X as x1, x2, x3, . . . (might terminate).

Examples

(1) Any finite set is countable.

(2) N is countable.

(3) Z is countable, as we may list Z as

0, 1,−1, 2,−2, 3, . . .

i.e.

xn =

{
n
2 if n is even

−n−1
2 if n is odd

Lemma 1. Any subset of N is countable

Proof. If S ⊆ N is non-empty, by Well Ordering Principle there is a least element s1 ∈ S.
If S \ {s1} ≠ ∅, by Well Ordering Principle there is a least element s2 ∈ S \ {s1}. If
S \ {s1, s2} ≠ ∅, . . .
If at some point this process stops, then S = {s1, s2, . . . , sm} is finite. If it goes on
forever, the map g : N → S given by g(n) = sn is well-defined (for every n, there is a
unique sn) and is injective. It is also surjective because if k ∈ S, then k ∈ N, and there
are < k elements of S less than k, so k = sn for some n ≤ k.

Remark. In R, let

S =

{
1

2
,
2

3
,
3

4
, . . .

}
∪ {1},

then S is countable as we can list it as

1,
1

2
,
2

3
,
3

4
, . . .

but if we had tried to list the elements in increasing order (as in the proof of Lemma
1) then I would not list all the list.

55



Theorem 2. The following statements are equivalent:

(i) X is countable;

(ii) there is an injection X → N;

(iii) X = ∅ or there is a surjection N → X.

Proof. Plainly (i) =⇒ (ii) for if X is finite, it obviously injects into N, and if X bijects
with N, then it certainly injects into N.
Conversely, if there is an injection f : X → N, then f is a bijection between X and
S = f(X). If S is finite, then so is X. If S is infinite, then by Lemma 1, there is a
bijection g : S → N, and thus X →f S = f(X) →g N is a bijection. So (ii) =⇒ (iii).
Plainly (iii) =⇒ (i), if X ̸= ∅ and there is a surjection f : N → X, define g : X → N by
g(a) = min f−1({a}), which exists by the Well Ordering Principle. Since g is injective,
so by (ii) =⇒ (i), X is countable, i.e. (iii) =⇒ (i).

Corollary 3. Any subset of a countable set is countable.

Proof. If Y ⊆ X and X is countable, then take the injection X → N restricted to Y .

Theorem 4. N× N is countable.

Proof 1. Define a1 = (1, 1) and an inductively by writing

an−1 = (p, q), an =

{
(p− 1, q + 1) p ̸= 1

(1, p+ q) otherwise

· · ·

...

This list includes every point (x, y) ∈ N× N by induction on x+ y.

Proof 2. Define f : N× N → N, (x, y) 7→ 2x3y. Then f is injective.
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Corollary 5. Z× Z is countable.

Proof. Since Z is countable, there is an injection Z → N, so because N×N is countable,
we have an injection

Z× Z → N× N → N.

By induction, Zk is countable for any k ∈ N.

Theorem 6. A countable union of countable sets is countable.

Proof 1. May assume that our countable sets are indexed by N, so given countable sets
A1, A2, A3, . . . , we wish to show

⋃
n∈NAn is countable.

For each i ∈ N, since Ai is countable, may list its elements as

a
(i)
1 , a

(i)
2 , a

(i)
3 , . . .

(might terminate). Define

f :
⋃
n∈N

An → N, x 7→ 2i3j .

where x = a
(i)
j for the least i satisfying x ∈ Ai (as x could be in more than one of the

Ai). This is an injection.
Proof 2. Let I be a countable index set, and for each i ∈ I, Ai is a countable set. Since
I is countable, there is an injection f : I → N, and for each i ∈ I, since Ai is countable,
there is an injection gi : Ai → N. We construct an injection h : A =

⋃
i∈I Ai → N×N as

follows: for each x ∈ A, pick mx = min{j ∈ N : x ∈ Ai, f(i) = j}, which exists by Well
Ordering Principle. Let ix be such that f(ix) = mx (ix is unique because f is injective).
Set h(x) = (mx, gix(x)). This h is an injection.

Example.

Q =
⋃
n∈N

1

n
Z =

⋃
n∈N

{m

n
: m ∈ Z

}
,

so Q is a countable union of countable sets, hence countable.

