\documentclass[11pt]{scrartcl} % vim: tw=50 \usepackage{notesheader} \begin{document} \title{Groups} \author{} \date{\today} \maketitle \tableofcontents \newpage \setcounter{section}{-1} \section{Introduction} Book recommendations: \begin{itemize} \item Algebra \& Geometry, Alan Beardon \end{itemize} \begin{notation*} $\forall$ denotes ``for all''; $\exists$ denotes ``there exists''; $\implies$ denotes ``implies''; $\therefore$ denotes ``therefore''; \contradiction denotes ``contradiction''; and $\ZZ$, $\NN$, $\QQ$, $\RR$ and $\CC$ denote the integers, naturals, rationals, reals and complex numbers respectively. \end{notation*} \newpage \section{Basic Definitions and Examples} \begin{definition}[Binary Operation] A binary operation $*$ on a set $X$ is a way of combining 2 elements of $X$ to unambiguously give another element of $X$, i.e. $* : X \times X \to X$. \end{definition} \begin{definition}[Group] If $G$ is a set and $*$ is a binary operation on $G$, then $(G, *)$ is a \emph{group} if the following 4 axioms hold: \begin{enumerate}[(i)] \item $x, y \in G \implies x * y \in G$ (closure) \item $\exists$ an element $e \in G$ satisfying \[ x * e = x = e * x \qquad \forall x \in G \] (existence of an identity) \item for every $x \in G$ there is a $y \in G$ such that \[ x * y = e = y * x \] (existence of inverses) \item for every $x, y, z \in G$ we have: \[ x * (y * z) = (x * y) * z \] (associative law) \end{enumerate} \end{definition} \begin{remark*} We can prove that $G$ has only one identity. \end{remark*} \begin{remark*} As a result, we can also prove that every element has only one inverse. \end{remark*} \noindent Both of these claims are proved in Lemma 1. \subsection{Examples of Groups} \begin{enumerate}[(1)] \item $(\ZZ, +)$, $e = 0$, $x^{-1} = -x$. \item $(\QQ, +)$, $(\RR, +)$ \item $(\ZZ, -)$ is \emph{not} a group because associativity fails. \item $(\ZZ, \times)$ is \emph{not} a group because no inverses. \item $(\QQ, \times)$ is \emph{not} a group because $0^{-1}$ does not exist. \item $(Q \setminus \{0\}, \times)$ \item $(\{ \pm 1\}, \times)$ \\ We can write a multiplication table: \begin{center} \begin{tabular}{c|cc} $x$ & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{tabular} \end{center} note that closure holds, $e = 1$ and $(-1)^{-1} = -1$. \item $(\{0, 1, 2\}, +_3)$ \begin{center} \begin{tabular}{c|ccc} $+_3$ & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{tabular} \end{center} and we have $e = 0$ and $1^{-1} = 2$. \item $(\{e, a, b, c\}, *)$ \begin{center} \begin{tabular}{c|cccc} $*$ & $e$ & $a$ & $b$ & $c$ \\ \hline $e$ & $e$ & $a$ & $b$ & $c$ \\ $a$ & $a$ & $e$ & $c$ & $b$ \\ $b$ & $b$ & $c$ & $e$ & $a$ \\ $c$ & $c$ & $b$ & $a$ & $e$ \end{tabular} \end{center} \item ``groups are abstractions of symmetries'': rotations and reflections of an equilateral triangle are another example of a group. \begin{center} \begin{tsqx} ! size(3cm); ~regular A B C A--B--C--A label $e$ @ (0,-1) \end{tsqx} \begin{tsqx} ! size(3cm); ~regular C A B A--B--C--A D := foot A B C E := 1.3*D-0.3*A arc3 E E+0.2*dir(-30) E+0.2*dir(90) EndArcArrow label $\sigma$ @ (0,-1) \end{tsqx} \begin{tsqx} ! size(3cm); ~regular B C A A--B--C--A D := foot C A B E := 1.3*D-0.3*C arc3 E E+0.2*dir(-30) E+0.2*dir(90) BeginArcArrow label $\sigma^2$ @ (0,-1) \end{tsqx} \end{center} \begin{center} \begin{tsqx} ! size(3cm); ~regular A C B A--B--C--A D := foot A B C E := 1.15*D-0.15*A A--E dashed label $\tau$ @ (0,-1) \end{tsqx} \begin{tsqx} ! size(3cm); ~regular B A C A--B--C--A D := foot C A B E := 1.15*D-0.15*C C--E dashed label $\tau \circ \sigma$ @ (0,-1) \end{tsqx} \begin{tsqx} ! size(3cm); ~regular C B A A--B--C--A D := foot B C A E := 1.15*D-0.15*B B--E dashed label $\tau \circ \sigma^2$ @ (0,-1) \end{tsqx} \end{center} This forms a group where the binary operator is ``do one then the next'' \item $M_2(\RR) = \{2 \times 2 \text{ matrices with entries in $\RR$}\}$ \[ = \left[\left( \begin{matrix} a & b \\ c & d \end{matrix} \right) : a, b, c, d \in \RR \right] \] under addition is a group: \[ \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) + \left( \begin{matrix} \alpha & \beta \\ \gamma & \delta \end{matrix} \right) = \left( \begin{matrix} a + \alpha & b + \beta \\ c + \gamma & d + \delta \end{matrix} \right) \] \item $GL_2(\RR) = \{\text{invertible $2 \times 2$ matrices with entries in $\RR$}\}$ under multiplication is a group. \end{enumerate} \begin{lemma} Let $(G, *)$ be a group. Then \begin{enumerate} \item The identity element is unique. \item Inverses are unique. \end{enumerate} \end{lemma} \begin{proof} (i): Suppose $e$ and $e'$ are both identities, so \[ a * e = a = e * a \qquad \text{and} \qquad a * e' = a = e' * a \qquad \forall a \in G .\] In particular \[ e = e * e' = e' \] so $e = e'$, so the identity must be unique. \end{proof} \begin{proof} (ii): Suppose both $y$ and $z$ are inverses for $x$, so \[ x * y = e = y * x, \qquad \text{and} \qquad x * z = e = z * x \qquad x \in G .\] Then \begin{align*} y &= y * e \\ &= y * (x * z) \\ &= (y * x) * z \\ &= e * z \\ &= z \end{align*} so $y = z$. \end{proof} \begin{remark*}[Unnesessary brackets] Since the definition of a group involves associativity, we can omit brackets, i.e. $x * y * z$ is unambiguous. \end{remark*} \begin{remark*}[Omitting $*$] We often omit ``$*$'' and write $xy := x * y$ and also write $G = (G, *)$. (This is only done when the binary operator can be easily inferred). \end{remark*} \begin{remark*}[Inverse of product] $(xy)^{-1} = y^{-1}x^{-1}$. This follows immediately by the uniqueness, as it is easy to verify that this is a possible inverse: \[ (xy)y^{-1}x^{-1} = x(yy^{-1})x^{-1} = xx^{-1} = e .\] \end{remark*} \begin{remark*}[Inverse of inverse] $(x^{-1})^{-1} = x$. \end{remark*} \begin{remark*}[Coset stuff] If $xy = xz$ then $y = z$; this easily follows from the existence of inverses. \end{remark*} \begin{definition}[Abelian Groups] A group $G$ is \emph{abelian} (or commutative) if $xy = yx$ for all $x, y \in G$. \end{definition} \begin{remark*} Note all our examples above are abelian except (10) and (12). (Symmetries of the triangle, and the general linear group). \end{remark*} \begin{definition}[Order of a group] Let $G$ be a group. If the number of elements in the set $G$ is finite, then $G$ is called a \emph{finite group}. Otherwise $G$ is called an \emph{infinite group}. If $G$ is a finite group, denote the number of elements in the set $G$ by $|G|$ and we call this the \emph{order} of the group. \end{definition} \begin{definition}[Subgroups] Let $(G, *)$ be a group and $H$ a subset of $G$ ($H \subseteq G$ i.e. $h \in H \implies h \in G$). Then $(H, *)$ is a \emph{subgroup} of $(G, *)$ if $(H, *)$ is a group (with the same operation) i.e. if \begin{enumerate}[(a)] \item $h, k \in H \implies h * k \in H$. \item $e_G \in H$ \item $h \in H \implies h^{-1} \in H$. \end{enumerate} (Note associativity is inherited). \\ i.e. ``restricting operation to $H$ still gives a group''. We write $H \le G$. \end{definition} \subsubsection*{Examples} \begin{itemize} \item $(\ZZ, +) \le (\QQ, +) \le (\RR, +)$ \item $(\{\pm 1\}, \times) \le (\QQ \setminus \{0\}, \times)$. \item In example (10) (symmetries of a triangle), the rotational symmetries form a subgroup (elements $\{e, \sigma, \sigma^2\}$). \item In example (12) (general linear group), we have that \begin{align*} \mathrm{SL}_2(\RR) &= \{A \in \mathrm{GL}_2(\RR) : \det A = 1\} \\ &\le \mathrm{GL}_2(\RR) \end{align*} ($\mathrm{SL}_2$ and $\mathrm{GL}_2$ denote the special linear and general linear groups respectively). \item $G$ a group then $\{e\} \le G$ is the trivial subgroup. $G \le G$ is the improper subgroup. \item The subgroups of $(\ZZ, +)$ are exactly \[ n\ZZ = \{nk : k \in \ZZ\}, \qquad n \in \ZZ_{\ge 0} .\] \begin{proof} First note $n\ZZ$ is a sub group of $\ZZ$. \begin{itemize} \item $0 \in n\ZZ$ \item If $a, b \in n\ZZ$, then let $a = na'$, $b = nb'$. Then we have \[ a + b = na' + nb' = n(a' + b') \in n\ZZ .\] \item $-a = n(-a') \in n\ZZ$ \item Associativity is inherited. \end{itemize} Conversely assume that $H \le \ZZ$. If $H = \{0\} = 0\ZZ$ which is of the form we claimed. Otherwise choose $0 < n \in H$ with $n$ minimal. (Such an $n$ must exist because $H$ must contain either a negative or positive integer, but since inverses exist this implies that there must be a positive element). Then $n\ZZ \le H$ by closure and inverses. Now we show that $H = n\ZZ$. Suppose $\exists h \in H \setminus n\ZZ$, then we can write $h = nk + h'$ with $h' \in \{1, 2, \dots, n - 1\}$. But $h' = h - nk \in H$, contradicting minimality of $n$. Thus $H = n\ZZ$. \end{proof} \end{itemize} \subsubsection*{Definitions for Functions} \begin{definition}[Functions] $F$ is a \emph{function} between sets $A$ and $B$ if it assigns each element of $A$ a unique element of $B$ \[ f : A \to B \qquad\qquad a \mapsto f(a) \] For example: $f : \ZZ \to \ZZ$, $x \mapsto x + 1$ and $g \ZZ \to \ZZ$, $x \mapsto 2x$. \end{definition} \begin{definition}[Composition of functions] Suppose $g : A \to B$ and $f : B \to C$. Define $f \circ g : A \to C$ by \[ a \mapsto (f \circ g)(a) = f(g(a)) .\] For example $(f \circ g)(x) = 2x + 1$ and $(g \circ f)(x) = 2x + 2$ using the example functions above. \end{definition} \noindent Suppose $f_1 : A \to B$, $f_2 : A \to B$. Then $f_1 = f_2$ if and only if $f_1(a) = f_2(a) \forall a \in A$. \begin{definition}[Bijection] $f : A \to B$ is a \emph{bijection} if it defines a pairing between elements of $A$ and elements of $B$. That is, given $b \in B$ there exists a unique $a \in A$ such that $f(a) = b$. For example $f: \ZZ \to \ZZ$, $x \mapsto x + 1$. Given a bijective function $f$, we can define \[ f^{-1} : B \to A \qquad\qquad b \mapsto a \qquad \text{where $f(a) = b$} .\] Then $f \circ f^{-1} = \id_B$ and $f^{-1} \circ f = \id_A$. ($\id_B(b) = b$, $\id_A(a) = a$) \end{definition} \begin{lemma}[Composition of bijections] If $g : A \to B$ and $f : B \to C$ are bijections then so is $f \circ g : A \to C$. \end{lemma} \begin{proof} In Numbers \& Sets. \end{proof} \begin{definition}[Homomorphism] Let $(G, *_G)$ and $(H, *_H)$ be groups. Then the function \[ \theta : G \to H \] is a \emph{homomorphism} if \[ \theta(x *_G y) = \theta(x) *_H \theta(y) \qquad \forall x, y \in G \] ``a map which respects the group operation''. \end{definition} \begin{example*} Let $G = (\{0, 1, 2, 3\}, +_4)$ and $H = (\{1, e^{\pi i/2}, e^{\pi i}, e^{3\pi i/2}\}, \times)$. Then the function \[ \theta : G \to H \qquad\qquad n \mapsto e^{n\pi i/2} \] is a homomorphism. This is because \begin{align*} \theta(n +_4 m) &= e^{(n +_4 m)\pi i/2} \\ &= e^{(n + m)\pi i/2} \qquad\text{since $n + m = n +_4 m + 4n$} \\ &= e^{n\pi i/2} \times e^{m\pi i/2} \\ &= \theta(n) \times \theta(m) \end{align*} \end{example*} \begin{lemma} Let $G$ and $H$ be groups and $\theta : G \to H$ be a homomorphism. Then \[ \theta(G) = \{\theta(g) : g \in G\} ,\] the \emph{image} of $\theta$ is a subgroup of $H$, written $\theta(G) \le H$. \end{lemma} \begin{proof} We need to prove closure, \dots \begin{itemize} \item To prove closure, let $x, y$ be elements of $\theta(G)$. Then $x = \theta(g)$ and $y = \theta(h)$ for some $h, g \in G$. Then: \begin{align*} x *_H y &= \theta(g) *_H \theta(h) \\ &= \theta(g *_g h) \\ &\in \theta(G) \qedhere \end{align*} \item To show that we have an identity, note that \begin{align*} \theta(e_G) &= \theta(e_G *_G e_G) \\ &= \theta(e_G) *_H \theta(e_G) \end{align*} and if we premultiply by $\theta(e_G)^{-1} \in H$ then we get \[ e_H = \theta(e_G) \in \theta(G) \] \item To get inverses, let $x = \theta(g) \in \theta(G)$. Then \begin{align*} e_H &= \theta(e_G) = \theta(g *_G g^{-1}) \\ &= \theta(g) *_H \theta(g^{-1}) \\ &= x *_H \theta(g^{-1}) \\ &= \theta(g^{-1} *_G g) \\ &= \theta(g^{-1}) *_H x \end{align*} And since inverses are unique we get \[ \theta(g)^{-1} = \theta(g^{-1}) \in \theta(G) \] \item And finally associativity is just inherited. \end{itemize} \end{proof} \begin{definition}[Isomorphism] A bijective homomorphism is called an \emph{isomorphism} if $G$ and $H$ are groups and $\theta : G \to H$ is a homomorphism. We say $G$ and $H$ are isomorphic and write $G \cong H$. \end{definition} \begin{example*} Let $G = (\{0, 1, 2, 3\}, +_4)$ and $H = (\{1, e^{i\pi/2}, e^{i\pi}, e^{3i\pi/2}, \times)$. Then $G \cong H$, which can be shown by considering \begin{align*} \theta : G &\to H \\ n &\mapsto e^{i\pi n/2} \end{align*} ($\theta$ is an isomorphism.) \end{example*} \noindent Isomorphism means roughly ``They are essentially the same'' \noindent \begin{lemma}\phantom{.} \begin{enumerate}[(i)] \item The composition of two homomorphisms is a homomorphism. Similarly for isomorphisms, thus if $G_1 \cong G_2$ and $G_2 \cong G_3$, then $G_1 \cong G_3$. \item If $\theta : G_1 \to G_2$ then so is its inverse $\theta^{-1} : G_2 \to G_1$. So $G_1 \cong G_2 \implies G_2 \cong G_1$. \end{enumerate} \end{lemma} \begin{proof} \phantom{.} \begin{enumerate}[(i)] \item Suppose \[ \theta_1 : (G_1, *_1) \to (G_2, *_2) \] \[ \theta_2 : (G_2, *_2) \to (G_3, *_3) \] are homomorphisms. Then $\theta_2 \circ \theta_1$ is a function from $G_1$ to $G_3$, we need to check its a homomorphism. Let $x, y \in G_1$. Then \begin{align*} \theta_2 \circ \theta_1 (x *_1 y) &= \theta_2(\theta_1(x) *_2 \theta_1(y)) \\ &= \theta_2(\theta_1(x)) *_3 \theta_2(\theta_1(y)) \\ &= (\theta_2 \circ \theta_1)(x) *_3 (\theta_2 \circ \theta_1)(y) \end{align*} \item $\theta$ is a bijection so $\theta^{-1}$ exists. We need to show it is a homomorphsim. \\ Let $y, z \in G_2$. Then $\exists x, k \in G_1$ such that \[ \theta^{-1}(y) = x, \qquad \theta^{-1}(z) = k .\] Note \begin{align*} \theta(x *_1 k) &= \theta(x) *_2 \theta(k) \\ &= y *_2 z \implies \theta^{-1}(y *_2 z) &= x *_1 k \\ &= \theta^{-1}(y) *_1 \theta^{-1}(z) \end{align*} \end{enumerate} \end{proof} \begin{notation*} If $x \in (G, *)$, $n \in \ZZ$ then \[ x^n = \begin{cases} \overbrace{x * x * \cdots * x}^{n} & n > 0 \\ e & n = 0 \\ \underbrace{x^{-1} * x^{-1} * \cdots * x^{-1}}_{(-n)} & n < 0 \end{cases} \] \end{notation*} \begin{definition}[Cyclic Groups] A group $H$ is \emph{cyclic} if $\exists h \in H$ such that each element of $H$ is a power of $h$, i.e. for each $x \in H \exists n \in \ZZ$ such that $x = h^n$. Then $h$ is called a \emph{generator} of $H$ and we write $H = \langle h \rangle$. \end{definition} \begin{example*} \begin{itemize} \item $(\ZZ, +) = \langle 1 \rangle = \langle -1 \rangle$ is the infinite cyclic group. We showed all subgroups of $(\ZZ, +)$ are cyclic. \item $(\{\pm 1\}, \times) = \langle -1 \rangle$ \item $(\{0, 1, 2, 3\}, +_4) = \langle 1 \rangle = \langle 3 \rangle$ \end{itemize} \end{example*} Note that a cyclic group is always abelian. \begin{definition}[Orders] Let $G$ be a group and $g \in G$. The order of $g$ written $o(g)$, is the least positive integer $n$ such that $g^n = e$, if it exists. Otherwise $g$ has infinite order. \end{definition} \begin{lemma} Suppose $G$ is a group, $g \in G$ and $o(g) = m$. Let $n \in \NN_{> 0}$. Then \[ g^n = e \iff m \mid n .\] \end{lemma} \begin{proof} $(\Leftarrow)$ Suppose $m \mid n$, then $n = qm$ for some $q \in \NN$. This implies that \[ g^{n} = g^{qm} = (g^m)^q = e^q = e .\] $(\implies)$ Suppose $g^n = e$. Then we can write $n = qm + r$ with $0 \le r < m$, with $q \in \NN$. Then \begin{align*} e = g^n &= g^{qm + r} \\ &= (g^m)^q g^r \\ &= e^q g^r \\ &= eg^r \\ &= g^r \end{align*} This implies $r = 0$ by minimality of $m$, hence $n = qm$ as required. \end{proof} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item Suppose $g \in G$> Then $\{g^n : n \in \ZZ\}$ is a subgroup of $G$, in fact it is the smallest subgroup of $G$ containing $g$. We call it the subgroup of $G$ generated by $g$ and write \[ \langle g \rangle = \{g^n : n \in \ZZ\} .