Groups

January 26, 2022

Contents

0 Introduction

Book recommendations:

• Algebra & Geometry, Alan Beardon

Notation. ∀ denotes "for all"; ∃ denotes "there exists"; \implies denotes "implies"; ∴ denotes "therefore"; $\mathcal X$ denotes "contradiction"; and $\mathbb Z$, N, Q, R and $\mathbb C$ denote the integers, naturals, rationals, reals and complex numbers respectively.

1 Basic Definitions and Examples

Definition 1 (Binary Operation). A binary operation $*$ on a set X is a way of combining 2 elements of X to unambiguously give another element of X , i.e. $*$: $X \times X \to X$.

Definition 2 (Group). If G is a set and $*$ is a binary operation on G, then $(G, *)$ is a group if the following 4 axioms hold:

(i) $x, y \in G \implies x * y \in G$ (closure)

(ii) ∃ an element $e \in G$ satisfying

 $x * e = x = e * x \quad \forall x \in G$

(existence of an identity)

(iii) for every $x \in G$ there is a $y \in G$ such that

 $x * y = e = y * x$

(existence of inverses)

(iv) for every $x, y, z \in G$ we have:

$$
x * (y * z) = (x * y) * z
$$

(associative law)

Remark. We can prove that G has only one identity.

Remark. As a result, we can also prove that every element has only one inverse.

Both of these claims are proved in Lemma 1.

1.1 Examples of Groups

- (1) $(\mathbb{Z}, +), e = 0, x^{-1} = -x.$
- (2) $(\mathbb{Q}, +), (\mathbb{R}, +)$
- (3) $(\mathbb{Z}, -)$ is not a group because associativity fails.
- (4) (\mathbb{Z}, \times) is *not* a group because no inverses.
- (5) (\mathbb{Q}, \times) is *not* a group because 0^{-1} does not exist.
- (6) $(Q \setminus \{0\}, \times)$
- (7) $({\pm 1}, \times)$ We can write a multiplication table:

$$
\begin{array}{c|cc}\nx & 1 & -1 \\
\hline\n1 & 1 & -1 \\
-1 & -1 & 1\n\end{array}
$$

note that closure holds, $e = 1$ and $(-1)^{-1} = -1$.

 (8) $({0, 1, 2}, +3)$

and we have $e = 0$ and $1^{-1} = 2$.

(9) $({e, a, b, c}, *)$

(10) "groups are abstractions of symmetries": rotations and reflections of an equilateral triangle are another example of a group.

This forms a group where the binary operator is "do one then the next"

(11) $M_2(\mathbb{R}) = \{2 \times 2 \text{ matrices with entries in } \mathbb{R}\}\$

$$
= \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right]
$$

under addition is a group:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a+\alpha & b+\beta \\ c+\gamma & d+\delta \end{pmatrix}
$$

(12) $GL_2(\mathbb{R}) = \{\text{invertible } 2 \times 2 \text{ matrices with entries in } \mathbb{R}\}\$ under multiplication is a group.

Lemma 1. Let $(G, *)$ be a group. Then

- 1. The identity element is unique.
- 2. Inverses are unique.

Proof. (i): Suppose e and e' are both identities, so

$$
a * e = a = e * a
$$
 and $a * e' = a = e' * a$ $\forall a \in G.$

In particular

$$
e = e * e' = e'
$$

so $e = e'$, so the identity must be unique. *Proof.* (ii): Suppose both y and z are inverses for x , so

$$
x * y = e = y * x, \qquad \text{and} \qquad x * z = e = z * x \qquad x \in G.
$$

Then

```
y = y * e= y * (x * z)=(y * x) * z= e * z= z
```
so $y = z$.

Remark (Unnesessary brackets). Since the definition of a group involves associativity, we can omit brackets, i.e. $x * y * z$ is unambiguous.

 \Box

 \Box

Remark (Omitting *). We often omit "*" and write $xy := x * y$ and also write $G = (G, *)$. (This is only done when the binary operator can be easily inferred).

Remark (Inverse of product). $(xy)^{-1} = y^{-1}x^{-1}$. This follows immediately by the uniqueness, as it is easy to verify that this is a possible inverse:

$$
(xy)y^{-1}x^{-1} = x(yy^{-1})x^{-1} = xx^{-1} = e.
$$

Remark (Inverse of inverse). $(x^{-1})^{-1} = x$.

Remark (Coset stuff). If $xy = xz$ then $y = z$; this easily follows from the existence of inverses.

Definition 3 (Abelian Groups). A group G is abelian (or commutative) if $xy = yx$ for all $x, y \in G$.

Remark. Note all our examples above are abelian except (10) and (12). (Symmetries of the triangle, and the general linear group).

Definition 4 (Order of a group). Let G be a group. If the number of elements in the set G is finite, then G is called a *finite group*. Otherwise G is called an *infinite group.* If G is a finite group, denote the number of elements in the set G by $|G|$ and we call this the order of the group.

Definition 5 (Subgroups). Let $(G, *)$ be a group and H a subset of G ($H \subseteq G$ i.e. $h \in H \implies h \in G$). Then $(H, *)$ is a subgroup of $(G, *)$ if $(H, *)$ is a group (with the same operation) i.e. if

- (a) $h, k \in H \implies h * k \in H$.
- (b) $e_G \in H$
- (c) $h \in H \implies h^{-1} \in H$.