Theorem 7. The set A of algebraic numbers is countable.

Proof. It suffices to show that the set of all polynomials with integer coefficients is
countable, as then A is a countable union of finite sets, so by Theorem 6, is countable.
In fact, it suffices to show that for each d ∈ N, the set Pd of all integer polynomials of
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degree d is countable, again by Theorem 6.
But the map Pd → Zd+1 by

p(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 7→ (ad, ad−1, . . . , a1, a0)

is an injection, so since Zd+1 is countable, Pd is countable.
A set is uncountable if it is not countable. Do uncountable sets exists?

Theorem 8. R is uncountable.

Proof. If R were countable, we would be able to list all the reals as r1, r2, r3, . . . . Write
each rn in decimal form in some way.

r1 = n1.d11d12d13d14 . . .

r2 = n2.d21d22d23d24 . . .

r3 = n3.d31d32d33d34 . . .
...

Define r = 0.d1d2d3 . . . by

dn =

{
1 if dnn ̸= 1

2 if dnn = 1

This r has only one decimal expansion and is not on the list (because ∀ n ∈ N, r ̸= rn).
This contradicts the assumption that R is countable.
This is known as a “diagonal argument”, due to Cantor (1875). Note that it in fact
shows that (0, 1) is uncountable.

Corollary 9. There are uncountably many transcendental numbers.

Proof. If R \ A were countable, then since A is countable, R = R \ A ∪ A would be
countable. ××××

Theorem 10. P(N) is uncountable.

Proof 1. If P(N) were countable, we could list the subsets of N as S1, S2, S3, . . . . Let
S = {n ∈ N : n ̸∈ Sn}. Then S is not on our list since ∀ n ∈ N, S ̸= Sn (as S and Sn

differ in their membership of the element n). ××××Hence P(N) is uncountable.
Note that this is again a “diagonal argument”.

Proof 2. Note that there is an injection from (0, 1) into P(N): write x ∈ (0, 1) in binary
0.x1x2x3 with xi ∈ {0, 1} (not ending in an infinite string of 1s) and set f(x) = {n : n :
xn = 1}, for example

0.11101000 · · · 7→ {1, 2, 3, 5}.
This is an injection.

In fact, Proof 1 of Theorem 10 shows that following.
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Theorem 11. For any set X, there is no bijection between X and P(X).

Proof. Given any function f : X → P(X), we shall show that f is not a surjection.
Indeed, let

S = {x ∈ X : x ̸∈ f(x)}.

Then S does not belong to the image of f , since ∀ x ∈ X, S and f(x) differ in the
element x, and thus S ̸= f(x).

Remarks

(1) This is reminiscent of Russell’s Paradox.

(2) In fact, it gives another proof that there is no universal set. For suppose we had
such a universal set V , then we would have P(V ) ⊆ V , in which case there would
certainly be a surjection from V to P(V ).

Example. Let {Ai : i ∈ I} be a family of open intervals of R which are pairwise
disjoint. Must the family be countable? Note we can’t simply count them from left
to right; there isn’t necessarily a clear choice for the “next” interval, and there is
no guarantee that we will count all of them. The family {Ai : i ∈ I} is nevertheless
countable.

Proof 1. Each interval Ai contains a rational, and Q is countable, so since the intervals
are disjoint, we have an injection from I into Q. Hence the family {Ai : i ∈ I} is
countable.

Proof 2. The set {i ∈ I : Ai has length ≥ 1} is countable as it injects into Z. Similarly,
the set {i ∈ I : Ai has length ≥ 1

2} is countable as it injects into 1
2Z. More generally, for

each n ∈ N, {i ∈ I : Ai has length ≥ 1
n} is countable. Now {Ai : i ∈ I} is countable as

it is a countable union of countable sets.

Summary

To show that X is uncountable

(1) Run a diagonal argument on X;

(2) Inject your favourite uncountable set into X.

To show that X is countable:

(1) list it (may be fiddly);

(2) inject it into N;
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(3) use “countable unions of countable sets are countable”;

(4) if “in/near” R, consider Q.