\] Also $|\langle g \rangle| = o(g)$ if finite, since if $o(g) = m$ then \[ \langle g \rangle = \{e, g, g^2, \dots, \underbrace{g^{m - 1}}_{=g^{-1}}\} \] Otherwise both are infinite. \item We can define the abstract cyclic group of order $n$ \[ C_n = \langle x \rangle \qquad o(x) = n \] Then \[ (\{0, 1, \dots, n - 1\}, +_n) \qquad \text{and} \qquad (\{n^{th} \text{ roots of unity}\}, \times) \] are realisations of this group, and they are all isomorphic. \item Let $G$ be a group and $g_1, \dots, gk \in G$. Then the subgroup of $G$ generated by $g_1, \dots, gk$ denoted by $\langle g_1, \dots, g_k \rangle$ is the smallest subgroup of $G$ containing all the $g_i$. It is the intersection of all the subgroups of $G$ containing all the $g_i$. \end{enumerate} \newpage \section{The Dihedral and Symmetric Groups} First note composition of functions is associative: \[ f, g, h : X \to X, \qquad x \in X \] Then \begin{align*} (f \circ (g \circ h))(x) &= f((g \circ h)(x)) \\ &= f(g(h(x))) \\ &= (f \circ g)(h(x)) \\ &= ((f( \circ g) \circ h)(x) \implies f \circ (g \circ h) &= (f \circ g) \circ h \end{align*} \subsection{Dihedral Groups} Let $P$ be a regular polygon with $n$ sides and $V$ its set of vertices. We can assume \[ V = \{e^{2\pi i k/n} : 0 \le k < n\} \] $n$-th roots of unity in $\CC$. Then the symmetries of $P$ are the isometries (i.e. distance preserving maps of $\CC$ that map $V$ to $V$. \\\\ We will show that for $n \ge 3$ the set of symmetries of $P$, under composition form a nonabelian group of order $2n$. This group is called the \emph{dihedral group} of order $2n$ and denoted by $D_{2n}$. \begin{notation*} Sometimes $D_{2n}$ is denoted $D_n$. \end{notation*} \noindent We have already met $D_6$ in example 10. \\\\ Consider $D_8$ \begin{center} \begin{tsqx} ! size(3cm); A := dir 135 B := dir 45 C := dir -45 D := dir -135 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $e$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) \end{tsqx} \begin{tsqx} ! size(3cm); A := dir 45 B := dir -45 C := dir -135 D := dir 135 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $r$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) arc3 origin 0.2*dir(45) 0.2*dir(135) BeginArcArrow \end{tsqx} \begin{tsqx} ! size(3cm); A := dir -45 B := dir -135 C := dir 135 D := dir 45 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $r^2$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) arc3 origin 0.2*dir(0) 0.2*dir(180) BeginArcArrow \end{tsqx} \begin{tsqx} ! size(3cm); A := dir -135 B := dir 135 C := dir 45 D := dir -45 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $r^3$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) arc3 origin 0.2*dir(45) 0.2*dir(135) EndArcArrow \end{tsqx} \end{center} \begin{center} \begin{tsqx} ! size(3cm); A := dir 45 B := dir 135 C := dir -135 D := dir -45 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $tr^2$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) 0.5*(A+B+(0,0.1))--0.5*(C+D-(0,0.1)) dashed \end{tsqx} \begin{tsqx} ! size(3cm); A := dir -135 B := dir -45 C := dir 45 D := dir 135 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $t$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) 0.5*(A+D-(0.1,0))--0.5*(B+C+(0.1,0)) dashed \end{tsqx} \begin{tsqx} ! size(3cm); A := dir 135 B := dir -135 C := dir -45 D := dir 45 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $tr$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) A--C dashed \end{tsqx} \begin{tsqx} ! size(3cm); A := dir -45 B := dir 45 C := dir 135 D := dir -135 label $1$ @ A+0.1*dir(A) label $2$ @ B+0.1*dir(B) label $3$ @ C+0.1*dir(C) label $4$ @ D+0.1*dir(D) A--B--C--D--A label $tr^3$ @ 0.5*(dir(-45)+dir(-135))-(0,0.1) B--D dashed \end{tsqx} \end{center} Let $r : P \to P$ \[ z \mapsto e^{2\pi i/n} z\] \[ t : p \to P \] \[ z \mapsto \ol{z} \] These are both isometries. \begin{align*} |r(z) - r(w)| &= |e^{2 \pi i/n} z - e^{2 \pi i/n} w| \\ &= |e^{2\pi i/n}||z - w| \\ &= |z - w| \end{align*} \begin{align*} |t(z) - t(w)|^2 &= |\ol{z} - \ol{w}|^2 \\ &= (\ol{z} - \ol{w})(z - w) \\ &= |z - w|^2 \\ \implies |t(z) - t(w)| &= |z - w| \end{align*} Note, $r^n = \id = \text{identity}$ \[ \implies r^{-1} = r^{n - 1} \] and also \[ t^2 = \id \implies t = t^{-1} \] \[ tr(z) = e^{-2\pi i/n} \ol{z} = r^{-1}t(z) \] \[ \implies tr = r^{-1}t \] We show that the symmetries of $P$ is \[ \{\underbrace{e = \id, r, r^2, \dots, r^{n - 1}}_{\text{rotations}}, \underbrace{t, rt, \dots, r^{n - 1}t}_{\text{reflections}}\} \] Then this set under composition of functions gives the group $D_{2n}$. \\\\ Let $f$ be a symmetry of $P$. Then $f(1) = e^{2\pi ik/n}$ for some $k$. \[ \implies r^{-k} \circ f(1) = 1 .\] So, $g(e^{2\pi i/n}) = e^{2\pi i/n}$ or $e^{-2\pi i /n}$. If $g(e^{2\pi i/n} = e^{2\pi i/n}$ then $g$ fixes 1 and $e^{2\pi i/n}$, Also $g$ interchanges vertices of $P$ so fixes $P$'s centre of mass \[ \frac{1}{n} = \sum_{k = 0}^{n - 1} e^{2\pi ik/n} = 0 .\] So $g$ fixes 0, 1 and $e^{2\pi i/n}$ \[ g = \id \implies f = r^k .\] If $g(e^{2\pi i/n}) = e^{-2\pi i/n}$ then \begin{align*} t \circ g(e^{2\pi i/n} &= e^{2\pi i/n} \\ t \circ g(1) &= 1 \\ t \circ g (0) &= 0 \\ \implies t \circ g &= \id \\ t \circ r^{-k} \circ f &= \id \\ \implies f &= r^k \circ t^{-1} \\ &= r^k \circ t \end{align*} Algebraically we write, \[ D_{2n} = \langle \underbrace{r, t}_{\text{generators}} \mid \underbrace{r^n = e, t^2 = e, trt = r^{-1}}_{\text{relations}} \rangle \] Finally, $D_2 \cong C_2$ and $D_4 \cong \ZZ/2\ZZ \times \ZZ/2\ZZ$ are the only abelian dihedral groups. Also note that $D_\infty$ exists. \subsection{Symmetric Groups} Let $X$ be a set. A bijection \[ f : X \to X \] is called a \emph{permutation} of $X$. Let $\mathrm{Sym}(X)$ denote the set of all permutations of $X$. \begin{proposition} $\mathrm{Sym}(X)$ is a group under composition of functions. It is called the symmetric group on $X$. \end{proposition} \begin{proof} \phantom{.} \begin{itemize} \item Closure - follows from a lemma in Numbers \& Sets \item identity, define $c(x) = x \,\,\,\, \forall x \in X$ \item Let $f \in \mathrm{Sym}(X)$. As $f$ is a bijection, $f^{-1}$ exists and is a bijection and satisfies \[ f \circ f^{-1} = c = f^{-1} \circ f \] \item composition of functions is associative as shown earlier \end{itemize} \end{proof} \begin{notation*}[Symmetric Groups] Suppose $X$ is finite and $X = |n|$. Then we often take $X$ to be the set $\{1, 2, \dots, n\}$ and we write $S_n$ for $\mathrm{Sym}(X)$. We call $S_n$ the symmetric group of degree $n$. \end{notation*} \noindent We'll use double row notation (for now). \\\\ If $\sigma \in S_n$ write \[ \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix} \] For example \[ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3 \] and \[ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \in S_5 \] Composition: \[ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \text{``} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{''} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \] or \begin{center} \begin{tsqx} ! size(8cm); A .= (-1,1) B .= (0,1) C .= (1,1) D .= (-1,0) E .= (0,0) F .= (1,0) G .= (-1,-1) H .= (0,-1) I .= (1,-1) A--E--I B--D--H C--F--G label $=$ @ (1.3,0) A' .= (1.6,0.5) B' .= (2.6,0.5) C' .= (3.6,0.5) D' .= (1.6,-0.5) E' .= (2.6,-0.5) F' .= (3.6,-0.5) A'--F' B'--E' C'--D' \end{tsqx} \end{center} \subsubsection*{Small $n$} \[ S_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \{ c \} \right\} \qquad \text{trivial group} \] \[ S_2 = \left\{ \begin{pmatrix} 1 & 2 & \\ 1 & 2 \end{pmatrix} , \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cong (\{\pm 1\}, \times) \cong C_2 \right\} .\] \[ S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\} \cong D_6 \] \subsubsection*{Remarks} \begin{enumerate}[(i)] \item $|S_n| = n!$ because number of choices for $\sigma(1)$ is $n$, number of choices for $\sigma(2)$ is $n - 1$\dots \item For $n \ge 3$ , $S_n$ is not abelian. Consider \[ \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 3 & 1 & 4 & \cdots n \end{pmatrix} , \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 1 & 3 & 2 & 4 & \cdots & n \end{pmatrix} \] \item $D_{2n}$ naturally embeds in $S_n$. For example $D_8 \lesssim S_4$ \[ r = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \] \end{enumerate} ``Double row notation is cumbersome and hides what's going on. We introduce cycle notation.'' \subsubsection*{New Notation} \begin{definition} Let $a_1, \dots, a_k$ be distinct integers in $\{1, \dots, n\}$. Suppose $\sigma \in S_n$ and \[ \sigma(a) = \begin{cases} a_{i + 1} & \text{if there exists $i$ such that $a_i = a$ (taken modulo $k$).} \\ a & \text{otherwise} \end{cases} \] Then $\sigma$ is a \emph{$k$-angle} and we write $\sigma = (a_1, a_2, \dots, a_k)$. For example \[ \sigma = (1, 2, 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \] \end{definition} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item \[ (a_1, a_2, \dots, a_k) = (a_k, a_1, a_2, \dots, a_{k - 1}) = \cdots \] We usually write the smallest $a_i$ first. \item \[ (a_1, a_2, \dots, a_k)^{-1} = (a_1, a_k, a_{k - 1}, \dots, a_2 \] \item $o(\sigma) = k$, $\sigma$ is like rotations of $k$ points \begin{center} \begin{tsqx} ! size(5cm); a_k ;= dir 120 a_1 ;= dir 90 a_2 ;= dir 60 arc3 origin dir(30) dir(150) arc3 origin dir(150) dir(30) dashed label $\sigma$ @ (1.5,0) //label $\cdot$ @ 1.11*dir(50) //label $\cdot$ @ 1.11*dir(40) //label $\cdot$ @ 1.11*dir(30) //label $\cdot$ @ 1.11*dir(130) //label $\cdot$ @ 1.11*dir(140) //label $\cdot$ @ 1.11*dir(150) arc3 origin 1.3*dir(-30) 1.3*dir(30) BeginArcArrow \end{tsqx} \end{center} \item a 2-cycle is called a \emph{transposition}. \end{enumerate} \begin{definition} Two cycles $\sigma(a_1, \dots, a_k)$ and $\tau = (b_1, \dots, b_l)$ are \emph{disjoint} if $\{a_1, \dots, a_k\} \cap \{b_1, \dots, b_l\} = \emptyset$. \end{definition} \begin{lemma} If $\sigma, \tau \in S_n$ are disjoint then \[ \sigma\tau = \tau\sigma \qquad (\sigma \circ \tau = \tau \circ \sigma) .\] \end{lemma} \begin{proof} If $x \in \{1, \dots, n\} \setminus \{a_1, \dots, a_k\} \cup \{b_1, \dots, b_l\}$, then \[ (\sigma \circ \tau)(x) = \sigma(\tau(x)) = x = (\tau \circ \sigma)(x) .\] For $1 \le i \le k - 1$ we have \begin{align*} (\sigma \circ \tau)(a_i) &= \sigma(\tau(a_i)) \\ &= \sigma(a_i) \\ &= a_{i + 1} \end{align*} \begin{align*} (\tau \circ \sigma)(a_i) &= \tau(\sigma(a_i)) \\ &= \tau(a_{i + 1}) = a_{i + 1} \end{align*} And $\sigma \circ \tau(a_k) = a_1$ and $a\tau \circ \sigma(a_k) = a_1$. The same argument works for the $b_i$. Thus $\sigma \circ \tau$ and $\tau \circ \sigma$ agree everywhere which implies that $\sigma \circ \tau = \tau \circ \sigma$. \end{proof} \begin{example*} \[ (1\ 2)(3\ 4\ 5) = (3\ 4\ 5)(1\ 2) \] \end{example*} \noindent However this is not necessarily true if two cycles are disjoint. \begin{example*} Consider $\sigma = (1\ 2\ 3)$ and $\tau = (2\ 4)$. Then we have \begin{align*} \sigma \circ \tau(1) &= \sigma(1) = 2 \\ \sigma \circ \tau(2) &= \sigma(4) = 4 \\ \sigma \circ \tau(3) &= \sigma(2) = 1 \\ \sigma \circ \tau(4) &= \sigma(3) = 3 \end{align*} Hence $\sigma \circ \tau = (1\ 2\ 4\ 3)$ but $\tau \circ \sigma = (1\ 4\ 2\ 3)$. \end{example*} \begin{example*} \phantom{.}\\[-2\baselineskip] \[ (1\ 2\ 3)(2\ 3) = (1\ 2)(3) = (1\ 2) \] but \[ (2\ 3)(1\ 2\ 3) = (1\ 3) \] \end{example*} \begin{notation*} When using cycle notation, we often suppress 1-cycles. \end{notation*} \begin{theorem} Every permutation can be written as a product of disjoint cycles (in an essentially unique way). \end{theorem} \begin{example*} \begin{align*} \sigma &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 7 & 6 & 3 & 1 & 9 & 8 \end{pmatrix} \\ &= (1\ 2\ 4\ 7)(3\ 5\ 6)(8\ 9) \end{align*} \end{example*} \begin{proof} Let $a_1 \in \{1, 2, \dots, n\} = X$. Consider $a_1$, $\sigma(a_1)$, $\sigma^2(a_1)$, \dots. Since $X$ is finite there exists a minimal $j$ such that $\sigma^j(a_1) \in \{a_1, \sigma(a_1), \dots, \sigma^{j - 1}(a_1)\}$. We claim: $\sigma^j(a_1) = a_1$ since if not we can assume \[ \sigma^j(a_1) = \sigma^i(a_i) \] where $j > i \ge 1$. Then this implies \[ \sigma^{j - i}(a_1) = a_1 \] which contradicts the minimality of $j$. So, $(a_1, \sigma(a_1), \dots, \sigma^{j - 1}(a_1))$ is a cycle in $\sigma$. If there exists $b \in X \setminus \{a_1, \sigma(a_1), \dots, \sigma^{j - 1}(a_1)\}$ consider $b, \sigma(b), \dots$. Now we can note that $(b, \sigma(b), \dots, \sigma^{k - 1}(b))$ is disjoint from $(a_1, \sigma(a_1), \dots, \sigma^{j - 1}(a_1))$ since $\sigma$ is a bijection. Continue in this way until all elements of $X$ are reached. \end{proof} \begin{lemma} Let $\sigma$, $\tau$ be disjoint cycles in $S_n$. Then \[ o(\sigma \tau) = \mathrm{lcm}\{o(\sigma), o(\tau)\} .\] \end{lemma} \begin{proof} Let $\mathrm{lcm}\{o(\sigma), o(\tau)\}$ so $o(\sigma) \mid k$ and $o(\tau) \mid k$. Then \begin{align*} (\sigma\tau)^k &= \sigma\tau\sigma\tau \cdots \sigma\tau \\ &= \sigma^k\tau^k \\ &= ee \\ &= e \end{align*} \[ \implies o(\sigma\tau) \mid k \] Now suppose $o(\sigma\tau) = n$. Then \begin{align*} (\sigma\tau)^n &= e \\ \implies \sigma^n\tau^n \\ &= e \end{align*} But $\sigma$, $\tau$ move different elements of $X$ which implies that we must have $\sigma^n = e$ and $\sigma^n = e$, which implies that $o(\sigma) \mid n$ and $o(\tau) \mid n$ which implies that $k \mid n$, and hence \[ o(\sigma\tau) = \mathrm{lcm}\{o(\sigma), o(\tau)\} \] as desired. \end{proof} \begin{proposition} Any $\sigma \in S_n$ (with $n \ge 2$) can be written as a product of transpositions. \end{proposition} \begin{proof} By the previous theorem it is sufficient to show that a $k$-cycle can be written as a product of transpositions. We can do this directly: \[ (a_1,\ a_2,\ \dots,\ a_k) = (a_1,\ a_2)(a_2,\ a_3) \cdots (a_{k -2},\ a_{k - 1})(a_{k - 1},\ a_1) \] \end{proof} \begin{example*} \[ (1\ 2\ 3\ 4\ 5) = (1\ 2)(2\ 3)(3\ 4)(4\ 5) = (1\ 2)(1\ 2)(1\ 2)(2\ 3)(3\ 4)(4\ 5) = (1\ 5)(1\ 4)(1\ 3)(1\ 2) .\] \end{example*} Note that the representation as a product of transpositions is not unique. \begin{definition} Let $\sigma \in S_n$ with $(n \ge 2)$. Then the \emph{sign} of $\sigma$, written $\mathrm{sgn}(\sigma)$ is $(-1)^k$ where $k$ is the number of transpositions in some expression of $\sigma$ as a product of transpositions. \end{definition} \begin{lemma} The function $\mathrm{sgn} : S_n \to \{\pm 1\}$ defined by $\sigma \mapsto \mathrm{sgn}(\sigma)$ is well-defined. i.e. if \begin{align*} \sigma &= \tau_1 \cdots \tau_a \\ &= \tau_1' \cdots \tau_b' \end{align*} with $\tau_i$ and $\tau_i'$ transpositions then \[ (-1)^a = (-1)^b .\] \end{lemma} \begin{proof} Let $c(\sigma)$ denote the number of cycles in a disjoint cycle decomposition of $\sigma$ including 1-cycles, so $c(\id) = n$. Let $\tau$ be a transposition. \begin{claim*} \begin{align*} c(\sigma\tau) = c(\sigma) \pm 1 \equiv c(\sigma) + 1 \pmod{2} \end{align*} \end{claim*} Let $\tau = (k,\ l)$. 2 cases: \begin{enumerate}[(i)] \item $k$, $l$ in different cycles of $\sigma$: \[ (k, a_1, \dots, a_r)(l, b_1, \dots, b_s)(k, l) = (k, b_1, b_2, \dots, b_s, l, a_1, \dots, a_r) \] and hence $c(\sigma\tau) = c(\sigma) - 1$. \item when $k$, $l$ in same cycle in $\sigma$ we have \[ (k, a_1, \dots, a_r, l, b_1, \dots, b_s) (k, l) = (k, b_1, \dots, b_s)(l, a_1, \dots, a_r) \] \[ \implies c(\sigma\tau) = c(\sigma) + 1 .\] \end{enumerate} Now assume \begin{align*} \sigma &= \id \cdot \tau_1 \cdots \tau_a \\ &= \id \cdot \tau_1' \cdots \tau_a' \end{align*} Then \begin{align*} c(\sigma) &\equiv n + a \pmod{2} \\ &\equiv n + b \pmod{2} \\ \implies a &\equiv b \pmod{2} \\ \implies (-1)^a &= (-1)^b \qedhere \end{align*} \end{proof} \subsubsection*{Aside} Subgroup lattice of $D_6 = \{e, r, r^2, t, rt, r^2t\}$: \begin{center} \begin{tsqx} label $D_6$ @ (0,1) label $$ @ (-1.5,0) label $$ @ (-0.5,0) label $$ @ (0.5,0) label $$ @ (1.5,0) label $\{e\}$ @ (0,-1) (-1.5,0.1)--(0,0.9)--(-0.5,0.1) (1.5,0.1)--(0,0.9)--(0.5,0.1) (-1.5,-0.1)--(0,-0.9)--(-0.5,-0.1) (1.5,-0.1)--(0,-0.9)--(0.5,-0.1) \end{tsqx} \end{center} So we just connect subgroups with a line if one is a subgroup of another. \begin{theorem} Let $n \ge 2$. The map \[ \mathrm{sgn} : (S_n, \circ) \to (\{\pm 1\}, \times) \qquad\qquad \sigma \mapsto \mathrm{sgn}(\sigma) \] is a well-defined non-trivial homomorphism. \end{theorem} \begin{proof} \begin{itemize} \item Well-defined as proven earlier. \item $\mathrm{sgn}\left( (1\ 2) \right) = -1$, so non-trivial. \item Now we prove that it is a homomorphism: \\ Let $\alpha, \beta \in S_n$ with $\mathrm{sgn}(\alpha) = (-1)^k$, $\mathrm{sgn}(\beta) = (-1)^k$, so there exists transpositions $\tau_i$ and $\tau_i'$ such that \[ \alpha = \tau_1 \cdots \tau_k \qquad \beta = \tau_1' \cdots \tau_l' \] \[ \implies \alpha\beta = \tau_1 \cdots \tau_k \tau_1' \cdots \tau_l' \] \begin{align*} \implies \mathrm{sgn}(\alpha\beta) &= (-1)^{k + l} \\ &= (-1)^k (-1)^l \\ &= \mathrm{sgn}(\alpha) \mathrm{sgn}(\beta) \end{align*} \end{itemize} \end{proof} \begin{definition} $\sigma$ is an \emph{even} permutation if $\mathrm{sgn}(\sigma) = 1$ and an odd permutation if $\mathrm{sgn}(\sigma) = -1$. \end{definition} \begin{corollary} The even permutations of $S_n$ ($n \ge 2$) form a subgroup called the \emph{alternating group} and denoted $A_n$. \end{corollary} \begin{proof} \begin{itemize} \item Identity: $\id = (1\ 2)(1\ 2) \in A_n$. \eqitem \begin{align*} \mathrm{sgn}(\sigma) = 1 &= \mathrm{sgn}(\rho) \\ \implies \mathrm{sgn}(\sigma\rho) &= \mathrm{sgn}(\sigma)\mathrm{sgn}(\rho) = 1 \end{align*} by the previous theorem \item If \[ \sigma = \tau_1 \cdots \tau_k \] then \[ \sigma^{-1} = \tau_k \cdots \tau_1 \] \[ \implies \mathrm{sgn}(\sigma) = \mathrm{sgn}(\sigma^{-1}) \] \item Associativity is inherited. \end{itemize} \end{proof} \begin{example*} \phantom{.}\\[-2.5\baselineskip] \begin{align*} A_4 = \{ &e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), \\ &(1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), \\ &(2\ 3\ 4), (2\ 4\ 3), (1\ 3\ 4), (1\ 4\ 3)\} \end{align*} \end{example*} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$ (exercise - see later) \item cycles of even length are odd, and cycles of odd length are even. \item $A_n = \mathrm{Ker}(\mathrm{sgn})$, hence a subgroup. (question 9, sheet 1) \end{enumerate} \newpage \section{Cosets and Lagrange} \begin{definition}[Cosets] Let $H \le G$ and $g \in G$. The \emph{left coset $gH$} is defined to be \[ \{gh : h \in H \} .\] Similarly the right coset is given by \[ Hg = \{ hg : h \in H \} .\] \end{definition} \begin{example*} \[ S_r = \{e, (1\ 2\ 3), (1\ 3\ 2), (1\ 2), (1\ 3), (2\ 3) \} .\] \[ H = \{\id, (1\ 2\ 3), (1\ 3\ 2)\} = A_3 .\] \[ (1\ 2)H = \{(1\ 2), (1\ 2)(1\ 2\ 3), (1\ 2)(1\ 3\ 2)\} = \{(1\ 2), (2\ 3), (1\ 3)\} \] \[ (1\ 2\ 3)H = H \] Note, $H \dot\cup (1\ 2)H = S_3$. \end{example*} \begin{notation*} We sometimes use $\dot\cup$ instead of $\cup$ if we wish to emphasise that we have a disjoint union. \end{notation*} \begin{lemma} Let $H \le G$ and $g \in G$. Then there is a bijection between $H$ and $gH$. In particular if $H$ is finite then \[ |H| = |gH| .\] \end{lemma} \begin{proof} Define \[ \theta_g : H \to gH \qquad h \mapsto gh \] We show $\theta_g$ is a bijection. \begin{enumerate} \item[surj:] If $gh \in gH$ then $\theta_g(h) = gh$. \item[inj:] If \begin{align*} \theta_g(h_1) &= \theta_g(h_2) \\ \implies gh_1 &= gh_2 \\ \implies h_1 &= h_2 \end{align*} \end{enumerate} \begin{lemma} The left cosets of $H$ in $G$ form a partition called of $G$ i.e. \begin{enumerate}[(i)] \item each $g \in G$ lies in some left coset of $H$ in $G$. \item if $aH \cap bH \neq \emptyset$ for some $a, b \in G$ then $aH = bH$. \end{enumerate} \end{lemma} \begin{center} \begin{tsqx} (-3,-1)--(-3,1)--(3,1)--(3,-1)--(-3,-1) (-2,-1)--(-2,1) (-1,-1)--(-1,1) (0,-1)--(0,1) (2,-1)--(2,1) label $H = eH$ @ (-2.5,0) label $g_1H$ @ (-1.5,0) label $g_2H$ @ (-0.5,0) label $g_{k - 1}H$ @ (2.5,0) label $\cdots$ @ (1,0) label $G$ @ (3.1,-1.1) \end{tsqx} \end{center} \begin{proof} \begin{enumerate}[(i)] \item $g \in gH$. \item Suppose $c \in aH \cup bH$. Then we claim that $aH = cH = bH$. Now $c \in aH$ so $c = ak$ for some $k \in H$ \begin{align*} \implies cH &= \{ch : h \in H\} \\ &= \{akh : h \in H\} \subseteq aH \end{align*} Similarly, $a = ck^{-1} \in cH$ \[ \implies aH \subseteq cH \] So $aH = cH$. Similarly $cH = bH$. \end{enumerate} For example $S_n = A_n \dot\cup (1\ 2) A_n$. \end{proof} \begin{lemma} Let $H \le G$, $a, b \in G$. Then \[ aH = bH \iff a^{-1}b \in H .\] \end{lemma} \begin{enumerate} \item[$(\Rightarrow)$] $b \in bH = aH$ \[ \implies b = ah \qquad\text{for some $h \in H$}\] \[ \implies a^{-1}b = h \in H \] \item[$(\Leftarrow)$] Suppose $a^{-1}b = k \in H$. \[ \implies b = ak \in aH \] also $b \in bH$, \[ \implies aH = bH \qquad\text{by earlier lemma} \] \end{enumerate} \end{proof} \begin{theorem}[Lagrange's Theorem] Let $H$ be a subgroup of the finite group $G$. Then the order of $H$ divides the order of $G$ (i.e. $|H| \,\big|\, |G|$). \end{theorem} \begin{proof} By Lemma 10 $G$ is partitioned into distinct cosets of $H$, say \[ G = g_1H \dot\cup g_2H \dot\cup \cdots \dot\cup g_kH \] ($g_1 = e$ say) \\ By Lemma 9 \[ |g_iH| = |H| \qquad 1 \le i \le k\] \[ \implies |G| = |H|k \] so the order of $H$ divides the order of $G$. \end{proof} \begin{definition}[14] Let $H \le G$. The \emph{index} of $H$ in $G$ is the number of left cosets of $H$ in $G$, denoted $|G:H|$. \end{definition} \begin{remark*} \begin{enumerate}[(i)] \item If $G$ is finite, $|G:H| = \frac{|G|}{|H|}$. But can have $|G:H|$ finite but $G$ and $H$ both infinite. \item We write $(G:H)$ for the set of left cosets of $H$ in $G$. \end{enumerate} \end{remark*} \begin{corollary}[Lagrange's Corollary] Let $G$ be a finite group and $g$ an element of $G$. Then $o(g) \,\big|\, |G|$. In particular, $g^{|G|} = e$. \end{corollary} \begin{proof} Note \[ \langle g \rangle = \{e, g, \dots, g^{n - 1}\} \] where $o(g) = n$. Then \[ o(g) = | \langle g \rangle | \,\big|\, |G| \] by Lagrange's Theorem \[ \implies g^{|G|} = e .\] \end{proof} \begin{corollary} If $|G| = p$ for some prime $p$, then $G$ is cyclic. \end{corollary} \begin{proof} Let $e \neq g$. Then \[ \{e\} \neq \langle g \rangle \le G \] BY Lagrange \[ 1 \neq | \langle g \rangle | \,\big|\, |G| = p .\] \[ \implies | \langle g \rangle | = p = |G| \] \[ \implies \langle g \rangle = |G| \] i.e. $G$ is cyclic. \end{proof} \begin{definition}[Euler Totient Function] Let $n \in \NN$ then we define \[ \varphi(n) = |\{ 1 \le a \le n : (a, n) = 1 \}| \] so for example $\varphi(12) = |\{1, 5, 7, 11\}| = 4$. \end{definition} \begin{theorem}[Fermat-Euler Theorem] Let $n \in \NN$, $a \in \ZZ$ with $(a, n) = 1$. Then \[ a^{\varphi(n)} \equiv 1 \pmod{n} .\] \end{theorem} \noindent Fermat's Little Theorem is a special case: \\ $P$ prime, $a \in \ZZ$, $(a, p) = 1$, then \[ a^{p - 1} \equiv 1 \pmod{p} .\] We prove Fermat-Euler Theorem by using Lagrange, first we need to set it up. Let $n \in \NN$, \[ R_n = \{0, 1, \dots, n - 1\} \] \[ R_n^* = \{a \in R_n : (a, n) = 1 \} .\] Define $\times_n$ to be multiplication modulo $n$. \begin{claim*} $(R_n^*, \times_n)$ is a group. \end{claim*} \noindent Notation, $u \in \ZZ$ then $\ul{u} \in R_n$ such that $u \equiv \ul{u} \pmod{n}$. Closure: \[ (a, n) = 1 = (b, n) \implies (ab, n) = 1 \implies (\ul{ab}, n) = 1 \] Identity is 1, and clearly associative. \\ Inverses: Let $a \in R_n^*$ with $(a, n) = 1$. \[ \implies \exists u, v \in \ZZ \] such that $au + vn = 1$ (Bezout's Theorem) \[ \implies au \equiv 1 \pmod{n} \] Then $\ul{u} \in R_n^*$ is $a^{-1}$. \bigskip \noindent Now we can prove Fermat Euler Theorem: \begin{proof} Note $|R_n^*| = \varphi(n)$ \[ a \equiv \ul{a} \pmod{n} \qquad \ul{a} \in R_n^* \] By Corollary 2 \[ \ul{a}^{\varphi(n)} = \ul{a}^{|R_n^*|} = 1 \qquad \text{in $R_n^*$} \] \[ \implies a^{\varphi(n)} \equiv 1 \pmod{n} \qedhere \] \end{proof} \newpage \section{Normal Subgroups, Quotient Groups and Homomorphisms} Given a group $G$, subgroup $H$ of $G$ and the set of left cosets of $H$ in $G$, $(G : H)$, we would like to define a group operation on the cosets, $\circ$, so that $((G : H), \circ)$ is a group. We would like \[ (gH) \circ (kH) = gkH .\] When does this work? \[ gHkH = gkHH = gkH \iff kH = Hk \] This motivates the following definition: \begin{definition}[15] A subgroup $K$ of $G$ is called \emph{normal} if $gK = Kg$ for all $g \in G$. We write $K \normalsub G$. \end{definition} \begin{example*} \[ K = \{\id, (1\ 2\ 3), (1\ 3\ 2)\} \normalsub S_3 .\] \[ (1\ 2)K = \{(1\ 2), (2\ 3), (1\ 3)\} = K(1\ 2) \] \[ (1\ 3)K = K(1\ 3) \] \[ (2\ 3)K = K(2\ 3) \] And $(1\ 2\ 3)K = K = K(1\ 2\ 3)$ etc. But $H = \{1, (1\ 2)\}$ is not normal in $S_3$: \[ (1\ 3)H = \{(1\ 3), (1\ 2\ 3)\} \] \[ H(1\ 3) = \{(1\ 2), (1\ 3\ 2)\} .\] \end{example*} \begin{proposition}[4] Let $K \le G$. TFAE (the following are equivalent): \begin{enumerate}[(i)] \item $gK = Kg\,\,\forall g \in G$ \item $gKg^{-1} = K\,\,\forall g \in G$ \item $gkg^{-1} \in K\,\,\forall k \in K, g \in G$. \end{enumerate} \end{proposition} \begin{proof} (i) $\implies$ (ii): \begin{align*} gKg^{-1} &= \{gkg^{-1} : k \in K\} \\ &= (gK)g^{-1} \\ &= (Kg)g^{-1} \\ &= K \end{align*} (ii) $\implies$ (iii): trivial. \\ (iii) $\implies$ (i): For any $k \in K$, $g \in G$, there exists $k' \in K$ such that \[ gkg^{-1} = k' \] \[ \implies gk = k'g \in Kg \] \[ \implies gK \subseteq Kg \] Similarly $g^{-1}kg = k''$ for some $k'' \in K$ \[ \implies kg = gk'' \] \[ \implies Kg \subseteq gK \] \[ \implies gK = Kg .\] \end{proof} \subsubsection*{Examples} \begin{itemize} \item $\{e\} \normalsub G$, $G \normalsub G$. \item If $G$ is abelian then all subgroups are normal. Since if $k \in K$, $g \in G$, $K \normalsub G$ follows from \[ gkg^{-1} = gg^{-1}k = k \in K .\] \item Kernels of homomorphisms are normal subgroups (Sheet 1, question 9). \[ \implies A_n \normalsub S_n \] since $A_n = Ker(\mathrm{sgn})$. \item $D_{2n} = \langle r, y : r^n = 1 = t^2, trt = r^{-1} \rangle$ Then $\langle r \rangle \normalsub D_{2n}$. Clearly $r^ir^jr^{-i} = r^j \in \langle r \rangle$. Also \begin{align*} (r^it)r^j(r^it)^{-1} &= r^itr^jtr^{-1} \\ &= r^i - j - i = r^{-j} \in \langle r \rangle \end{align*} Or we can use the following lemma. \begin{lemma} If $K \le G$ and the index of $K$ in $G$ is 2, then $K \normalsub G$. \end{lemma} \begin{proof} \begin{align*} G &= K \dot\cup gK \\ &= K \dot\cup Kg \\ \implies gK &= Kg \,\,\forall g \in G \end{align*} \end{proof} \end{itemize} \begin{theorem} If $K \normalsub G$, the set $(G : K)$ of left cosets of $K$ in $G$ is a group under coset multiplication, i.e. \[ gK \cdot hK = ghK \] This group is called the \emph{quotient group} (or factor group of $G$ by $K$ and denoted $G / K$. \end{theorem} \begin{proof} We need to check that cost multiplication is well-defined, i.e. if \[ gK = \hat{g}K \] and \[ hK = \hat{h}K \] then \[ ghK = \hat{g}\hat{h}K .\] By Lemma 11, \[ gK = \hat{g}K \implies \hat{g}^{-1}g \in K \] \[ hK = \hat{h}K \implies \hat{h}^{-1}h \in K \] Now $\hat{g}^{-1}g \in K$ \[ \implies h^{-1}\hat{g}^{-1}gh \in K \] since $K \normalsub G$. \[ \implies \hat{h}^{-1}hh^{-1}\hat{g}^{-1}gh \in K \] \[ \implies \hat{h}^{-1}\hat{g}^{-1}gh \in K \] \[ \implies ghK = \hat{g}\hat{h}K \] by Lemma 11. So coset multiplication is well-defined. Group axioms now follow easily: \begin{itemize} \item By construction coset multiplication is closed as $ghK \in (G : H)$ $g_1h \in G$. \item identity given by $eK = K$ \item $(gK)^{-1} = g^{-1}K$. \item associativity holds since it does in $G$, to check: \begin{align*} (gKhK)lK &= (gh)lK \\ &= g(hl)K \\ &= gk(HklK) \end{align*} \end{itemize} \end{proof} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $S_n / A_n = (\{A_n, (1\ 2)A_n\}, \circ) \cong C_2$. \item $D_8 = \langle a, b : a^4 = 1 = b^2, bab = a^{-1} \langle$ Let $K = \{1, a^2\}$. \begin{claim*} $K \normalsub D_8$. \end{claim*} \begin{align*} (a^i b)a^2(a^ib)^{-1} &= a^i ba^2ba^{-i} \\ &= a^{-2} = a^2 \in K \\ a^ia^2a^{-1} &= a^2 \in K \end{align*} \[ \frac{|D_8|}{|K|} = 4 = |(D_8 : K)| \] 4 distinct left cosets: \begin{align*} K &= \{1, a^2\} \\ aK &= \{a, a^3\} \\ bK &= \{b, ba^2\} = \{b, a^2b\} \\ abK &= \{ab, aba^2\} = \{ab, a^3b\} \end{align*} \begin{center} \begin{tabular}{c|cccc} $\circ$ & $K$ & $aK$ & $bK$ & $abK$ \\ \hline $K$ & $K$ & $aK$ & $bK$ & $abK$ \\ $aK$ & $aK$ & $K$ & $abK$ & $bK$ \\ $bK$ & $bK$ & $abK$ & $K$ & $aK$ \\ $abK$ & $abK$ & $bK$ & $aK$ & $K$ \end{tabular} \end{center} Note: $aKaK = a^2K = K \cong \text{example 9}$. \item Recall the subgroups of $(\ZZ, +)$ are precisely the groups $(n\ZZ, +)$ where $n \in \NN$, \[ n\ZZ = \{nk : k \in \ZZ\} .\] Since $(\ZZ, +)$ abelian, all subgroups are normal, $n\ZZ \normalsub \ZZ$. Suppose $n = 5$, cosets given by, \begin{align*} 5\ZZ &= \{5k : k \in \ZZ\} \\ 1 + 5\ZZ &= \{1 + 5k : k \in \ZZ\} \\ 2 + 5\ZZ &= \{2 + 5k : k \in \ZZ\} \\ 3 + 5\ZZ &= \{3 + 5k : k \in \ZZ\} \\ 4 + 5\ZZ &= \{4 + 5k : k \in \ZZ\} \end{align*} \[ (1 + 5\ZZ) + (2 + 5\ZZ) = 3 + 5\ZZ .\] \[ (3 + 5\ZZ) + (4 + 5\ZZ) = 7 + 5\ZZ = 2 + 5\ZZ .\] \[ (\ZZ/5\ZZ, \circ) \cong (\{0, 1, 2, 3, 4\}, +_5) \] \[ n + 5\ZZ \to \ul{n} \qquad\text{such that}\qquad n \equiv \ol{n} \pmod{5} \] $\ol{n} \in \{0, 1, 2, 3, 4\}$. Well-defined map: \\ if $n + 5\ZZ = m + 5\ZZ$ then \begin{align*} -m + n &\in 5\ZZ \\ \implies -m + n &\equiv 0 \pmod{5} \\ \implies n &\equiv m \pmod{5} \\ \implies \ol{n} &= \ol{m} \end{align*} homomorphism: \begin{align*} \theta((n + 5\ZZ) + (m + 5\ZZ)) &= \theta(n + m + 5\ZZ) \\ &= \ol{n + m} \\ &= \ol{n} +_5 \ol{m} \\ &= \theta(n + 5\ZZ) + \theta(m + 5\ZZ) \end{align*} In general \[ (\ZZ/n\ZZ, \circ) \cong (\{0, 1, 2, 3, 4\}, +_n) .