Intuitively, we think of “A bijects with B” as saying that “A and B are of the same
size”, “A injects into B” as saying that “A is at most as big as B”, and “A surjects onto
B” as saying that “A is at least as big as B” (for B ̸= ∅). For these interpretations to
make sense, we need that if “A is at most as big as B”, then “B is at least as big as A”,
and conversely.

Lemma 12. Given non-empty setsA andB, ∃ injectionf : A → B ⇐⇒ ∃ surjectiong :
B → A.

Proof. Suppose f : A → B is injective. Fix a0 ∈ A. Define

g : B → A, b 7→

{
unique a ∈ A such that f(a) = b if it exists

a0 otherwise

Then g is surjective.
Conversely, suppose g : B → A is surjective. Define

f : A → B, a 7→ some b ∈ B such that g(b) = a.

Then f is injective.

Theorem 13 (Schröder-Bernstein Theorem). If f : A → B and g : B → A are
injections, then ∃ bijection h : A → B.

Proof. For a ∈ A, write g−1(a) for the b ∈ B (if it exists) such that g(b) = a. Similarly,
for b ∈ B, write f−1(b) for the a ∈ A (if it exists) such that f(a) = b.
We call g−1(a), f−1(g−1(a)), g−1(f−1(g−1(a))), . . . the ancestor sequence of a ∈ A (might
terminate). Similarly, we can determine the ancestor sequence of b ∈ B. Define

A0 = {a ∈ A : ancestor sequence of a stops at an even time, i.e. last point is in A.}
A1 = {a ∈ A : ancestor sequence of a stops at an even time, i.e. last point is in B}
A∞ = {a ∈ A : ancestor sequence does not stop}

Similarly, define B0, B1, B∞. Note that f bijects A0 with B1 (observing that every b ∈ B
has at least one ancestor, so is f(a) for some a ∈ A0), and similarly, g bijects B0 with
A1. And f (or g) biject A∞ with B∞. Then the function h : A → B defined as

a 7→


f(a) if a ∈ A0

g−1(a) if a ∈ A1

f(a) if a ∈ A∞
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is a bijection.

This means that we have that if “A is at most as big as B” and “B is at most as big as
A”, then “A is of the same size as B”.

Example. Is there a bijection from [0, 1] to [0, 1] ∪ [2, 3]?
Observe we have an injection f : [0, 1] → [0, 1] ∪ [2, 3] by using x 7→ x and an
injection g : [0, 1] ∪ [2, 3] → [0, 1] using x 7→ x

3 , so by Schröder-Bernstein there is a
bijection between [0, 1] and [0, 1] ∪ [2, 3].

It would also be nice to be able to say that for any two sets A and B, either A injects
into B or B injects into A. This is true, but harder to prove (see Part II Logic & Set
Theory).

Question Does every set X inject into one of

N,P(N),P(P(N)),P(P(P(N))), . . .?

No, for example consider

X = N ∪ P(N) ∪ P(P(N)) ∪ · · ·

Does every set X ′ inject into one of

X,P(X),P(P(X)),P(P(P(X))), . . .?

No, for example consider

X ′ = X ∪ P(X) ∪ P(P(X)) ∪ · · ·

Does every set X ′′ inject into one of

X ′,P(X ′),P(P(X ′)),P(P(P(X ′))), . . .?

No, for example consider

X ′′ = X ′ ∪ P(X ′) ∪ P(P(X ′)) ∪ · · ·

Does every set Y inject into one of X,X ′, X ′′, . . . ?
No, for example

Y = X ∪X ′ ∪X ′′ ∪ · · ·
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Panorama

• II Logic & Set Theory

• IA Analysis

• IB Groups, Rings and Modules

• II Number Theory

62



Chapter V: More about primes (non-examinable)
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Bertrand postulated in 1845 that for every n ∈ N, there is always a prime between n
and 2n, i.e. n ≤ p < 2n. The primes 2, 5, 11, 23, 47, 89, 179, 359, 719, 1439, 2879 show
it to be true for n ≤ 211. Bertrand checked it for n < 3, 000, 000. Chebychev (1850)
gave a proof. Erdös (1932) have an elementary proof based on the properties of

(
2n
n

)
.