\] \end{enumerate} \noindent Recall $\theta : G \to H$ is a homomorphism if \[ \theta(xy) = \theta(x)\theta(y) \] \[ \mathrm{Im}(\theta) = \{\theta(g) : g \in G\} \le H \] \[ \mathrm{Ker}(\theta) = \{g \in G : \theta g = e_H\} \normalsub G \] \begin{theorem}[First Isomorphism Theorem] Let $G$, $H$ be groups and $\theta : G \to H$ be a group homomorphism. Then $\mathrm{Im}(\theta) \le H$ and $\mathrm{Ker}(\theta) \normalsub G$ and $G / \mathrm{Ker}(\theta) \cong \mathrm{Im}(\theta)$. \end{theorem} \begin{definition}[16] A group is called \emph{simple} if its only normal subgroups are $\{e\}$ and $G$. For example $C_p$ for some prime $p$. \end{definition} \begin{definition*}[Injection] Suppose $f : A \to B$. Then $f$ is \emph{injective} if for any $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$ then $a_1 = a_2$. (each element of $A$ maps to a different element of $B$). \end{definition*} \begin{definition*}[Surjection] Suppose $f : A \to B$. Then $f$ is \emph{surjective} if given $b \in B$, $\exists a \in A$ such that $f(a) = b$. (every element in $B$ is `hit'). \end{definition*} \begin{definition}[Bijection] A function is \emph{bijective} if it is both injective and surjective. \end{definition} Now we can prove the first isomorphism theorem. \begin{proof} Need to construct an isomorphism $\theta : G / \mathrm{Ker}\theta \to \mathrm{Im}\theta$ where $gK \mapsto \theta(g)$. Let $K = \mathrm{Ker}\theta$; need $\theta$ well-defined: \\ Suppose $gK = hK$, then \begin{align*} h^{-1}g &\in K \\ \implies \theta(h^{-1}g) &= e_H \\ \implies \theta(h)^{-1} \theta(g) &= e_H \qquad \text{since $\theta$ is a homomorphism} \\ \implies \theta(g) &= \theta(h) \\ \implies \theta(gK) = \theta(hK) \end{align*} Need $\theta$ a homomorphism: \begin{align*} \theta(gKhK) &= \theta(ghK) \\ &= \theta(gh) \\ &= \theta(g) \theta(h) \qquad \text{since $\theta$ is a homomorpism} \\ &= \theta(gK) \theta(hK) \end{align*} $\theta$ surjective: \[ \theta(g) \in \mathrm{Im} \theta \implies \theta(gK) = \theta(g) \] $\theta$ injective: \\ Suppose $\theta(gK) = \theta(hK)$ then \begin{align*} \theta(g) &= \theta(h) \\ \implies \theta(h)^{-1} \theta(g) &= e_H \\ \theta(h^{-1}g) &= e_H \\ \implies h^{-1}g &\in K \\ \implies gK &= hK \end{align*} \end{proof} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $\mathrm{sgn} : S_n \to (\{\pm 1\}, \times)$ with $\sigma \mapsto \mathrm{sgn}(\sigma)$. Then \begin{align*} \mathrm{Im}(\mathrm{sgn}) &= (\{\pm 1\}, \times) \\ \mathrm{Ker}(\mathrm{sgn}) &= A_n \\ \implies S_n / A_n &\cong (\{\pm 1\}, \times) \cong C_2 \\ \implies |A_n| &= |S_n| / 2 \end{align*} \item $\theta : (\RR, +) \to (\CC \setminus \{0\}, \times)$ defined by $r \mapsto e^{2\pi i r}$. Note, $\theta(r + s) = \theta(r)\theta(s)$. Also, \[ \mathrm{Im}(\theta) = S' = \{z \in \ZZ: |z| = 1\} \qquad \text{unit circle} \] \[ \mathrm{Ker}(\theta) = (\ZZ, +) \normalsub (\RR, +) \] \[ (\RR, +) / (\ZZ, +) \cong S' \] \item Recall \[ \mathrm{GL}_2(\RR) = \{\text{$2 \times 2$ matrices, entries in $\RR$, $\det \neq 0$}\} \] Then we observe that $\det : \mathrm{GL}_2(\RR) \to (\RR \setminus \{0\}, \times)$, $M \mapsto \det(M)$ is a homomorphism since \[ \det(AB) = \det(A) \det(B) .\] \[ \mathrm{Im}(\det) = (\RR \setminus \{0\}, \times) \] since \[ \det \begin{pmatrix} \alpha & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \alpha \in \RR \setminus \{0\} .\] \begin{align*} \mathrm{Ker}(\det) &= \mathrm{SL}_2(\RR) \\ &= \{\text{$2 \times 2$ matrices, entries in $\RR$, $\det = 1$.}\} \\ \implies \mathrm{SL}_2(\RR) &\normalsub \mathrm{GL}_2(\RR) \end{align*} and $\mathrm{GL}_2(\RR) / \mathrm{SL}_2(\RR) \cong (\RR \setminus \{0\}, \times)$. \item $\theta : (\ZZ, +) \to (\{0, 1, \dots, n - 1\}, +_n)$ with $n \mapsto \ul{n}$. \[ \mathrm{Ker}\theta = n\ZZ \] \end{enumerate} \begin{remark*} Let $K \normalsub G$. Then $K$ is the kernel of the natural surjective homomorphism \begin{align*} \theta : G &\to G / K \\ g \mapsto gK \end{align*} Thus homomorphic images of $G$ are equivalent to quotients of $G$. \end{remark*} \begin{lemma} A homomorphism $\theta : G \to H$ is injective if and only if $\mathrm{Ker} \theta = \{e_G\}$. \end{lemma} \begin{proof} \begin{enumerate} \item[($\Rightarrow$)] Suppose $\theta(g) = e_H = \theta(e_G)$. Injective implies that $g = e_G$. \item[($\Leftarrow$)] \phantom{.} \\[-2\baselineskip] \begin{align*} \theta(g) &= \theta(h) \\ \implies \theta(h)^{-1} \theta(g) &= e_H \\ \implies \theta(h^{-1}g) &= e_H \\ \implies h^{-1}g &\in \mathrm{Ker}\,\,\theta = \{e_G\} \\ \implies h^{-1}g &= e_G \\ \implies h = g \end{align*} Recall, $N \normalsub G$, $g \in G$, $n \in N$ implies \begin{align*} gng^{-1} &\in N \\ gng^{-1} &= \hat{n} \qquad \text{for some $\hat{n} \in N$} \\ &= gn = \hat{n}g \end{align*} \end{enumerate} \end{proof} \begin{lemma} \begin{enumerate}[(i)] \item Let $N \normalsub G$ and $H \le G$. Then $NH = \{nh : n \in N, h \in H\} \le G$. \item Let $N \normalsub G$, $M \normalsub G$, then \[ NM \normalsub G .\] \end{enumerate} \end{lemma} \begin{proof} \begin{enumerate}[(i)] \item closure, $nh$, $\ul{n}\ul{h} \in NH$, then \[ n\ub{h\ul{n}}_{\hat{n}h}\ul{h} = n\hat{n}h \ul{h} \in NH \] identity: $\id = e = ee \in NH$ \\ inverse: \begin{align*} (nh)^{-1} &= h^{-1}n^{-1} \\ &= \hat{n} h^{-1} \qquad \text{for some $\hat{n} \in N$.} \\ &\in NH \end{align*} \item check normality \[ g(nm) g^{-1} = \ub{gng^{-1}}_{\in N}\ub{gmg^{-1}}_{\in M} \in NM \] \end{enumerate} \end{proof} \newpage \section{Direct products and Small Groups} \subsection{Direct Products} Let $H$ and $K$ be groups. We construct the (external) \emph{direct product}, $H \times K$, to be the set \[ \{(h, k) : h \in H, k \in K\} \] with operation \[ (h_1, k_1) * (h_2, k_2) = (h_1 *_H h_2, k_1 *_K k_2) = (h_1h_2, k_1k_2) \] i.e. componentwise multiplication. \\ Then $(H \times K, *)$ is a group, which can verify easily as follows: \begin{enumerate} \item[closure] $H$ group implies $h_1h_2 \in H$ and $K$ group implies $k_1k_2 \in K$. \item[identity] $(e_H, e_K)$ \item[inverse] $(h, k)^{-1} = (h^{-1}, k^{-1})$ \item[associativity] since group operations in both $H$ and $K$ are associative. \end{enumerate} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item If $H$, $K$ both finite, then $|H \times K| = |H||K|$. \item $H \times K$ abelian if and only if \begin{align*} (h_1, k_1) * (h_2, k_2) &= (h_2, k_2) * (h_1, k_1) \,\,\,\forall h_1, h_2 \in H, k_1, k_2 \in K \\ \iff (h_1h_2, k_1k_2) &= (h_2h_1, k_2k_1) \\ \iff h_1h_2 = h_2h_2 \qquad &\text{and} \qquad k_1k_2 = k_2k_1 \\ \iff \text{$H$ abelian } &\text{and} \text{ $K$ abelian} \end{align*} \item $H \cong \{(h, e_K) : h \in H\} \le H \times k$ and $K \cong \{(e_H, k) : k \in K\} \le H \times K$. \end{enumerate} \subsubsection*{Examples} \begin{enumerate}[(i)] \item \begin{align*} C_2 \times C_2 &= \langle x \rangle \times \langle y \rangle \\ &= \{e, x\} \times \{e, y\} \end{align*} elements $(e, e), (x, e), (e, y), (x, y)$. \begin{center} \begin{tabular}{c|cccc} $\circ$ & $(e, e)$ & $(x, e)$ & $(e, y)$ & $(x, y)$ \\ \hline $(e, e)$ & $(e, e)$ & $(x, e)$ & $(e, y)$ & $(x, y)$ \\ $(x, e)$ & $(x, e)$ & $(e, e)$ & $(x, y)$ & $(e, y)$ \\ $(e, y)$ & $(e, y)$ & $(x, y)$ & $(e, e)$ & $(x, e)$ \\ $(x, y)$ & $(x, y)$ & $(e, y)$ & $(x, e)$ & $(e, e)$ \end{tabular} \end{center} Klein 4-group $\cong$ example 9. Note $o((x, e)) = o(e, y)) = o(x, y)) = 2$. So $C_2 \times C_2 \not\cong C_4$. \item However, $C_2 \times C_3 \cong C_6$. (sheet 2, question 10) \end{enumerate} \begin{lemma} Let $(h, k) \in H \times K$ where $H$, $K$ groups. Then \[ o((h, k)) = \mathrm{lcm}(o(h), o(k)) \] \end{lemma} \begin{proof} Let $n = o((h, k))$ and $m = \mathrm{lcm}(o(h), o(k))$. Then $h^m = e_H$, $k^m = e_K$. So $(h, k)^m = (h^m, k^m) = (e_H, e_K)$ and hence $n \mid m$ by Lemma 5. Also, \begin{align*} (e_H, e_K) &= (h, k)^n \\ &+ (h^n, k^n) \\ \implies o(h) \mid n, &o(k) \mid n \\ \implies m &\mid n \end{align*} Thus we know when $C_m \times C_n \cong C_{mn}$ (Sheet 2, q10). \end{proof} \bigskip \noindent Recognising when a group can be written as a direct product of subgroups is trickier. \begin{proposition}[5] Let $G$ be a group with subgroups $H$ and $K$, then if \begin{enumerate}[(i)] \item each element of $G$ can be written as $hk$ for $h \in H$ and $k \in K$; \item $H \cap K = \{e\}$; \item $hk = kh \,\,\,\forall h \in H, k \in K$, \end{enumerate} Then $G \cong H \times K$ and we call $G$ the (internal) direct product of $H$ and $K$. \end{proposition} \begin{proof} Let $\theta : H \times K \to G$ defined by $(h, k) \mapsto hk$. First we check that $\theta$ is a homomorphism: \begin{align*} \theta((h_1, k_1)(h_2, k_2)) &= \theta((h_1h_2, k_1k_2)) \\ &= h_1h_2k_1k_2 \\ &= h_1k_1h_2k_2 \\ &= \theta((h_1, k_1))\theta((h_1, k_2)) \end{align*} To check that $\theta$ is injective, \begin{align*} \theta((h_1, k_1)) &= \theta((h_2, k_2)) \\ \implies h_1k_2 &= h_2k_2 \\ \implies h^{-1}h_1 &= k_2k_1^{-1} \in H \cap K = \{e\} \\ \implies h_1 = h_2 \qquad &\text{and} \qquad k_1 = k_2 \end{align*} so $(h_1, k_1) = (h_2, k_2)$. $\theta$ is surjective by (i), so $\theta$ is an isomorphism as required. \end{proof} \begin{remark*} There are alternative equivalent definitions of internal direct product. $G$ is the internal direct product of subgroups $H$ and $K$ if \begin{enumerate}[(i)'] \item $H \normalsub G$, $K \normalsub G$; \item $H \cap K = \{e\}$; \item $HK = G$. \end{enumerate} \end{remark*} \noindent Need to show (i), (ii), (iii) are equivalent to (i)', (ii)', (iii)'. \begin{enumerate} \item[($\Rightarrow$)] we show $K \normalsub G$. Let $k \in K$, $g = h_1k_1 \in G$ by (i). Then \[ gkg^{-1} = h_1k_1 kk_1^{-1}h^{-1} = h_1 \ul{k} h^{-1} = \ul{k} \in K \] Similarly $H \normalsub G$. \item[($\Leftarrow$)] Need to show (iii). Let $h \in H$, $k \in K$ and consider \[ h^{-1}\ub{k^{-1}hk}_{\in H} \in H \qquad \text{since $H \normalsub G$.} \] Similarly, this expression is in $K$, so \begin{align*} h^{-1}k^{-1}hk &\in H \cap K = \{e\} \\ \implies hk = kh \end{align*} \end{enumerate} \begin{example*} $G = \langle a \rangle \cong C_{15}$. Then \begin{align*} C_5 &\cong \langle a^3 \rangle = H \normalsub G \\ C_3 &\cong \langle a^5 \rangle = K \normalsub G \\ H \cap K &= \langle a^3 \rangle \cap \langle a^5 \rangle = \{e\} \\ a^k &= (a^3)^{2k}(a^5)^{-k} \in HK \\ \implies C_{15} &\cong C_3 \times C_5 \cong K \times H \end{align*} \end{example*} \subsection{Small Groups} Recall $D_{2n}$, the symmetries of a regular $n$-gon, generated by \[ r : z \mapsto e^{2i \pi/n} z \] \[ t : z \mapsto \ul{z} \] Then the elements of $D_{2n}$ are \[ \{e, \ub{r, \dots, r^{n - 1}}_{\text{rotations}}, \ub{t, rt, \dots, rt^{n - 1}}_{\text{reflection}}\} \] \bigskip \noindent Now suppose $G$ a group, $n \ge 3$ with $|G| = 2n$, and $\exists b \in G$ with $o(b) = n$ and $a \in G$, $o(a) = 2$ and $aba = b^{-1}$. Then $G \cong D_{2n}$. Note $\langle b \rangle \normalsub G$ since of index 2. Also $a \not\in \langle b \rangle$, since $ab \neq ba$. So $G = \langle b \rangle \cup \langle b \rangle a = \{e, b, \dots, b^{n - 1}, a, ba, \dots, b^{n - 1}a\}$. Furthermore \begin{align*} ab &= b^{-1}a \\ \implies ab^k &= (ab)b^{k - 1} \\ &= b^{-1}ab^{k - 1} \\ &= b^{-2}ab^{k - 2} \\ &= \cdots \\ &= b^{-k}a \end{align*} So, $(b^ka)(b^ka) = b^kb^{-k}aa = e$. We can check that \begin{align*} \theta : D_{2n} &\to G \\ r &\mapsto b \\ t &\mapsto a \end{align*} is an isomorphism. \begin{itemize} \item $|G| = 1$, $G = \{e\}$. \item $|G| = 2 \implies G \cong C_2$ (by Lagrange's Theorem) \item $|G| = 3 \implies G \cong C_3$ \item $|G| = 4$, by Lagrange's Theorem, $1 \neq g \in G$ then $o(g) \mid 4$. If $\exists g \in G$ with $o(g) = 4$ then this implies $G \cong C_4$. Suppose not. Let $1 \neq a \in G \implies o(a) = 2$. Then by sheet 1 q7, $G$ is abelian, so $C_2 \cong \langle a \rangle \normalsub G$. Now let $b \in G \setminus \langle a \rangle$, then $C_2 \cong \langle b \rangle \normalsub G$. Also, $\langle a \rangle \cap \langle b \rangle = \{e\}$. Now consider ab: \begin{itemize} \item if $ab = e \implies a = b^{-1} = b$ \contradiction \item if $ab = a \implies b = e$ \contradiction \item if $ab = b \implies a = e$ \contradiction \end{itemize} So, \begin{align*} G &= \{e, a, b, ab\} \\ &= \langle a \rangle \langle b \rangle \\ &\cong \langle a \rangle \times \langle b \rangle \\ &\cong C_2 \times C_2 \end{align*} Two groups of order 4: $C_4$ and $C_2 \times C_2$, both of which are abelian. \item $|G| = 5 \implies G \cong C_5$ by Lagrange's Theorem. \item $|G| = 6$ then $1 \neq g \in G \implies o(g) \in \{2, 3, 6\}$ by Lagrange. If all non-identity elements have order 2 then $|G|$ is a 2-power, \contradiction. So there exists $b \in G$ such that $o(b) = 3$ (Note if $o(g) = 6$ then $o(g^2) = 3$). Therefore $C_3 \cong \langle b \rangle \normalsub G$ since of index 2. Let $a \in G \setminus \langle b \rangle$. Hence $a^2 \in \langle b \rangle$. (Consider $a \langle b \rangle \in G / \langle b \rangle$). If $a^2 = b$ or $b^2$ then $o(a) = 6 \implies G \cong C_6$. Now suppose $a^2 = e$. Also $aba^{-1} \in \langle b \rangle$. If $aba^{-1} = e$ then $b = e$ which is a contradiction. If $aba^{-1} = b$ then $ab = ba \implies o(ab) = 6 \implies G \cong C_2$. If $aba^{-1} = b^2$, then in other words we have $aba^{-1} = b^{-1}$, so $G = \langle a, b : a^2 = b^3 = e, aba^{-1} = b^{-1} \rangle \cong D_6$. So there are two groups of order 6, they are $C_6$ and $D_6 \cong S_3$. Note $C_6 \not\cong D_6$ as $C_6$ is abelian and $D_6$ is not. \item $|G| = 7 \implies G \cong C_7$. \item $|G| = 8$. By Lagrange, if $1 \neq g \in G$ then $o(g) \in \{2, 4, 8\}$. If all non-identity elements have order 2 and hence $G$ is abelian. Let $1 \neq a \in G$, $C_2 \cong \langle a \rangle \normalsub G$. Choose $b \not\in \langle a \rangle$, \begin{align*} \langle a, b\rangle &= \{1, a, b, ab\} \\ &= \langle a \rangle \langle b \rangle &\cong \langle a \rangle \times \langle b \rangle \end{align*} Choose $c \in G \setminus \langle a, b \rangle$. Then \begin{align*} G &= \langle a, b \rangle \cup \langle a, b \rangle c \\ &= \langle a, b \rangle \langle c \rangle \\ &\cong \langle a, b \rangle \times \langle c \rangle \\ &\cong \langle a \rangle \times \langle b \rangle \times \langle c \rangle \\ &\cong C_2 \times C_2 \times C_2 \end{align*} Now suppose $\exists g \in G$ such that $o(g) > 2 \implies \exists a \in G, o(a) = 4 \implies C_4 \cong \langle a \rangle \normalsub G$. Let $b \in G \setminus \langle c \rangle \implies b^2 \in \langle a \rangle$. If $b^2 \in \{a, a^3\} \implies o(b) = 8 \implies G \cong C_8$. Now, $bab^{-1} \in \langle a \rangle$ (since $\langle a \rangle G$), so $bab^{-1} = a^i$ for some $i$. This implies \begin{align*} b^2ab^{-2} &= ba^ib^{-1} \\ &= (bab^{-1})^i \\ &= a^{i^2} \end{align*} But $b^2 \in \langle a \rangle \implies b^2ab^{-2} = a$. Hence $i^2 \equiv 1 \pmod{4} \implies i \equiv \pm 1 \pmod{4}$. If $bab^{-1} = a \implies ba = ab$ so $G$ is abelian. If $b^2 = e$ then \begin{align*} G &= \langle a \rangle \cup \langle a \rangle b \\ &= \langle a \rangle \langle b \rangle \\ &\cong \langle a \rangle \times \langle b \rangle \\ &\cong C_4 \times C_2 \end{align*} if $b^2 = a^2$ then $(ba^{-1})^2 = e$ then \begin{align*} G &\cong \langle a \rangle \times \langle ba^{-1} \rangle \\ &\cong C_4 \times C_2 \end{align*} Suppose $bab^{-1} = a^{-1}$. Then if $b^2 = e$ then $G \cong D_8$. However if $b^2 = a^2$; we have a new group $Q_8$, the quaternion group. \begin{definition*}[Quaternion Group] $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ with $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = ij$ and $i^2 = j^2 = k^2 = -1$. So $o(i) = o(j) = o(k) = 4$ and $o(-1) = 2$. Another way to define the group is: \[ \{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} , \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} , \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \} \le \mathrm{SL}_2(\CC) .\] alternatively, \[ Q_8 = \langle a, b \mid a^4 = e, b^2 = a^2, bab^{-1} = a^{-1} \rangle .\] \end{definition*} So 5 isomorphism classes of groups of order 8: \[ \ub{C_8, \quad C_4 \times C_2, \quad C_2 \times C_2 \times C_2}_{\text{abelian}} \] all different, because \begin{itemize} \item $C_8$ has an element of order 8; \item $C_4 \times C_2$ does not have an element of order 4; \item $C_2 \times C_2 \times C_2$ has all elements order 2. \end{itemize} and $D_8$ and $Q_8$ are non-abelian so must be different to these 3. $Q_8$ has 6 elements of order 4, but $D_8$ only has 2, so these are non-isomorphic. \item $|G| = 9$. We will show later that groups of order $p^2$ with $p$ prime are abelian. Either $G \cong C_9$ or all non-identity elements have order 3. Choose $e \neq a \in G$, $b \in G \setminus \langle a \rangle$, then \begin{align*} G &= \langle a \rangle \cup \langle a \rangle b \cup \langle a \rangle b^2 \\ &= \langle a \rangle \langle b \rangle \\ &\cong \langle a \rangle \times \langle b \rangle \\ &\cong C_3 \times C_3 \end{align*} \item $|G| = 10$, must be either $C_{10}$ or $D_{10}$ (question 12, sheet 2) \end{itemize} \begin{remark*} There are lots and lots of groups of order $2^k$; there are about 10 of order 16, and about $5 \times 10^{10}$ of order $2^{10}$. \end{remark*} \newpage \section{Group Actions} It's often easier to understand a group if it's doing something, permuting elements, rotating a square etc. \begin{definition}[16] Let $G$ be a group and $X$ a non-empty set. We say that $G$ \emph{acts} on $X$ if there is a mapping \[ \rho : G \times X \to X \qquad (g, x) \mapsto \rho(g, x) = g(x) \] such that \begin{enumerate}[(i)] \item[(0)] if $g \in G$, $x \in X$, then $\rho(g, x) = g(x) \in X$ (implied by notation $\rho : G \times X \to X$) \item $\rho(gh, x) = \rho(g, \rho(h, x))$ (in shorthand, $gh(x) = g(h(x))$) \item $\rho(e, x) = x$ (in shorthand, $e(x) = x$) \end{enumerate} \end{definition} \subsubsection*{Examples} \begin{enumerate}[(i)] \item trivial action $\rho(g, x) = x \forall x \in X, g \in G$. \item $S_n$ acts on the set $\{1, 2, \dots, n\} = X$ by permuting the elements of $X$. For example, $S_3$ acts on $\{1, 2, 3\}$: \begin{align*} \sigma = (1\ 2) \in S_3 &: \qquad \sigma(1) = 2, \quad \sigma(2) = 1, \quad \sigma(3) = 3 \\ \tau = (1\ 3) \in S_3 & \\ \tau\sigma = (1\ 3)(1\ 2) &= (1\ 2\ 3) \\ (\tau\sigma)(1) = 2 = \tau(2) &= \tau(\sigma(1)) \end{align*} Similarly subgroups of $S_n$ act on $X$. \item $D_8 = \{e, r, r^2, r^3, t, rt, r^2t, r^3t\}$ acts on edges of a square \begin{center} \begin{tsqx} ! size(5cm); A := (1,1) B := (-1,1) C := (-1,-1) D := (1,-1) A--B--C--D--A label $a$ @ (0,1.1) label $b$ @ (1.1,0) label $c$ @ (0,-1.1) label $d$ @ (-1.1,0) (1.5,0)->>(1.5,0.2) (1.5,0)->>(1.5,-0.2) label $t$ @ (1.6,0) arc3 (1.2,1.2) (1.2,1.2)+0.2*dir(0) (1.2,1.2)+0.2*dir(90) BeginArcArrow label $r$ @ (1.2,1.2) \end{tsqx} \end{center} \[ t(a) = c, t(c) = a, t(b) = b, t(d) = d, s(a) = b, \dots \] Also acts on the vertices of a square \begin{center} \begin{tsqx} ! size(5cm); A := (1,1) B := (-1,1) C := (-1,-1) D := (1,-1) A--B--C--D--A label $1$ @ (-1.1,1.1) label $2$ @ (1.1,1.1) label $3$ @ (1.1,-1.1) label $4$ @ (-1.1,-1.1) (1.5,0)->>(1.5,0.2) (1.5,0)->>(1.5,-0.2) label $t$ @ (1.6,0) arc3 (1.2,1.2) (1.2,1.2)+0.2*dir(0) (1.2,1.2)+0.2*dir(90) BeginArcArrow label $r$ @ (1.2,1.2) \end{tsqx} \end{center} \[ t(1) = 3, t(4) = 1, t(2) = 3, t(3) = 2 \] \item $G$ acts on itself by left multiplication. This is called the \emph{left regular action}. \[ G \times \to G \qquad (g, k) \mapsto gk \] Check: \begin{enumerate}[(i)] \item[(0)] $gk \in G$ by closure \item $\rho(gh, k) = ghk$, $\rho(g, \rho(h, k)) = \rho(g, hk) = ghk$. Or, in shorthand $(gh)k = ghk$, $g(h(k)) = g(hk) = ghk$. \item $\rho(e, k) = ek = k$. \end{enumerate} We also have the \emph{right regular action} \[ G \times G \to G \qquad (g, k) \mapsto kg^{-1} \] \item $G$ acts on itself by \emph{conjugation} \[ G \times G \to G \qquad \] Check: \begin{enumerate}[(i)] \item[(0)] $gkg^{-1} \in G$ \item $\rho(gh, k) = (gh)k(gh)^{-1} = ghkh^{-1}g{-1}$ and $\rho(g, \rho(h, k)) = \rho(g, hkh{-1}) = g(hkh^{-1})g^{-1}$ \item $\rho(e, k) = eke^{-1} = k$. \end{enumerate} \item Let $N \normalsub G$, then $G$ acts on $N$ by conjugation \[ G \times N \to N \qquad (g, n) \mapsto gng^{-1} \] \begin{enumerate}[(i)] \item[(0)] $gng^{-1} \in N$ since $N \normalsub G$. \item as above \item as above \end{enumerate} \item Let $H \le G$, then $G$ acts on the set of left cosets, $(G : H)$, of $H$ in $G$. Called the \emph{left coset action} \[ G \times (G : H) \to (G : H) \qquad (g, kH) \mapsto (gkH) \] \begin{enumerate}[(i)] \item[(0)] $gkH \in (G : H)$ \item $\rho(gh, kH) = (gh)kH = ghkH$ and $\rho(g, \rho(h, kH)) = \rho(g, hkH) = ghkH$ \item $\rho(e, kH) = ekH = kH$. \end{enumerate} \end{enumerate} \begin{remark*} Recall a permutation of a set $X$ is a bijection of $X$. We have commented that a bijection $f : X \to X$ has a 2-sided inverse, i.e. there exists $g : X \to X$ such that \[ f \circ g(x) = x = g \circ f(x) \quad \forall x \in X \] Conversely, if $f : X \to X$ is a map with a 2-sided inverse, then $f$ is a bijection: \[ f \circ g(x) = x \quad \forall x \in X \implies \text{surjective} \] \[ g \circ f(x) = x \quad \forall x \in X \implies \text{injective} \] \end{remark*} \begin{note*} 2-sided is necessary, because we can consider $\phi : \ZZ \to \ZZ$ defined by $x \mapsto 2x$ and $\psi \ZZ \to \ZZ$ defined by $2x \mapsto x$ and $2x + 1 \mapsto 0$. Then $\psi\phi = \id$ but $\phi\psi \neq \id$. \end{note*} \begin{lemma} Suppose the group $G$ acts on the non-empty set $X$. Fix $g \in G$, then $\theta_g : X \to X$ defined by $x \mapsto \rho(g, x) = g(x)$ is a permutation of $X$, i.e. $\theta_g \in \mathrm{Sym}(X)$. \end{lemma} \begin{proof} Clearly $\theta_g$ is a map from $X$ to $X$. We need to show $\theta_g$ is a bijection, enough to show it has a 2-sided inverse. \begin{align*} \theta_{g - 1} \circ \theta_g(x) &= \theta_{g - 1}(\rho(g, x)) \\ &= \rho(g^{-1}(\rho(g, x))) \\ &= \rho(g^{-1}g, x) &&\text{since $\rho$ group action} \\ &= \rho(e, x) \\ &= x &&\forall x \in X \end{align*} Similarly, \[ \theta_g \circ \theta_{g - 1}(c) = x \qquad \forall x \in X \] \end{proof} \begin{proposition}[6] Suppose $G$ acts on the set $X$. Then the map \[ \theta : G \to \mathrm{Sym}(X) \qquad g \mapsto \theta_g \] as in Lemma 16, is a homomorphism. \end{proposition} \begin{proof} We need to show $\theta$ is a homomorphism, i.e. we need \[ \theta(gh) = \theta(g) \circ \theta(h) \] i.e. \[ \theta_{gh} = \theta_g \circ \theta_h .\] Let $x \in X$, then \begin{align*} \theta_{gh}(x) &= \rho(gh, x) \\ &= \rho(g, \rho(h, x)) \\ &= \theta_g \circ \theta_h(x) \end{align*} True $\forall x \in X$, so done. \end{proof} \begin{remark*} Proposition 6 gives us an equivalent definition of a group action. If $G$ is a group and $X$ a set such that $\theta : g \to \mathrm{Sym}(X)$ is a group homomorphism, then $\rho : G \times X \to X$ defined by $(g, x) \mapsto \theta_g(x)$ where $\theta(g) = \theta_g$, is a group action. \end{remark*} \begin{remark*} Using notation of proposition 6, by first Isomorphism Theorem, \[ G / \mathrm{Ker} \,\, \theta \cong \mathrm{Im}\,\,\theta \le \mathrm{Sym}(X) \] Note \begin{align*} \mathrm{Ker}\,\,\theta &= \{g \in G : \theta(g) = \id_X \in \mathrm{Sym}(X) \} \\ &= \{g \in G : \theta_g(x) = \rho(g, x) = x \forall x\} \\ &\normalsub G \end{align*} i.e. all those elements that fix every element of $X$, that act `trivially'. We say the action is \emph{faithful} if $\mathrm{Ker}\,\,\theta = \{e\}$. \end{remark*} \subsubsection*{Examples of Kernels} \begin{enumerate}[(i)] \item Trivial action - $\mathrm{Ker}\,\,\theta = G$. \item $S_n$ acts on $\{1, \dots, n\}$ - faithful \item $D_8$ acts on edges - faithful \item Left regular action - faithful \item Conjugation \begin{align*} \mathrm{Ker}\,\,\theta &= \{g \in G : gkg^{-1} = k \forall k \in G\} \\ &= z(G) \end{align*} where $z(G)$ is the \emph{centre of $G$}. `the elements that commute with everything' \item conjugation on $N \normalsub G$ \begin{align*} \mathrm{Ker}\,\,\theta &= \{g \in G : gng^{-1} = n \forall n \in N\} \\ &= C_G(N) \end{align*} where $C_G(N)$ is the \emph{centraliser of $N$ in $G$}. \item Left coset action \begin{align*} \mathrm{Ker}\,\,\theta &= \{g \in G : gkH = kH \forall k \in G\} \\ &= \{g \in G : k^{-1}gk \in H \forall k \in G\} \\ &= \{g \in G : g \in kHk^{-1} \forall k \in G\} \\ &= \bigcap_{k \in G} kHk^{-1} \\ &= \mathrm{Core}_G(H) \\ &\normalsub G \\ &\le H \end{align*} \end{enumerate} \begin{note*} If $\mathrm{Ker}\,\,\theta = \{e\}$ then $G$ is isomorphic to a subgroup of $\mathrm{Sym}(X)$, we write $G \lesssim \mathrm{Sym}(X)$. So if $|G|$ does not divide $|\mathrm{Sym}(X)|$ then $\mathrm{Ker}\,\,\theta \neq \{e\}$. \end{note*} \begin{theorem}[Cayley's Theorem] Any group $G$ is isomorphic to a subgroup of $\mathrm{Sym}(X)$ for some non-empty set $X$. \end{theorem} \begin{proof} We take $X$ to be $G$ and consider the left regular action $G \times G \to G$ defined by $(g, h) \mapsto gh$. This is a faithful action as $gh = h \,\, \forall h \in G \implies g = e$. Thus we have an injective homomorphism \[ \theta : G \mapsto \mathrm{Sym}(G) \] and $G \lesssim \mathrm{Sym}(G)$ as required. \end{proof} \begin{definition}[17] Let $G$ act on a set $X$ and $x \in X$. The \emph{orbit} of $x \in X$ is given by \[ \mathrm{Orb}_G(x) = \{g(x) : g \in G\} \subseteq X \] i.e. the set of points in $X$ which $x$ can be mapped to. \end{definition} \subsubsection*{Examples} \begin{enumerate}[(i)] \item trivial action, $\mathrm{Orb}_G(x) = \{x\}$. \item $S_n$ acts on $\{1, 2, \dots, n\} = X$, $\mathrm{Orb}_G(1) = X$. If $H = \langle (1\ 2)(3\ 4\ 5) \rangle$ acting on $X = \{1, 2, 3, 4, 5\}$ then \[ \mathrm{Orb}_G(1) = \{1, 2\} \] \[ \mathrm{Orb}_G(3) = \{3, 4, 5\} .\] \item $D_8$ on \hspace{2.8em}: \\ \vspace{-3.3em} \hspace{2em} \begin{tsqx} ! size(1cm); (1,1)--(1,-1)--(-1,-1)--(-1,1)--(1,1) label $a$ @ (0,1.5) label $b$ @ (1.5,0) label $c$ @ (0,-1.5) label $d$ @ (-1.5,0) \end{tsqx} \[ \mathrm{Orb}_{D_8}(a) = \{a, b, c, d\} .\] \item left regular action \[ \mathrm{Orb}_G(k) = G \] since $g = g(k^{-1}k) = (gk^{-1})k$ for any $g \in G$. \item conjugation \begin{align*} \mathrm{Orb}_G(k) &= \{g(k) : g \in G\} \\ &= \{gkg^{-1} : g \in G\} \\ &= \mathrm{ccl}_G(k) \end{align*} \emph{conjugacy class of $k$ in $G$}. If $h \in \mathrm{ccl}_G(k)$ we say $h$ and $k$ are \emph{conjugate}. \end{enumerate} \begin{definition}[18] We say $G$ acts \emph{transitively} on $X$ if for any $x \in X$, $\mathrm{Orb}_G(x) = X$. Equivalently, if given any pair $x_1, x_2 \in X$ $\exists g \in G$ such that $g(x_1) = x_2$. \end{definition} \noindent So, the left regular action is a transitive action. \begin{lemma} The distinct $G$-orbits form a partition of $X$. \end{lemma} \begin{proof} Let $x \in X$, then $x \in \mathrm{Orb}_G(x)$ since $x = ex$. Suppose $z \in \mathrm{Orb}_G(x) \cap \mathrm{Orb}_G(y)$, we show \[ \mathrm{Orb}_G(x) = \mathrm{Orb}_G(z) = \mathrm{Orb}_G(y) .\] $z \in \mathrm{Orb}_G(x) \implies \exists g \in G$ such that $g(x) = z$. Suppose $t \in \mathrm{Orb}_G(x)$, then $\exists h \in G$ such that $h(z) = t$ and hence $t = h(g(x)) = (hg)(x)$. Therefore $t \in \mathrm{Orb}_G(x)$ and hence $\mathrm{Orb}_G(z) \subseteq \mathrm{Orb}_G(x)$. Similarly $g(x) = z$ \[ x = e(x) = (g^{-1}g)(x) = g^{-1}(z) \] and hence $\mathrm{Orb}_G(x) \subseteq \mathrm{Orb}_G(z)$. Thus $\mathrm{Orb}_G(x) = \mathrm{Orb}_G(z)$. Similarly $\mathrm{Orb}_G(z) = \mathrm{Orb}_G(y)$. \end{proof} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item We could have proved Lemma 17 by noting that $x_1 \sim x_2$ if $\exists g \in G$ such that $g(x_1) = x_2$ is an equivalence relation. \item $\mathrm{Orb}_G(x)$ is $G$ invariant, i.e. \[ g(\mathrm{Orb}_G(x)) \subseteq \mathrm{Orb}_G(x) .\] Since if $y \in \mathrm{Orb}_G(x)$, then $y = hx$ for some $h \in G$. \begin{align*} \implies g(y) &= g(h(x)) \\ &= (gh)(x) \in \mathrm{Orb}_G(x) \end{align*} \item $G$ is transitive on $\mathrm{Orb}_G(x)$. Let $y, z \in \mathrm{Orb}_G(x)$, so $y = g(x)$, $z = h(x)$ for some $g, h \in G$. Then \[ z = h(g^{-1}(y)) \] \end{enumerate} \begin{definition*}[19] Let $G$ act on $X$ and $x \in X$. The \emph{stabiliser} of $x$ in $G$ is given by \[ \mathrm{Stab}_G(x) = \{g \in G : g(x) = x\} \subseteq G .\] i.e. all those elements in $G$ that fix $x$. \end{definition*} \subsubsection*{Examples} \begin{enumerate}[(i)] \item trivial action, \[ \mathrm{Stab}_G(x) = G .\] \item $S_n$ on $X = \{1, 2, \dots, n\}$ \[ \mathrm{Stab}_G(1) \cong S_{n - 1} \] $H = \langle (12)(345) \rangle$ on $X$ \begin{align*} \mathrm{Stab}_H(1) &= \langle (345) \rangle \\ &= \{e, (345), (354)\} \end{align*} \item $D_8$ on edges of a square, \[ \mathrm{Stab}_{D_8}(e) = \{e, t\} \] \item left regular action \[ \mathrm{Stab}_G(k) = \{e\} \] \[ gk = k \implies g = e \] \item conjugation \begin{align*} \mathrm{Stab}_G(k) &= \{g \in G : g(k) = k\} \\ &= \{g \in G : gkg^{-1} = k\} \\ &= \{g \in G : gk = kg\} \\ &= C_G(k) \end{align*} \emph{centraliser of $k$ in $G$} i.e. all elements of $G$ that commute with $k$. \end{enumerate} \begin{lemma} $\mathrm{Stab}_G(x)$ is a subgroup of $G$. \end{lemma} \begin{proof} \begin{itemize} \item $e(x) = x \implies e \in \mathrm{Stab}_G(x)$ \item if $g, h \in \mathrm{Stab}_G(x)$ then \begin{align*} (gh)(x) &= g(h(x)) \\ &= g(x) \\ &= x \\ \implies gh &\in \mathrm{Stab}_G(x) \end{align*} \item $g \in \mathrm{Stab}_G(x)$ \[ g(x) = x \] \[ x = e(x) = (g^{-1}g(X) = g^{-1}(gx) = g^{-1}(x) \] \[ \implies g^{-1} \in \mathrm{Stab}_G(x) \] \item associativity inherited from $G$. \end{itemize} \end{proof} \begin{remark*} Recall $\phi : G \to \mathrm{Sym}(x)$ \begin{align*} \mathrm{Ker}\,\,\theta &= \{g \in G : g(x) = x \,\,\forall x \in X\} \\ &= \cap \mathrm{Stab}_G(x) \end{align*} \end{remark*} \begin{theorem}[Orbit-Stabiliser Theorem] Let $G$ be a finite group acting on a non-empty set $X$. Then $\mathrm{Stab}_g(x) \le G$ and \[ |G| = |\mathrm{Stab}_G(x)||\mathrm{Orb}(x)| .\] \end{theorem} \begin{remark*} We actually prove that $|G : \mathrm{Stab}_G(x)|$, the number of left cosets of $\mathrm{Stab}_G(x)$ in $G$, is equal to $|\mathrm{Orb}_G(x)|$, a more general statement. \end{remark*} \begin{proof} $(G : \mathrm{Stab}_G(x))$ set of left cosets of $\mathrm{Stab}_G(x)$ in $G$. Consider the map \[ \theta : \mathrm{Orb}_G(x) \to (G : \mathrm{Stab}_G(x) \qquad g(x) \mapsto g\mathrm{Stab}_G(x) \] $\theta$ well-defined because: \begin{align*} g(x) &= h(x) \implies h^{-1}g(x) &= x \\ \implies h^{-1}g &\in \mathrm{Stab}_G(x) \\ \implies g\mathrm{Stab}_G(x) &= h\mathrm{Stab}_G(x) \\ \implies \theta(g(x)) &= \theta(h(x)) \end{align*} $\theta$ injective: \begin{align*} \theta(g(x)) &= \theta(h(x)) \\ \implies g\mathrm{Stab}_G(x) &= h\mathrm{Stab}_G(x) \\ \implies h^{-1}g &\in \mathrm{Stab}_G(x) \\ \implies h^{-1}g(x) &= x \\ \implies g(x) &= h(x) \end{align*} $\theta$ surjective: \\ Given $g\mathrm{Stab}_G(x) \in (G : \mathrm{Stab}_G(x))$ then $g(x) \in \mathrm{Orb}_G(x)$ and \[ \theta(g(x)) = g\mathrm{Stab}_G(x) .