Observation 1. (
2n

n

)
≥ 22n

2n+ 1

Proof. Since (
n

k+1

)(
n
k

) =
n− k

k + 1
,

it is evident that
(
n
k

)
increases for k < n

2 , and decreases for k > n
2 . In particular,

(
2n
n

)
is

the largest binomial coefficient, so(
2n

n

)
≥

∑2n
k=0

(
2n
k

)
2n+ 1

=
22n

2n+ 1

Observation 2. If p ≤ n is a prime dividing
(
2n
n

)
, then p ≤ 2n

3 .

Proof. Suppose 2n
3 < p ≤ n, then

p ≤ n < 2p ≤ 2n < 3p

so the numerator and denominator of

2n(2n− 1) · · · (n+ 1)

n(n− 1) · · · 3 · 2 · 1

are divisible by exactly one copy of p. Correction: this is only true assuming p > 3 or
n > 3, in order to make sure we don’t get any multiples of p2. ××××

Observation 3. If p is a prime and pk
∣∣ (2n

n

)
, then pk ≤ 2n.

Proof. The greatest power of p dividing n! = n(n− 1) · · · 3 · 2 · 1.⌊
n

p

⌋
︸︷︷︸

multiples of
p≤n

+

⌊
n

p2

⌋
︸ ︷︷ ︸

multiples of
p2≤n

+

⌊
n

p3

⌋
+ · · · =

∑
i≥1

n

pi
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Hence, if k is a power of p dividing
(
2n
n

)
= 2n!

(n!)2
, then

k =
∑
i≥1

⌊
2n

pi

⌋
− 2

∑
i≥1

⌊
n

pi

⌋

=

l∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
where l is the greatest power of p such that pl ≤ 2n.

≤
l∑

i=1

1 since ⌊2x⌋ − 2⌊x⌋ ≤ 1

= l

so k ≤ l and thus pk ≤ pl < 2n.

Observation 4. For all m ∈ N, ∏
p≤m

p prime

p ≤ 4m.

Proof. By induction on m. True for m = 2. If m > 2 is even, then∏
p≤m

p =
∏

p≤m−1

p ≤ 4m−1 < 4m.

If m = 2k + 1 is odd, then all primes k + 2 ≤ p ≤ 2k + 1 divide(
2k + 1

k

)
=

(2k + 1)!

k!(k + 1)!
=

(2k + 1) · 2k · · · (k + 2)

k · (k − 1) · · · 3 · 2 · 1

Thus, ∏
k+2≤p≤2k+1

p ≤
(
2k + 1

k

)
=

(
2k + 1

k + 1

)
≤ 22k+1

2
= 4k.

By the inductive hypothesis,∏
p=m

p =
∏

p≤k+1

p ·
∏

k+2≤p≤2k+1

p ≤ 4k+1 · 4k = 42k+1.

Theorem 5 (Bertrand’s Postulate). For all n ∈ N, there exists a prime p with
n ≤ p < 2n.
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Proof. Clearly the primes factors of
(
2n
n

)
are all less than 2n (assuming n > 1 so that 2n is

not prime). Suppose the theorem fails. Then all prime factors of
(
2n
n

)
are in fact less than

n. But by Observation 2, they are all less than 2n
3 . Consider the prime factorisation

of
(
2n
n

)
. By Observation 3, each prime contributes at most 2n to the factorisation.

Moreover, if p >
√
2n, then p contributes at most p to the factorisation (since p2 > 2n).

Now by Observation 1 and the above

22n

2n+ 1
≤

(
2n

n

)
≤

∏
p≤

√
2n

2n
∏

√
2n<p≤2n/3

p

≤ (2n)
√
2n ·

∏
p<2n/3

p

But by Observation 4, ∏
p<2n/3

p ≤ 42n/3.

so
4n

2n+ 1
≤ (2n)

√
2n · 42n/3,

Which fails when n is large. How large? This is equivalent to

4n/3 ≤ (2n+ 1)(2n)
√
2n

and 2n+ 1 ≤ (2n)2 ≤ (2n)
√
2n/3 for n ≥ 18. So

4n/3 ≤ (2n)4
√
2n/3

or
4n ≤ (2n)4

√
2n

With r =
√
2n, this is

4r
2/2 ≤ r8r

or
4r ≤ r16

which fails when r = 26 = 64 and larger. So proof holds when n ≥ 211, and also true for
smaller values of n.
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