\] Thus $\theta$ a well-defined bijection as required. \end{proof} \subsection{Applications to Symmetry Groups of Regular Solids} Let $S$ be a regular solid and $V$ its vertices. Then the symmetries of $S$ are the isometries (distance preserving maps) of $\RR^2$ or $\RR^3$ that maps $S$ to itself. \subsubsection*{Examples of Symmetries} \textbf{Example. }(Tetrahedron) \\ This is self-duel. Let $G$ be group of symmetries of $T$, and $X = \{\text{vertices of $T$}\} = \{1, 2, 3, 4\}$. \begin{center} \begin{tsqx} ! size(8cm); label $T =$ @ (-1.2,0) A := (-1,-1) B := (0,1) C := (0.5,-0.5) D := (0.8,0.7) A--B--C--A--D--C B--D label 4 @ A+0.1*dir(A) label 1 @ B+0.1*dir(B) label 3 @ C+0.1*dir(C) label 2 @ D+0.1*dir(D) label faces are 4 @ (3,0.15) label equilateral triangles @ (3,-0.15) \end{tsqx} \end{center} Then $\exists$ group homomorphism \[ \phi : G \to \mathrm{Sym}(X) \cong S_4 \] (Proposition 6). Note $\mathrm{Ker}\,\,\phi = \{e\}$, if all vertices fixed, then $T$ fixed. \\ Consider $G' \le G$ subgroup of rotations. \begin{center} \begin{tsqx} ! size(8cm); // label $T =$ @ (-1.2,0) A := (-1,-1) B := (0,1) C := (0.5,-0.5) D := (0.8,0.7) A--B--C--A--D--C B--D (0,-1.2)--(0,1.3) dashed arc3 (0,1.3) (0,1.3)+0.3*dir(60) (0,1.3)+0.3*dir(120) EndArcArrow label 4 @ A+0.1*dir(A) label 1 @ B+0.1*dir(B)+(-0.1,0) label 3 @ C+0.1*dir(C) label 2 @ D+0.1*dir(D) label rotation of $\frac{2\pi}{3}$ @ (3,0.3) label 3-cycle (2 3 4) @ (3,0) label and $\frac{4\pi}{3}$ (2 4 3) @ (3,-0.3) \end{tsqx} \end{center} 4 such axes implies 8 rotations of order 3 (3-cycles). \begin{center} \includegraphics[width=0.6\linewidth] {images/8921051843a211ec.png} \end{center} 3 such axes and identity \[ \implies G^+ \cong A_4 \] Now consider $G$ (all symmetries). Clearly \begin{align*} \mathrm{Orb}_G(1) &= \{1, 2, 3, 4\} \\ &= \mathrm{Orb}_{G^+} \end{align*} Consider $\mathrm{Stab}_G(1)$. Note if 3 vertices are fixed then $T$ fixed. Consider $\mathrm{Stab}_G(1)$. Note if 3 Suppose vertices 1 and 2 are fixed. \begin{center} \includegraphics[width=0.6\linewidth] {images/0711dc2243a311ec.png} \end{center} If just 1 fixed have order 3 rotation from before $= \sigma$. This is everything \begin{align*} \mathrm{Stab}_G(1) &= \langle \sigma, \tau \rangle \\ &\cong D_6 \\ \implies |G| &= |\mathrm{Orb}_G(1)||\mathrm{Stab}_G(1)| \\ &= 4 \times 6 \\ &= 24 \\ \implies G &\cong S_4 \end{align*} Note $\mathrm{Stab}_{G^+}(1) = \langle G \rangle$. Also $(1234) = (12)(234)$. \bigskip \noindent \textbf{Example. }(Cube) \\ Dual to octahedron. \begin{center} \includegraphics[width=0.6\linewidth] {images/7fb8bc6843a311ec.png} \end{center} Let $G^+$ be group of rotations of $C$. Then $G^+$ acts on set of diagonals $X = \{D_1, D_2, D_3, D_4\}$. If a rotation $\sigma$ fixes all diagonals, then $\sigma = \id$. So we have an injective homomorphism \[ \phi : G^+ \to \mathrm{Sym}(C) \cong S_4 \] roatations: $-\id$ \begin{center} \includegraphics[width=0.6\linewidth] {images/ee37a9c443a311ec.png} \end{center} 3 such axes, hence 6 elements of order 4, 3 elements of order 2. \begin{center} \includegraphics[width=0.6\linewidth] {images/86a18bee43a411ec.png} \end{center} 4 such axes, hence 8 elements of order 3. \begin{center} \includegraphics[width=0.6\linewidth] {images/587cf54643a411ec.png} \end{center} 6 such axes, i.e. $G^+ \cong S_4$. \\ Note $\mathrm{Orb}_{G^+}(D_1) = \{D_1, D_2, D_3, D_4\}$ \[ \mathrm{Stab}_{G^+}(D_1) = \langle \sigma, \tau' \rangle \] or consider $G^+$ acting on vertex 1 \[ |\mathrm{Orb}_{G^+}(1)| = 8 \] \[ |\mathrm{Stab}_G(1)| = |\langle \rho \rangle| = 3 \] \[ \implies |G^+| = 24 \] Now consider full symmetry group of $C$, call it $G$. Consider action on faces $F_1, \dots., F_6$. Yields an injective homomorphism (faithful) \[ \phi : G \to \mathrm{Sym}\{F_i\} \cong S_6 \] \[ |\mathrm{Orb}(F_1)| = 6 \] \[ \mathrm{Stab}(F_1) \cong D_8 \] \[ \implies |G| = 6 \times 8 = 48 .\] So, action on diagonals is not faithful; \[ \exists g \in G \quad g(D_i) = D)i) \qquad i \le i \le 4 \] but $g \neq \id$. Label vertices of $C$ as $\{(\pm 1, \pm 1, \pm 1)\}$ \[ g : (x, y, z) \mapsto (-x, -y, -z) \] if label faces of cube as a dice; 1 opposite 6, 2 opposite 5, 3 opposite 4 then \[ g = (16)(25)(34) \] Then $G \cong F^+ \times \langle g \rangle$. Then $G^+ \normalsub G$ (index 2) and $\langle g \rangle \normalsub G$ (commutes with all rotations) and \[ G^+ \cap \langle g \rangle = \{e\} \] \[ |G^+ \langle g \rangle| = 48 = |G| .\] \bigskip \noindent \textbf{Example. }(Dodecahedron) \\ Dual to icosahedron. We denote by $D$. 12 regular pentagonal faces, 30 edges, 20 vertices. Let $G^+$ be the grou pof rotations of $D$. Let $F$ be a face of $D$. \[ |\mathrm{Orb}_{G^+}(F)| = 12 \] \[ |\mathrm{Stab}_{G^+}(F)| = 5 \] \[ \implies |G^+| = 5 \times 12 = 60 \] There are five cubes embedded in $D$: \begin{center} \includegraphics[width=0.6\linewidth] {images/224b83dc43a611ec.png} \end{center} $G^+$ acts faithfully on cubes \[ \implies \phi : G^+ \to S_5 \] injective and $|G^+| = 60$ hence $G^+ \cong A_5$ (there is some work in the ``hence'' here but one can do it with some determination). Can find elements of $A_5$: \begin{itemize} \item rotations through opposite faces - 5 cycles. (6 axes, 4 elements per axis) \item rotation through opposite vertices - 3 cycles. \item rotation through opposite edges - double transpositions (15 such). \end{itemize} Another application of the Orbit Stabiliser Theorem: \setcounter{customtheorem}{7} \begin{theorem}[Cauchy's Theorem] Let $G$ be a finite group and $p$ a prime that divides $|G|$. Then there exists an element in $G$ of order $p$. \end{theorem} \begin{proof} Let \[ X = \{(x_1, x_2, \dots, x_p) : x_1, x_2, \dots, x_p = e, x_i \in G \} .\] Let $H = \langle h : h^p = e \rangle \cong C_p$ act on $X$ as follows: \[ H \times X \to X \qquad (h, (x_1, \dots, x_p)) \mapsto (x_2, x_3, \dots, x_p, x_1) \] in general, \[ (h^i, (x_1, \dots, x_p)) \mapsto (x_{1 + i}, x_{2 + i}, \dots, x_{p + i}) \] where suffices are taken modulo $p$. \\ Check this is a group action: \begin{enumerate}[(i)] \item[(0)] Since $x_1x_2 \cdots x_p = e$, we have \begin{align*} x_1x_2 \cdots x_p &= (x_1x_2 \cdots x_i)^{-1} x_1x_2 \cdots x_p (x_1x_2 \cdots x_i) \\ &= (x_1x_2 \cdots x_i)^{-1}e(x_1x_2 \cdots x_i) \\ &= e \end{align*} \item We simply check that \begin{align*} h^{i + j} &= (x_{1 + i + j}, \dots, x_{p + i + j}) \\ &= h^i(h^j(x_1, \dots, x_p)) \end{align*} \item For identity, we heck that \begin{align*} e(x_1, \dots, x_p) &= h^p(x_1, \dots, x_p) \\ &= (x_1, \dots, x_p) \end{align*} \end{enumerate} Let \[ \ol{x} = (x_1, x_2, \dots, x_p) \in X .\] As distinct orbits partition $X$ (Lemma 17) \[ \implies \sum_{\substack{\text{distinct}\\ \text{orbits}}} |\mathrm{Orb}_H(\ol{x})| = |X| \] Note $|X| = |G|^{p - 1}$ (choose $x_1, \dots, x_{p - 1}$ then $x_p$ determined) \[ \implies p \,\big|\, |X| \] \[ \implies p \,\big|\, LHS \] But by Orbit Stabiliser Theorem: \begin{align*} |\mathrm{Orb}_H(\ol{x})| &\,\big|\, |H| = p \\ \implies |\mathrm{Orb}_H(\ol{x})| &= 1 \text{ or } p \end{align*} Now, \[ \ol{e} = (e, e, \dots, e) \in X \qquad |\mathrm{Orb}_H(\ol{e})| = 1 .\] So there exists at least $p - 1$ other orbits of length 1. So there exists $\ol{x} \in X$ with $\mathrm{Orb}_H(\ol{x}) = 1$ \[ \implies \ol{X} = (x, x, \dots, x) \] so $x \neq e$ and $x^p = e$. \end{proof} \subsection{Conjugacy Action} Reminder of the definition of conjugation: \[ G \times G \to G \qquad (g, h) \mapsto ghg^{-1} .\] orbits are called conjugacy classes: \[ \mathrm{ccl}_G(h) = \{ghg^{-1} : g \in G\} .\] Stabilisers are called centralisers: \[ C_G(h) = \{g \in G : ghg^{-1} = h\} .\] \subsubsection*{Remarks} \begin{enumerate}[(i)] \item By Lemma 17 the conjugacy classes partition $G$. \item By Orbit Stabiliser Theorem, $h \in G$ \[ |G| = |C_G(h)| |\mathrm{ccl}_G(h)| .\] In particular, \[ |\mathrm{ccl}_G| \,\big|\, |G| .\] \item If $k \in \mathrm{ccl}_G(h)$ then $o(k) = o(h)$. Since $k = ghg^{-1}$ for some $g \in G$, \begin{align*} k^{o(h)} &= (ghg^{-1})^{o(h)} \\ &= gh^{o(h)}g^{-1} \\ &= e \\ \implies o(k) \mid o(h) \end{align*} Similarly, $h = g^{-1}kg$ hence $o(h) \mid o(k)$, so $o(h) = o(k)$ as desired. \item Recall \begin{align*} Z(G) &= \{g \in G : gh = hg \,\,\forall h \in G\} \\ &\normalsub G \end{align*} And, \[ Z(G) = \bigcap_{h \in G} C_G(h) \] Note, $z \in Z(G)$ if and only if $|\mathrm{ccl}_G(z)| = 1$. If $z \in Z(G)$ \[ \implies \mathrm{ccl}_G(z) = \{gzg^{-1} : g \in G\} = \{z : g \in G\} = \{z\} .\] If $|\mathrm{ccl}_G(z)| = 1$ then note \[ z = eze^{-1} \in \mathrm{ccl}_G(z) .\] So $gzg^{-1} = z \,\,\forall g \in G$. \item Let $H \le G$, then $H$ is normal if and only if it is a union of conjugacy classes. (Sheet 3 question 3) \item $G$ abelian if and only if $G = Z(G)$. \end{enumerate} \setcounter{customproposition}{6} \begin{proposition} Let $p$ a prime and $G$ a group of order $p^n$. Then $Z(G)$ is nontrivial, i.e. $Z(G) \gneq \{e\}$. \end{proposition} \begin{proof} Let $G$ act on $G$ by conjugation. Then the conjugacy classes of $G$ partition it by Lemma 17: \[ G = \bigcup_{\substack{\text{distinct}\\ \text{conjugacy}\\\text{classes}}} \mathrm{ccl}_G(x) \] By Orbit Stabiliser Theorem \[ |\mathrm{ccl}_G(x)| \,\big|\, |G| = p^n .\] Either $|\mathrm{ccl}_G(x) = 1$ or $p \,\big|\, \mathrm{ccl}_G(x)$. So by (iv) above \[ |G| = \sum_{x \in Z(G)} |\mathrm{ccl}_G(x)| + \sum_{\substack{\text{distinct}\\ \text{conjugacy}\\\text{classes}\\\text{with}\\ \text{$p \,\big|\, \mathrm{ccl}_G(x)$}}} |\mathrm{ccl}_G(x)| \] Now $p \mid LHS$ so $p \mid RHS$ \[ \implies p \,\Bigg|\, \sum_{z \in Z(G)} |\mathrm{ccl}_G(x)| = |Z(G)| .\] But $e \in Z(G)$, hence we must have $|Z(G)| \ge p > 1$, as desired. \end{proof} \begin{lemma} Let $G$ be a finite group and $Z(G)$ the centre of $G$. If $G / Z(G)$ is cyclic then $G$ is abelian. \end{lemma} \begin{proof} Let $Z = Z(G)$. Since $G / Z$ is cyclic, $G / Z = \langle yZ \rangle$ for some $y \in G$. Let $g, h \in G$. Then $gZ = y^iZ$ for some $i$, so $g = z^iz_1$ for some $z_1 \in Z$. Similarly, $hZ = y^jZ$ for some $j$, so $g = z^jz_2$ for some $z_2 \in Z$. Now, \begin{align*} gh &= y^iz_1y^jz_2 \\ &= y^iy^jz_1z_2 &&z_1 \in Z \\ &= y^jy^iz_2z_1 \\ &= y^jz_2y^iz_1 \\ &= hg \end{align*} so $G$ is abelian as required. \end{proof} \setcounter{customcorollary}{4} \begin{corollary} Suppose $|G| = p^2$ for some prime $p$. Then $G$ is abelian and there are, up to isomorphism, just two groups of order $p^2$, namely $C_p \times C_p$ and $C_{p^2}$. \end{corollary} \begin{proof} (Sheet 3 Question 10) \end{proof} \subsubsection*{Remark} \begin{enumerate}[(i)] \item A group of order $p^n$ for a prime $p$ is called a finite $p$-group. \item If all elements have $p$-power order $G$ is called a $p$-group. For example $C_{p^\infty}$ (Pr\"ufer group). \end{enumerate} \subsubsection*{Conjugation in $S_n$} \setcounter{customdefinition}{19} \begin{definition} Let $\sigma \in S_n$ and write $\sigma$ as a product of disjoint cycles including 1-cycles. Then the \emph{cycle-type} of $\sigma$ is $(n_1, n_2, \dots, n_k)$ where $n_1 \ge n_2 \ge \cdots \ge n_k \ge 1$ and the cycles in $\sigma$ have length $n_i$. Note $n = n_1 + n_2 + \cdots + n_k$. For example \[ (1234)(567) = (1234)(567(8) \in S_8 \] has cycle type $(4, 3, 1)$, and $e \in S_5$ has cycle type $(1, 1, 1, 1, 1)$. \end{definition} \setcounter{customtheorem}{8} \begin{theorem} The permutations $\pi$ and $\sigma$ in $S_n$ are conjugate \emph{in $S_n$} if and only if they have the same cycle type. \end{theorem} \begin{proof} Suppose $\sigma$ has cycle type $(n_1, n_2, \dots, n_k)$. Write \[ \sigma = (a_{11} a_{12} \dots a_{1n_1})(a_{21} a_{22} \dots a_{2n_2}) \cdots (a_{k1} a_{k2} \dots a_{kn_k}) .\] Let $\tau \in S_n$. Then \begin{align*} \tau \sigma \tau^{-1}(\tau(a_{ij})) &= \tau \sigma(a_{ij}) \\ &= \begin{cases} \tau(a_{ij}) & j < n_i \\ \tau(a_{ii}) & j = n_i \end{cases} \end{align*} Thus 2 permutations of the same cycle type are conjugate. \end{proof} \noindent For example, \[ (14)(123)(14)^{-1} = (423) \] \[ (1l)(1k)(1l) = (lk) .\] Consider $S_4$: let $x \in S_4$. Recall $24 = |S_4| = |\mathrm{ccl}_{S_4}(x)||C_{S_4}(x)|$ by Orbit-Stabiliser Theorem. \begin{center} \begin{tabular}{c|c|c|c|c|c} example member $x$ & cycle type & size & sign & $|C_{S_4}(x)|$ & $C_{S_4}(x)$ \\ \hline $e$ & $(1,1,1,1)$ & $1$ & $1$ & $24$ & $S_4$ \\ $(12)(3)(4)$ & $(2,1,1)$ & $6$ & $-1$ & $4$ & $\langle (12), (34) \rangle \cong C_2 \times C_2$ \\ $(123)(4)$ & $(3,1)$ & $8$ & $1$ & $3$ & $\langle (123) \rangle \cong C_3$ \\ $(12)(34)$ & $(2,2)$ & $3$ & $1$ & $8$ & $\langle (1234), (12) \rangle \cong D_8$ \\ $(1234)$ & $(4)$ & $6$ & $-1$ & $4$ & $\langle (1234) \rangle \cong C_4$ \end{tabular} \end{center} \setcounter{customcorollary}{5} \begin{corollary} The number of distinct conjugacy classes of $S_n$ is given by $p(n)$, the number of partitions of $n$ into positive integers, i.e. $n = n_1 + \cdots + n_k$ with $n_1 \ge n_2 \ge \cdots \ge n_k \ge 1$. \end{corollary} \noindent However in $A_n$ conjugation is less clear. Certainly \[ \mathrm{ccl}_{A_n}(x) = \{gxg^{-1} : g \in A_n\} \subseteq \{gxg^{-1} : g \in S_n\} = \mathrm{ccl}_{S_n}(x) \] since $A_n \le S_n$. \\ So if two elements are conjugate in $A_n$ they have the same cycle type. But having the same cycle type in $A_n$ does not guarantee being conjugate. For example $(123)$ not conjugate to $(132)$ in $A_4$. If $\tau (123) \tau^{-1} = (132)$ then $\tau = (12)$, or $(32)$ or $(13)$, none of which are in $A_4$. \myskip Or consider $C_{A_4}((123)) = C_{S_4}((123)) \cap A_4$. For example \[ C_{S_4}((123)) = \langle (123) \rangle \le A_4 \] So, $C_{A_4}((123)) = C_{S_4}((123))$ \[ \implies |\mathrm{ccl}((123))| = \frac{|A_4|}{|C_{A_4}((123))|} = \frac{|S_4| / 2}{|C_{S_4}((123))|} = \frac{|\mathrm{ccl}_{S_4}((123))|}{2} \] So the conjugacy of 8 3-cycles in $S_4$ splits into 2 conjugacy classes in $A_4$. \myskip Key point: let $x \in A_n$. If $C_{A_n}(x) = C_{5_n}(x)$ \[ \implies |\mathrm{ccl}_{A_n}(x)| = \frac{|\mathrm{ccl}_{S_n}(x)|}{2} .\] If $C_{A_n}(x) \le C_{S_n}(x)$, then $C_{S_n}(x)$ contains an odd permutation and \[ |C_{A_n}(x)| = |C_{S_n}(x) \cap A_n| = \frac{|C_{S_n}(x)|}{2} \] (Sheet 2, Q4) \[ \implies |\mathrm{ccl}_{A_n}(x)| = |\mathrm{ccl}_{S_n}(x)| .\] \begin{center} \begin{tabular}{c|c|c|c} example member $x$ & cycle type & $C_{A_4}(x)$ & size of conj class \\ \hline $e$ & $(1,1,1,1)$ & $A_4$ & $1$ \\ $(123)$ & $(3,1)$ & $\langle (123) \rangle$ & $4$ \\ $(132)$ & $(3,1)$ & $\langle (132) \rangle$ & $4$ \\ $(12)(34)$ & $(2,2)$ & $\{e, (12)(34), (13)(24), (14)(23)\} \cong C_2 \times C_2$ & $3$ \end{tabular} \end{center} \begin{remark*} The number of elements in $S_n$ with $k_l$ cycles of length $l$ is given by \[ \frac{n!}{\prod_l k_l! l^{k_l}} \] Think of cycles as trays, put in elements of $X = \{1, 2, \dots, n\}$. This gives $n!$ options, but we've overcounted. Each cycle of length $l$ can be written $l$ ways, this gives $l^{k_l}$ factor. Also $k_l$ cycles of length $l$ can be permuted $k_l!$ ways. \end{remark*} \noindent Let us consider $S_5$ (note $|S_5| = 120$). \begin{center} \begin{tabular}{c|c|c|c|c|c} Example member $x$ & Cycle type & \# & $\mathrm{sgn}$ & $|C_{S_5}(x)|$ & $C_{S_5}(x)$ \\ \hline $e$ & $(1,1,1,1,1)$ & 1 & 1 & 120 & $S_5$ \\ $(12)$ & $(2,1,1,1)$ & 10 & -1 & 12 & $\langle (12) \rangle \times \mathrm{Sym}\{3,4,5\} \cong C_2 \times S_3$ \\ $(12)(34)$ & $(2,2,1)$ & 15 & 1 & 8 & $\langle (1324),(12) \rangle \cong D_8$ \\ $(123)$ & $(3,1,1)$ & 20 & 1 & 6 & $\langle (123),(45) \rangle \cong C_6$ \\ $(123)(45)$ & $(32)$ & 20 & -1 & 6 & $\langle (123),(45) \rangle \cong C_6$ \\ $(1234)$ & $(4,1)$ & 30 & -1 & 4 & $\langle (1234) \rangle \cong C_4$ \\ $(12345)$ & $(5)$ & 24 & 1 & 5 & $\langle (12345) \rangle \cong C_5$ \end{tabular} \end{center} \bigskip \noindent Now consider $A_5$ (note $|A_5| = 60$). \begin{center} \begin{tabular}{c|c|c|c} Example member $x$ & Cycle type & $C_{A_5}(x)$ & $|\mathrm{ccl}_{A_5}(x)|$ \\ \hline $e$ & $(1,1,1,1,1)$ & $A_5$ & 1 \\ $(12)(34)$ & $(2,2,1)$ & $\langle (12)(34),(13)(24) \rangle$ & 15 \\ $(123)$ & $(3,1,1)$ & $\langle (123) \rangle$ & 20 \\ $(12345)$ & $(5)$ & $\langle (12345) \rangle$ & 12 \\ $(21345)$ & $(5)$ & $\langle (21345) \rangle$ & 12 \end{tabular} \end{center} Recall a group is \emph{simple} if it has no non-trivial proper normal subgroups, i.e. if only normal subgroups are $\{e\}$ and $G$. \setcounter{customtheorem}{9} \begin{theorem} $A_5$ is a simple group. \end{theorem} \begin{proof} Suppose $N \normalsub A_5$. Then $N$ is a union of conjugacy classes (Sheet 3, question 3(a)). Hence \[ |N| = 1 + 15a + 20b + 12c \] where $b, a \in \{0,1\}$ and $c \in \{0,1,2\}$. But by Lagrange's Theorem, $|N| \,\big|\, |A_5| = 60$. Only possibility is $|N| = 1$ or $|N| = 60$. \end{proof} \subsubsection*{Comments} \begin{enumerate}[(i)] \item $A_5$ is the smallest non-abelian simple group. \item $A_n$ simple $\forall n \ge 5$ (GRM). But $A_4$ is not simple. \item Classification of finite simple groups exists, includes infinite families. \begin{itemize} \item $C_p$ for $p$ prime (only abelian simple groups). \item $A_n$ with $n \ge 5$. \item groups of `Lie type' (matrix groups) \item 26 sporadic groups (including the monster and baby monster) \end{itemize} \end{enumerate} \subsubsection*{Aside} For example, number of cycles in $S_5$ of type $(\bullet\,\,\bullet)(\bullet\,\,\bullet)$ so $k_2 = 2$, $k_1 = 1$. \[ \# = \frac{q5!}{2!w^2 \cdot 1! \cdot 1} = 15 \] For $(\bullet\,\,\bullet\,\,\bullet)(\bullet\,\,\bullet)$ we have $k_3 = 1$, $k_2 = 1$ \[ \# = \frac{5!}{1!3^1 1!2^1} = 20 .\] \newpage \section{Matrix Groups} Let $M_n(\RR)$ denote the set of all $n \times n$ matrices with entries in $\RR$. Define \[ \mathrm{GL}_n(\RR) = \{A \in M_n(\RR) : \det A \neq 0 \} \] \begin{proposition} $\mathrm{GL}_n(\RR)$ is a group under matrix multiplication. It is called the \emph{general linear group}. \end{proposition} \begin{proof} Closure: $A, B \in \mathrm{GL}_n(\RR)$ clearly $AB \in M_n(\RR)$ and $\det(AB) = \det A \det B \neq 0$ so $AB \in \mathrm{GL}_n(\RR)$. \\ Identity: \[ I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathrm{GL}_n(\RR) \] Inverse: $\det A \neq 0$ implies $A^{-1}$ exists and $\det (A^{-1}) = \frac{1}{\det A} \neq 0$. \\ Associative: \begin{align*} (A(BC))_{ij} &= A_{ix}(BC)_{xj} \\ &= A_{ix}B_{xt}C_{tj} \\ ((AB)C)_{ij} &= (AB)_{ix}C_{xj} \\ &= A_{it}B_{tx}C_{xj} \end{align*} \end{proof} \begin{example*} We have that \[ \mathrm{GL}_2(\RR) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \RR, ad - bc \neq 0 \right\} \] and we have \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} ^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] \end{example*} \begin{proposition} \[ \det : \mathrm{GL}_n(\RR) \to (\RR \setminus \{0\}, \times) \qquad A \mapsto \det A \] is a surjective group homomorphism. \end{proposition} \begin{proof} Note $(\RR \setminus \{0\}, \times)$ is a group. Determinant is clearly a map to $(\RR \setminus \{0\}, \times)$. Need to check it's a group homomorphism \[ \det(AB) = \det A \cdot \det B \] And we need to show that it is surjective, which follows because given $r \in (\RR \setminus \{0\}, \times)$, let \[ A = \begin{pmatrix} r & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots 0 & 1 \end{pmatrix} \in \mathrm{GL}_n(\RR) \] and notice that $\det A = r$. \end{proof} By First Isomorphism Theorem \[ \mathrm{Ker}(\det) \normalsub \mathrm{GL}_n(\RR) \] and we can find that \begin{align*} \mathrm{Ker}(\det) &= \{A \in \mathrm{GL}_n(\RR) : \det A = 1\} \\ &= \mathrm{SL}_n(\RR) \end{align*} This is known as the \emph{special linear group}. Furthermore, by First Isomorphism Theorem \[ \mathrm{GL}_n(\RR) / \mathrm{SL}_n(\RR) \cong (\RR \setminus \{0\}, \times) .\] \begin{remark*} More generally we can define the general linear group and special linear group over any field. Examples of fields: $\RR$, $\CC$, $\QQ$, $\FF_p$ where \[ \FF_p = (\{0,1,2, \dots, p - 1\}, +_p, \times_p) \] for some prime $p$. Note that $\mathrm{GL}_n(\FF_p)$ and $\mathrm{SL}_n(\FF_p)$ are finite groups. \end{remark*} \noindent What is $|\mathrm{GL}_3(\FF_p)|$? Non-zero determinant means we need linearly independent columns. So the number of choices for first column is $p^3 - 1$ (any choice is fine except $(0, 0, 0)$). Second column is not a multiple of first, so number of choices for second column is $p^3 - p$. (Note that the zero vector is a multiple of the first column). Third column not in space spanned by first two columns, this space has size $p^2$ (consider $\alpha c_1 + \beta c_2$, $\alpha, \beta \in \FF_p$). So number of choices for third column is $p^3 - p^2$. So \[ |\mathrm{GL}_3(\FF_p)| = (p^3 - 1)(p^2 - p)(p^3 - p^2) \] We can still consider \[ \det : \mathrm{GL}_3(\FF_p) \to (\FF_p \setminus \{0\}, \times) \qquad A \mapsto \det A \] Note $(\FF_p \setminus \{0\}, \times)$ is a group. \begin{proof} Closure, identity and associativity can all easily be verified. Let $a \in \FF_p \setminus \{0\}$, by Bezout's Theorem, there exists $x, y$ such that $ax + py = 1$. Then we have $ax \equiv 1 \pmod{p}$. Choose $\ol{x} \equiv x \pmod{p}$ with $1 \le \ol{x} \le p - 1$. So $a^{-1} \equiv x$. \end{proof} Determinant is a surjective homomorphism to $(\FF_p \setminus \{0\}, \times)$ so by First Isomorphism Theorem: \[ |\mathrm{GL}_3(\FF_p)| / |\mathrm{SL}_2(\FF_p)| = p - 1 \] \[ \implies |\mathrm{SL}_3(\FF_p)| = \frac{(p^3 - 1)(p^2 - p)(p^3 - p^2)}{p - 1} \] \subsubsection*{Actions of $\mathrm{GL}_n(\CC)$} \begin{enumerate}[(i)] \item Let $\CC^n$ denote vectors of length $n$ with entries in $\CC$: \[ \mathrm{GL}_n(\CC) \times \CC^n \to \CC^n \qquad (A, \bf{v}) \mapsto A\bf{v} \] Note $I\bf{v} = \bf{v}$, $(AB)\bf{v} = A(B(\bf{v}))$. This action is faithful: \[ A\bf{v} = \bf{v} \,\,\forall \bf{v} \in \CC^n \implies A = I_n \] (consider multiplying $A$ by $(1,0,\dots,0)$, $(0,1,\dots,0)$ etc) The action has two orbits: \[ \mathrm{Orb}_{\mathrm{GL}_n(\CC)} (\bf{0}) = \{\bf{0}\} \qquad \bf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \] and for $\bf{v} \neq 0$ we have: \[ \mathrm{Orb}_{\mathrm{GL}_n(\CC)}(\bf{v}) = \CC^n \setminus \{\bf{0}\} \] because given $\bf{w} \neq \bf{0}$ there exists $A \in \mathrm{GL}_n(\CC)$ such that $A\bf{v} = \bf{w}$. \item Conjugation action of $\mathrm{GL}_n(\CC)$ on $M_n(\CC)$ \[ \mathrm{GL}_n(\CC) \times M_n(\CC) \to M_n(\CC) \qquad (P, A) \mapsto PAP^{-1} \] Note: \begin{align*} PQ(A) &= PQA(PQ)^{-1} \\ &= PQAQ^{-1}P^{-1} \\ &= P(Q(A)) \end{align*} \end{enumerate} \begin{remark*} Matrices $A$ and $B$ are conjugate if they represent the same linear map. If $PAP^{-1} = B$, then $P$ represents a change of basis matrix (see linear algebra next year). For example \[ e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \] \[ A : e_1 \mapsto 2e_1 \qquad e_2 \mapsto 3e_2 \] \[ A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \] Let \[ P : e_1 \mapsto e_2, \quad e_2 \mapsto e_1 \] change of basis \[ P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = p^{-1} \] Then \begin{align*} PAP^{-1} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \end{align*} i.e. $e_2 \mapsto 3e_2$ and $e_1 \mapsto 2e_1$. We will use the following result from Vectors and Matrices when investigating M\"obius groups. \end{remark*} \begin{result*} Let $A \in M_2(\CC)$ and consider conjugation action of $\mathrm{GL}_2(\CC)$ on $M_2(\CC)$. Then precisely one of the following occurs: \begin{enumerate}[(i)] \item the orbit of $A$ contains a diagonal matrix \[ \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \] with $\lambda \neq \mu$. \item the orbit of $A$ is \[ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \lambda I \] for some $\lambda$. \item the orbit of $A$ contains a matrix \[ \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \] for some $\lambda$. \end{enumerate} \end{result*} \begin{proof} See Vectors and Matrices but essentially \begin{enumerate}[(i)] \item In this case $A$ has 2 distinct eigenvalues $\lambda \neq \mu$, take a basis consisting of an eigenvector for $\lambda$ and an eigenvector for $\mu$. Distinct pairs give distinct orbits. \item $A = \lambda I$, eigenvalues $\lambda$, $\lambda$, 2 linearly independent eigenvectors. \item In this case $A$ has a repeated eigenvalue, but just one linearly independent eigenvector. \end{enumerate} \end{proof} \bigskip \noindent Recall if $A \in M_(\RR)$, $A^\top$ is defined by $(A^\top)_{ij} = A_{ji}$, i.e. the $ij$-th entry of $A^\top$ is $ji$-th entry of $A$: \[ A = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix} \qquad A^\top = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \] \begin{note*} \begin{enumerate}[(i)] \item We have $(AB)^\top = B^\top A^\top$ because \[ [(AB)^\top]_{ij} = (AB)_{ji} = A{jk}B_{ki} \] \[ [B^\top A^\top]_{ij} = B^\top_{ik}A^\top_{kj} = B_{ki} A_{jk} \] \item $AA^\top = I \iff A^\top A = I$ and hence \[ A^\top A = A^{-1}A A^\top A = A^{-1}A = I \] \item $(A^\top)^{-1} = (A^{-1})^\top$ since \begin{align*} I_n &= (AA^{-1})^\top \\ &= (A^{-1})^\top A^\top \end{align*} \item $\det(A^\top) = \det A$. \end{enumerate} \end{note*} \[ \mathrm{O}_n(\RR) = \{A \in M_n(\RR) : A^\top A = I\} \] (So columns of $A$ form an orthonormal basis for $\RR^n$). \setcounter{customproposition}{9} \begin{proposition} $\mathrm{O}_n(\RR)$ is a subgroup of $\mathrm{GL}_n(\RR)$ called the \emph{orthogonal group}. \end{proposition} \begin{proof} \begin{align*} 1 &= \det(A^\top A) \\ &= \det(A^\top) \det(A) \\ &= (\det A)^2 \\ \implies \det A \\ &\neq 0 \end{align*} Hence $\mathrm{O}_n(\RR)$ is a subset of $\mathrm{GL}_n(\RR)$; associativity is inherited. \begin{itemize} \item $I_n = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \in \mathrm{O}_n(\RR)$ \item closure: $A, B \in \mathrm{O}_n(\RR)$, \begin{align*} (AB)^\top (AB) &= B^\top A^\top A B \\ &= B^\top B \\ &= I \\ \implies B &\in \mathrm{O}_n(\RR) \end{align*} \item inverse: $A^\top A = I_n \implies A^\top = A^{-1}$ and $A^\top \in \mathrm{O}_n(\RR)$ since $(A^\top)^\top = A$ and $AA^\top = I$. \end{itemize} \end{proof} \noindent Note $1 = (\det A)^2 \implies \det A = \pm 1$ if $A \in \mathrm{O}_n(\RR)$. So, $\mathrm{Det} : \mathrm{O}_n(\RR) \to (\{\pm 1\}, \times)$, $A \mapsto \det A$ is a surjective homomorphism, as \[ \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathrm{O}_n(\RR) \] So \[ \mathrm{Ker}(\mathrm{Det}) = \{A \in \mathrm{O}_n(\RR) : \det A = 1\} = \mathrm{SO}_n(\RR) \normalsub \mathrm{O}_n(\RR) \] By First Isomorphism Theorem: \[ \mathrm{O}_n(\RR) / \mathrm{SO}_n(\RR) \cong C_2 \] \setcounter{customlemma}{19} \begin{lemma} Let $A \in \mathrm{O}_n(\RR)$ and $\bf{x}, \bf{y} \in \RR^n$. Then \begin{enumerate}[(i)] \item $A \bf{x} \cdot A \bf{y} = \bf{x} \cdot \bf{y}$ \item $|A \bf{x}| = |\bf{x}|$ \end{enumerate} So $A$ is an isometry (distance preserving map) of Euclidean space $\RR^n$. \end{lemma} \begin{proof} \begin{enumerate}[(i)] \eqitem \begin{align*} A \bf{x} \cdot A \bf{y} &= (A \bf{x})^\top (A \bf{y}) \\ &= \bf{x}^\top A^\top A \bf{y} \\ &= \bf{x}^\top \bf{y} \\ &= \bf{x} \cdot \bf{y} \end{align*} \item \[ |A \bf{x}|^2 = A \bf{x} \cdot A \bf{x} = \bf{x} \cdot \bf{x} = |\bf{x}|^2 \] \end{enumerate} \end{proof} \noindent Note by (ii) if $\lambda$ an eigenvalue of $A$, then $A \bf{x} = \lambda \bf{x}$ \[ \implies |\lambda \bf{x}| = |\bf{x}| \] i.e. $|\lambda| = 1$. \subsubsection*{In 2 dimensions} Let \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\RR) \] \[ I = AA^\top = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] \[ \implies 1 = a^2 + b^2 = c^2 + d^2 \] \[ 0 = ac + bd .\] \[ I = A^\top A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] \[ \implies 1 = a^2 + c^2 = b^2 + d^2 \] \[ 0 = ab + cd \] For $0 \le \theta < 2\pi$ let \[ \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \qquad \text{so} \qquad \begin{pmatrix} b \\ d \end{pmatrix} = \pm \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \] \ul{First case}: \[ A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \] $\det A = 1$ \[ A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta x & -\sin\theta y \\ \sin\theta x & \cos\theta y \end{pmatrix} \] $A$ represents a rotation. \\ Let $z = x + iy$ then \[ e^{i\theta} z = (\cos\theta x - \sin\theta y) + i(\sin\theta x + \cos\theta y) \] All elements of $\mathrm{SO}_2(\RR)$ are of this form. \myskip \ul{Second case} \[ A = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \] $\det A = -1$ \[ A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta x & \sin\theta y \\ \sin\theta x & -\cos\theta y \end{pmatrix} \] \[ e^{i\theta} \ol{z} = (\cos\theta x + \sin\theta y) + i(\sin\theta x - \cos\theta y) \] What are the fixed points? \begin{align*} z = e^{i\theta} \ol{z} &\iff e^{-\theta / 2} z = e^{i\theta/2} \ol{z} \\ &\iff e^{-i\theta/2} z = t \in \RR \\ &\iff z = e^{i\theta/2} t \end{align*} hence a reflection in line $te^{i\theta/2}$. \\ All elements of $\mathrm{O}_2(\RR) \setminus \mathrm{SO}_2(\RR)$ are of this form. \myskip So, \[ \mathrm{O}_2(\RR) = \mathrm{SO}_2(\RR) \cup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathrm{SO}_2(\RR) \] Note any element of $\mathrm{O}_2(\RR)$ is a product of at most two reflections. Since if $A \in \mathrm{SO}_2(\RR)$ then \[ A = \left( A \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] \subsubsection*{3 dimensions} \setcounter{customproposition}{10} \begin{proposition} Let $A \in \mathrm{SO}_3(\RR)$. Then $A$ has an eigenvector with eigenvalue 1. \end{proposition} \begin{proof} \begin{align*} \det(A - I) &= \det(A - AA^\top) \\ &= \det A \det(I - A^\top) \\ &= \det((I - A)^\top) \\ &= \det(I - A) \\ &= (-1)^3 \det(A - I) \\ &= -\det(A - I) \end{align*} hence $\det(A - I) = 0$ and $A$ has eigenvalue 1. \end{proof} \noindent Alternatively consider $\chi_A(x)$ the characteristic polynomial of $A$, it is a cubic in $\RR$. Thus has a real root, $\lambda = 1$ or $\lambda = -1$. But the other eigenvalues are either a complex conjugate pair, then $\lambda = 1$ or all are real either $1, -1, -1$ or $1, 1, 1$. \setcounter{customtheorem}{10} \begin{theorem} Let $A \in \mathrm{SO}_3(\RR)$ then $A$ Is conjugate to a matrix of the form \[ \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] for some $\theta \in [0, 2\pi]$. In particular, $A$ is a rotation round an axis through the origin. \end{theorem} \begin{proof} By proposition 11, there is a $\bf{v} \in \RR^3$ with $A \bf{v} = \bf{v}$, and we can assume $|\bf{v}| = 1$. Let $\{e_1, e_2, e_3\}$ be the standard orthonormal basis for $\RR^3$. There exists $P \in \mathrm{SO}_3(\RR)$ such that $P \bf{v} = e_3$. So $PAP^{-1}(e_3) = e_3$ and for $\pi$ plane perpendicular to $e_3$ then $PAP^{-1}(\pi)$ perpendicular to $e_3$. So, \begin{center} \includegraphics[width=0.6\linewidth] {images/4a7dbcf47e0b11ec.png} \end{center} $\det PAP^{-1} = \det A = 1$, so $\det Q = 1$, $Q^\top Q = I$. So \[ Q = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \] for some $\theta$ as required. \end{proof} \noindent Suppose $\bf{r}$ is a reflection in a plane $\pi$ through $0$. Let $\bf{n}$ be unit vector perpendicular to $\pi$. Then \[ r(\bf{x}) = \bf{x} - 2(\bf{x} \cdot \bf{n}) \bf{n} \] \[ \bf{n} \mapsto -\bf{n} \] $\pi$ fixed. So $\bf{r}$ is conjugate to \[ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathrm{O}_3(\RR) \] \[ \mathrm{O}_3(\RR) = \mathrm{SO}_3(\RR) \cup \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathrm{SO}_3(\RR) \] \setcounter{customtheorem}{12} \begin{theorem} Any element of $\mathrm{O}_3(\RR)$ is a product of at most 3 reflections. \end{theorem} \begin{proof} Let $\{e_1, e_2, e_3\}$ be standard orthonormal basis for $\RR^3$. Let $A \in \mathrm{O}_3(\RR)$. Then \[ |Ae_3| = |e_3| = 1 ,\] since $A$ is an isometry. So there exists a reflection $r_1$ such that \[ r_1A(e_3) = e_3 .\] Let $\pi = \langle e_1, e_2 \rangle$ (the plane perpendicular to $e_3$). Then $r_1A(\pi) = \pi$. There exists a reflection $r_2$ such that \[ r_2(e_3) = e_3, \qquad r_2(r_1A(e_2)) = e_2 .\] So $r_2r_1A$ fixes $e_2$ and $e_3$. So $r_2r_1A(e_1) = \pm e_1$. If $e_1 = e_1$, set $r_3 = \id$. If $e_1 = -e_1$, let $r_3$ be reflection in plane perpendicular to $e_1$. So $r_3r_2r_1A$ fixes $e_1, e_2, e_3$, so \[ r_3r_2r_1 A = \id \] \[ \implies A = r_1^{-1}r_2^{-1}r_3^{-1} = r_1r_2r_3 .\] \end{proof} \myskip Alternatively, any element in $\mathrm{S0}_2(\RR)$ is a product of at most 2 reflections, via 2-dimensional case. Thus any element of \[ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathrm{SO}_3(\RR) \] is a product of at most 3 reflections. Note we do need 3, for example consider \[ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \] \newpage \section{M\"obius Groups} A M\"obius transformation (or map) is a function of a complex variable $z$ that can be written in the form \[ f(z) = \frac{az + b}{cz + d} \] for some $a, b, c, d \in \CC$ with $ad - bc \neq 0$. Why $ad - bc \neq 0$? \[ f(z) - f(w) = \frac{(ad - bc)(z - w)}{(cz + d)(cw + d)} .\] So, $ad - bc = 0$ implies $f$ constant (not interesting), and $ad - bc \neq 0$ implies $f$ injective. When does $f(z) = g(z)$? \\ Suppose there exists at least 3 values of $z$ in $\CC$ such that \[ \frac{az + b}{cz + d} = \frac{\alpha z + \beta}{\gamma z + \delta} \] $ad - bc \neq 0$, $\alpha \delta - \beta \gamma \neq 0$. Then there exists $\lambda \neq 0$, $\lambda \in \CC$ such that \[ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Since, we have 3 distinct values of $z$ for which \[ (az + b)(\gamma z + \delta) = (\alpha z + \beta)(cz + d) \] so these quadratics are identical. Hence \[ a \gamma = \alpha c, \qquad b \delta = \beta d \] \[ a \delta + b \gamma = \alpha d + \beta c \] Let $\mu = a \delta - \beta c = \alpha d - b \gamma$ (so $\mu^2 = (ad - bc)(\alpha \delta - \beta \gamma) \neq 0$). Then \[ \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix} \] \[ \implies \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \frac{\mu}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] \myskip Problem: $f$ is not defined at $z = -\frac{d}{c}$. We would like $f \left( - \frac{d}{c} \right) = \infty$. We consider $f$ defined on $\CC \cup \{\infty\} = \CC_\infty$, the extended complex plane. So if \[ f(z) = \frac{az + b}{cz + d} ,\] domain is now $\CC_\infty$; $c \neq 0$; $f(\infty) = \frac{a}{c}$, $f \left( - \frac{d}{c} \right) = \infty$. For $c = 0$; $f(\infty) = \infty$. \begin{center} \includegraphics[width=0.6\linewidth] {images/5e0b8c2c7e3f11ec.png} \end{center} (Riemann Sphere and stereographic projection.) \begin{theorem} The set $\mathcal{M}$ of all M\"obius maps on $\CC_\infty$ is a group under composition. It is a subgroup of $\mathrm{Sym}(\CC_\infty)$. \end{theorem} \begin{proof} \begin{itemize} \item composition of maps is associative \item $I(z) = z \in \mathcal{M}$. \item closure: Let \[ f(z) = \frac{az + b}{cz + d}, \qquad g(z) = \frac{\alpha z + \beta}{\gamma z + \delta} \] Suppose $c \neq 0$, $\delta \neq 0$. First suppose $z \in \CC \setminus \{ -\delta / \gamma\}$. Then \begin{align*} f(g(z)) &= \frac{a \left( \frac{\alpha z + \beta}{\gamma z + \delta} \right) + b}{c \left( \frac{\alpha z + \beta}{\gamma z + \delta} \right) + d} \\ &= \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma) + (c\beta + \delta d)} \in \mathcal{M} \end{align*} since \[ (a\alpha + b\gamma)(c\beta + \delta d) - (a\beta + b\delta)(c\alpha + d\gamma) = (ad - bc)(\alpha \delta - \beta \gamma) \neq 0 .\] Also, $f \left( g \left( - \frac{\delta}{\gamma} \right) \right) = f(\infty) = \frac{a}{c}$. And \begin{align*} \frac{(a\alpha + b\gamma) \left( -\frac{\delta}{\gamma} \right) + (a\beta + b\delta)}{(c\alpha + d\gamma) \left( -\frac{\delta}{\gamma} \right) + (c\beta + \delta d)} &= \frac{a\alpha \left( - \frac{\delta}{\gamma} \right) + \alpha \beta}{c \alpha \left( -\frac{\delta}{\gamma} \right) + c\beta} \\ &= \frac{a}{c} \end{align*} Need to check $c = 0$ separately. \item inverses: For some $a, b, c, d$ with $ad - bc \neq 0$, let \[ f(z) = \frac{az + b}{cz + d} \qquad \text{and} \qquad f^*(z) = \frac{dz - b}{-cz + a} \] Then $f(f^*(z)) = z = f^*(f(z))$ for $z \neq -\frac{d}{c}, -\frac{a}{c}, \infty$. These are cases are ok. If $c = 0$ then \[ f(f^*(\infty)) = f(\infty = \infty = f^*(f(\infty)) .\] \end{itemize} \end{proof} \begin{theorem} \[ \frac{\mathrm{GL}_2(\CC)}{Z} \cong \mathcal{M} \] where \[ Z = \{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} : \lambda \in \CC \setminus \{0\}\} .\] \end{theorem} \begin{proof} We construct a surjective homomorphism from $\mathrm{GL}_2(\CC)$ onto $\mathcal{M}$ with kernel $Z$. \\ Let $\phi : \mathrm{GL}_2(\CC) \to \mathcal{M}$ \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto f(z) = \frac{az + b}{cz + d} .\] Note $\phi$ a homomorphism: \[ f(z) = \frac{az + b}{cz + d}, \qquad g(z) = \frac{\alpha z + \beta}{\gamma z + \delta} .\] \begin{align*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \phi \left( \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right) (z) &= f \circ g(z) \\ &= \frac{(a\alpha + b\gamma)z + (a\beta + b\delta}{(c\alpha + d\gamma)z + (c\beta + \delta d)} \\ &= \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right) \end{align*} Clearly $\phi$ surjective. \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{Ker} \,\,\phi \] if and only if $\frac{az + b}{cz + d} = z \,\,\forall\,\, z \in \CC_\infty$. Note \[ z = \infty \implies c = 0 \] \[ z = 0 \implies b = 0 \] \[ z = 1 \implies a = d \] \[ \implies \mathrm{Ker}\,\,\phi = z \] Finally apply First Isomorphism Theorem. \end{proof} \setcounter{customcorollary}{6} \begin{corollary} \[ \frac{\mathrm{SL}_2(\CC)}{\{\pm I\}} \cong \mathcal{M} .\] \end{corollary} \begin{proof} Restrict $\phi$ to $\mathrm{SL}_2(\CC)$ \[ \phi : \mathrm{SL}_2(\CC) \to \mathcal{M} \] \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{az + b}{cz + d} .\] We require $\phi$ to be surjective: \[ f(z) = \frac{az + b}{cz + d} = \frac{\left( \frac{a}{(ad - bc)^{1/2}} \right) z + \frac{b}{(ad - bc)^{1/2}}}{\left( \frac{c}{(ad - bc)^{1/2}} \right) z + \frac{d}{(ad - bc)^{1/2}}} .\] And $\mathrm{Ker}\,\,\phi = \{\pm I\}$. \end{proof} \setcounter{customproposition}{12} \begin{proposition} Every M\"obius map can be written as a somposition of maps of the following forms: \begin{enumerate}[(i)] \item $z \mapsto az$, $a \neq 0$; represents a dilation or rotation \item $z \mapsto z + b$; a translation \item $z \mapsto \frac{1}{z}$; inversion. \end{enumerate} \end{proposition} \begin{proof} Let $f(z) = \frac{az + b}{cz + d}$. If $c = 0$; \[ z \mapsto \left( \frac{a}{d} \right) z \to \mapsto \left( \frac{a}{d} \right) z + \left( \frac{b}{d} \right) \] $f_1$ is type (i), $f_2$ is type (ii). We can write $f = f_2 \circ f_1$. If $c \neq 0$, write \begin{align*} f(z) &= \frac{az + b}{cz + d} \\ &= \frac{\left( \frac{a}{c} \right) z + \left( \frac{b}{c} \right)}{z + \left( \frac{d}{c} \right)} \\ &= \frac{a}{c} + \frac{\left( \frac{-ad + bc}{c^2} \right)}{\left( z + \frac{d}{c} \right)} \\ &= A + \frac{B}{z + \frac{d}{c}} \end{align*} \[ z \stackrel{\text{(ii)}}{\mapsto} z + \frac{d}{c} \stackrel{\text{(iii)}}{\mapsto} \frac{1}{z + \frac{d}{c}} \stackrel{\text{(i)}}{\mapsto} \frac{B}{z + \frac{d}{c}} \stackrel{\text{(ii)}}{\mapsto} A + \frac{B}{z + \frac{d}{c}} .\] Now we can write $f = f_4 \circ f_3 \circ f_2 \circ f_1$. \end{proof} \setcounter{customdefinition}{21} \begin{definition} A group $G$ acts \emph{triply transitively} on a set $X$ if given $x_1, x_2, x_3 \in X$ all distinct and $y_1, y_2, y_3 \in X$ all distinct, there exists $g \in G$ such that $g(x_i) = y_i$, for $i = 1, 2, 3$. \\ A group $G$ acts \emph{sharply triply transitively} if such a $g$ is unique. \end{definition} \begin{theorem} The action of $\mathcal{M}$ on $\CC_\infty$ is sharply triply transitive. \end{theorem} \begin{proof} Label first triple $\{z_0, z_1, z_\infty\}$ and second triple $\{\omega_0, \omega_1, \omega_\infty\}$. We construct $g \in \mathcal{M}$ such that \begin{align*} g : z_0 &\mapsto 0 \\ z_1 &\mapsto 1 \\ z_\infty &\mapsto \infty \end{align*} First suppose $z_0, z_1, z_\infty \neq \infty$ \[ g(z) = \frac{(z - z_0)(z_1 - z_\infty)}{(z - z_\infty)(z_1 - z_0)} \] check: ``$ad - bc$'' $= (z_0 - z_\infty)(z_1 - z_\infty)(z_1 - z_0) \neq 0$. If $z_\infty = \infty$: \[ g(z) = \frac{(z - z_0)}{(z_1 - z_0)} \] If $z_1 = \infty$: \[ g(z) = \frac{(z - z_0)}{(z - z_\infty)} \] If $z_0 = \infty$: \[ g(z) = \frac{(z_1 - z_\infty)}{(z - z_\infty)} .\] Similarly find $h$ such that \begin{align*} h : \omega_0 &\mapsto 0 \\ \omega_1 &\mapsto 1 \\ \omega_\infty &\mapsto \infty \end{align*} Then $f = h^{-1}g : z_i \mapsto \omega_i$ as required. Now to prove uniqueness. Suppose $f' : z_i \mapsto \omega_i$. Then $f^{-1}f' : z_i \mapsto z_i$. Let $g$ be as above, then \begin{align*} gf^{-1}f' g^{-1} : 0 &\mapsto 0 \implies b = 0 \\ 1 &\mapsto 1 \implies a = d \\ \infty &\mapsto \infty \implies c = 0 \end{align*} \[ \implies gf^{-1}f'g^{-1} = \id \] \[ \implies f^{-1}f' = \id \] \[ \implies f = f' .\] \end{proof} \myskip So, the image of just three points determines the map. \subsubsection*{Conjugacy classes in $\mathcal{M}$} Recall $\phi : \mathrm{GL}_2(\CC) \surjto \mathcal{M}$. Suppose $A$, $B$ conjugate in $\mathrm{GL}_2(\CC)$, i.e. there exists $P \in \mathrm{GL}_2(\CC)$ such that \[ PAP^{-1} = B \] then \begin{align*} \phi(P)\phi(A)\phi(P)^{-1} &= \phi(PAP^{-1}) \\ &= \phi(B) \in \mathcal{B} \end{align*} i.e. $\phi(A)$ and $\phi(B)$ are conjugate in $\mathcal{M}$. Use knowledge of conjugacy classes in $\mathrm{GL}_2(\CC)$. \begin{enumerate}[(i)] \item For some $\lambda \neq \mu$, $\lambda \neq 0 \neq \mu$ \[ \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \] \[ \phi \left( \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right) = f \] $f(z) = \nu z$, $\nu \neq 0, 1$. \item For some $\lambda \neq 0$, \[ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \] \[ \phi \left( \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = \id .\] \item For some $\lambda \neq 0$, \[ \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \] \[ \phi \left( \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \right) = f \] $f(z) = \frac{\lambda z + 1}{\lambda} = z + \frac{1}{\lambda}$, i.e. \[ f = \phi \left( \begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix} \right) \] And it's conjugate to \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\lambda} & 0 \\ 0 & 1 \end{pmatrix} \] So $f$ conjugate to $g$ where $g(z) = z + 1$. \end{enumerate} \setcounter{customtheorem}{16} \begin{theorem} Any non-identity M\"obius map is conjugate to one of \begin{enumerate}[(i)] \item $z \mapsto \nu z$, $\nu \neq 0, 1$ \item $z \mapsto z + 1$. \end{enumerate} \end{theorem} \setcounter{customcorollary}{7} \begin{corollary} A non-identity M\"obius map $f$ has either \begin{enumerate}[(i)] \item 2 fixed points or \item 1 fixed point. \end{enumerate} \end{corollary} \begin{proof} Suppose $gfg^{-1} = h$. Then $\alpha$ is a fixed point of $f$ (i.e. $f(\alpha) = \alpha$) if and only if $g(\alpha)$ is a fixed point of $h$ (i.e. $h(g(\alpha)) = g(\alpha)$). So number of fixed points of $f$ is the same as the number of fixed points of $h$. By Theorem 17 either, \begin{itemize} \item $f$ conjugate to $z \mapsto \nu z$ which has 2 fixed points: $0$, $\infty$. \item or $f$ conjugate to $z \mapsto z + 1$ which has 1 fixed points; $\infty$. \end{itemize} \end{proof} \subsection{Circles in $\CC_\infty$} A Euclidean circle is the set of points in $\CC$ given by some equation \[ |z - z_0| = r, \qquad r > 0 .\] A Euclidean line is the set of points in $\CC$ given by some equation \[ |z - a| = |z - b| \] A \emph{circle in $\CC_\infty$} is either a Euclidean circle or a set $L \cup \{\infty\}$ where $L$ is a Euclidean line. Its general equation is of the form \[ Az\ol{z} + B\ol{z} + \ol{B}z + C = 0 \] for some $A, C \in \RR$, $|B|^2 > AC$. Where $z = \infty$ is a solution if and only if $A = 0$. \begin{itemize} \item $A = 0$: line \item $C = 0$: goes through origin \end{itemize} There is a unique circle passing through any 3 distinct points in $\CC_\infty$. \begin{theorem*} Let $f \in \mathcal{M}$ and $C$ a circle in $\CC_\infty$, then $f(C)$ is a circle in $\CC_\infty$. \end{theorem*} \begin{proof} By proposition 13, just need to consider $f(z) = az$, $z + b$ or $\frac{1}{z}$. Let $S_{A, B, C}$ be circle defined by ($*$). Then \[ f(z) = az : S_{A, B, C} \mapsto S_{A/a\ol{a}, B/\ol{a}, C} \] \[ f(z) = z + b : S_{A, B, C} \mapsto S_{A, B - Ab, C + Ab\ol{b} - \ol{B}b - B\ol{b}} \] \[ f(z) = \frac{1}{z} := \omega : S_{A, B, C} \mapsto A + B\omega + B\omega + \ol{B}\ol{\omega} + C\omega\ol{\omega} = 0 = S_{C, \ol{B}, A} \] \end{proof} \bigskip \noindent e.g. Consider the image of $\RR \cup \{\infty\}$ under \[ f(z) = \frac{z - i}{z + i} .\] It is a circle in $\CC_\infty$ containing \[ f(0) = -1, f(\infty) = 1, f(1) = -i \] So $f(\RR \cup \{\infty\}) = \text{unit circle}$. Furthermore, complimentary components are mapped to complimentary components. \begin{center} \begin{tsqx} (-1.5,0)--(1.5,0)--(1.5,1.5)--(-1.5,1.5)--cycle lightblue 0.5 / lightblue (-1.5,0)--(1.5,0) (0,-1.5)--(0,1.5) label $i$ @ (-0.1,0.5) ! dot((0,0.5)); CR (5,0) 0.5 lightblue 0.5 / black label $i$ @ (5.1,0.1) (3.5,0)--(6.5,0) (5,-1.5)--(5,1.5) label $\rightarrow$ @ (2.5,0) \end{tsqx} \end{center} \subsection{Cross-Ratios} \setcounter{customdefinition}{22} \begin{definition} The cross-ratio of distinct points $z_1, z_2, z_3, z_4 \in \CC$ is defined by \[ [z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_2)(z_3 - z_4)} \] \[ [\infty, z_2, z_3, z_4] = \frac{(z_2 - z_4}{(z_3 - z_4)} \] \[ [z_1, \infty z_3, z_4] = - \frac{(z_1 - z_3)}{(z_3 - z_4)} \] \[ [z_1, z_2, z_3, \infty] = \frac{(z_1 - z_3)}{(z_1 - z_2)} \] \[ [z_1, z_2, \infty, z_4] = - \frac{(z_2 - z_4)}{(z_1 - z_2)} \] \end{definition} \noindent Note $[0, 1, \omega, \infty] = \omega$. \begin{notation*} Different authors use different permutations of 1, 2, 3, 4 as definition. \end{notation*} \begin{theorem*} Given $z_1, z_2, z_3, z_4 \in \CC_\infty$ distinct and $\omega_1, \omega_2, \omega_3, \omega_4 \in \CC_\infty$ distinct then there exists $f \in \mathcal{M}$ such that $f(z_i) = f(\omega_i)$ if and only if \[ [z_1, z_2, z_3, z_4] = [\omega_1, \omega_2, \omega_3, \omega_4] .\] In particular, M\"obius maps preserve cross-ratios \[ [z_1, z_2, z_3, z_4] = [f(z_1), f(z_2), f(z_3), f(z_4)] .\] \end{theorem*} \begin{proof} For the forward direction, suppose $f(z_j) = \omega_j$ and $z_i, \omega_i \neq \infty$ for all $i$ and \[ f(z) = \frac{az + b}{cz + d} \] then $cz_j + d \neq 0 \forall j$. So \begin{align*} \omega_j - \omega_k &= f(z_j) - f(z_k) \\ &+ \frac{(ad - bc)(z_j - z_k)}{(cz_j + d)(cz_k + d)} \\ \implies [z_1, z_2, z_3, z_4] &= [\omega_1, \omega_2, \omega_3, \omega_4] \\ &= [f(z_1), f(z_2), f(z_3), f(z_4)] \end{align*} Need to check other cases; $z_i = \infty$, $\omega_i = f(\infty = \frac{a}{c}$ etc. \\ For the other direction, suppose that \[ [z_1, z_2, z_3, z_4] = [\omega_1, \omega_2, \omega_3, \omega_4] \] Let $g \in \mathcal{M}$ such that $g(z_1) = 0$, $g(z_2) = 1$ and $g(z_4) = \infty$. Let $h \in \mathcal{M}$ such that $h(\omega_1) = 0$, $h(\omega_2) = 1$, $h(\omega_4) = \infty$. Then \begin{align*} g(z_3) &= [0, 1, g(z_3), \infty] \\ &= [g(z_1), g(z_2), g(z_3), g(z_4)] \\ &= [z_1, z_2, z_3, z_4] \\ &= [\omega_1, \omega_2, \omega_3, \omega_4] \\ &= [h(\omega_1), h(\omega_2), h(\omega_3), h(\omega_4)] \\ &= [0, 1, h(\omega), \infty] &= h(\omega_3) \end{align*} So $h^{-1}g$ is the required map. \end{proof} \noindent So $[z_1, z_2, z_3, z_4] = f(z_3)$ where $f$ is the unique M\"obius map that sends $z_1 \mapsto 0$, $z_2 \mapsto 1$, $z_4 \mapsto \infty$. \begin{corollary*} $z_1, z_2, z_3, z_4$ lie in some circle in $\CC_\infty$ if and only if $[z_1, z_2, z_3, z_4] \in \RR$. \end{corollary*} \begin{proof} $C$ circle through $z_1, z_2, z_4$, Let $g : C \to \RR \cup \{\infty\}$, \[ g(z_1) = 0, g(z_2) = 1, g(z_4) = \infty \] \begin{align*} g(z_3) &= [0, 1, g(z_3), \infty] \\ &= [g(z_1), g(z_2), g(z_3), g(z_4)] \\ &= [z_1, z_2, z_3, z_4] \end{align*} By Theorem 19. So \[ [z_1, z_2, z_3, z_4] \in \RR \iff g(z_3) \in \RR \iff z_3 \in C .\] \end{proof} \begin{center} \bfseries\LARGE THE END \end{center} \end{document}