(Note associativity is inherited). i.e. "restricting operation to H still gives a group". We write $H \leq G$.

Examples

- \bullet $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +)$
- $({\{\pm 1\}}, \times)$ < $({\mathbb Q} \setminus \{0\}, \times)$.
- In example (10) (symmetries of a triangle), the rotational symmetries form a subgroup (elements $\{e, \sigma, \sigma^2\}$).
- In example (12) (general linear group), we have that

$$
SL_2(\mathbb{R}) = \{ A \in GL_2(\mathbb{R}) : \det A = 1 \}
$$

$$
\le GL_2(\mathbb{R})
$$

 $(SL₂$ and $GL₂$ denote the special linear and general linear groups respectively).

- G a group then ${e} \le G$ is the trivial subgroup. $G \le G$ is the improper subgroup.
- The subgroups of $(\mathbb{Z}, +)$ are exactly

$$
n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}, \qquad n \in \mathbb{Z}_{\geq 0}.
$$

Proof. First note $n\mathbb{Z}$ is a sub group of \mathbb{Z} .

- $-0 \in n\mathbb{Z}$
- If $a, b \in n\mathbb{Z}$, then let $a = na', b = nb'$. Then we have

$$
a + b = na' + nb' = n(a' + b') \in n\mathbb{Z}.
$$

 $- -a = n(-a') \in n\mathbb{Z}$

– Associativity is inherited.

Conversely assume that $H \leq \mathbb{Z}$. If $H = \{0\} = 0\mathbb{Z}$ which is of the form we claimed. Otherwise choose $0 \leq n \in H$ with n minimal. (Such an n must exist because H must contain either a negative or positive integer, but since inverses exist this implies that there must be a positive element). Then $n\mathbb{Z} \leq H$ by closure and inverses. Now we show that $H = n\mathbb{Z}$. Suppose $\exists h \in H \setminus n\mathbb{Z}$, then we can write $h = nk + h'$ with $h' \in \{1, 2, ..., n-1\}$. But $h' = h - nk \in H$, contradicting minimality of *n*. Thus $H = n\mathbb{Z}$. \Box

Definitions for Functions

Definition 6 (Functions). F is a function between sets A and B if it assigns each element of A a unique element of B

 $f : A \to B$ $a \mapsto f(a)$

For example: $f : \mathbb{Z} \to \mathbb{Z}, x \mapsto x+1$ and $q\mathbb{Z} \to \mathbb{Z}, x \mapsto 2x$.

Definition 7 (Composition of functions). Suppose $g : A \rightarrow B$ and $f : B \rightarrow C$. Define $f \circ g : A \to C$ by

$$
a \mapsto (f \circ g)(a) = f(g(a)).
$$

For example $(f \circ g)(x) = 2x + 1$ and $(g \circ f)(x) = 2x + 2$ using the example functions above.

Suppose $f_1: A \to B$, $f_2: A \to B$. Then $f_1 = f_2$ if and only if $f_1(a) = f_2(a) \forall a \in A$.

Definition 8 (Bijection). $f : A \rightarrow B$ is a bijection if it defines a pairing between elements of A and elements of B. That is, given $b \in B$ there exists a unique $a \in A$ such that $f(a) = b$. For example $f : \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x + 1$. Given a bijective function f , we can define

 $f^{-1}: B \to A$ b $\mapsto a$ where $f(a) = b$.

Then $f \circ f^{-1} = id_B$ and $f^{-1} \circ f = id_A$. $(id_B(b) = b, id_A(a) = a)$

Lemma 2 (Composition of bijections). If $q : A \rightarrow B$ and $f : B \rightarrow C$ are bijections then so is $f \circ g : A \to C$.

Proof. In Numbers & Sets.

Definition 9 (Homomorphism). Let $(G, *_{G})$ and $(H, *_{H})$ be groups. Then the function

 $\theta : G \to H$

is a homomorphism if

$$
\theta(x *_{G} y) = \theta(x) *_{H} \theta(y) \qquad \forall x, y \in G
$$

"a map which respects the group operation".

 \Box

Example. Let $G = (\{0, 1, 2, 3\}, +_4)$ and $H = (\{1, e^{\pi i/2}, e^{\pi i}, e^{3\pi i/2}\}, \times)$. Then the function

 $\theta : G \to H$ $n \mapsto e^{n\pi i/2}$

is a homomorphism. This is because

$$
\theta(n+4 m) = e^{(n+4m)\pi i/2}
$$

= $e^{(n+m)\pi i/2}$ since $n+m = n+4m+4n$
= $e^{n\pi i/2} \times e^{m\pi i/2}$
= $\theta(n) \times \theta(m)$

Lemma 3. Let G and H be groups and $\theta : G \to H$ be a homomorphism. Then

$$
\theta(G) = \{\theta(g) : g \in G\},\
$$

the *image* of θ is a subgroup of H, written $\theta(G) \leq H$.

Proof. We need to prove closure, ...

• To prove closure, let x, y be elements of $\theta(G)$. Then $x = \theta(g)$ and $y = \theta(h)$ for some $h, g \in G$. Then:

$$
x *_{H} y = \theta(g) *_{H} \theta(h)
$$

$$
= \theta(g *_{g} h)
$$

$$
\in \theta(G)
$$

• To show that we have an identity, note that

$$
\theta(e_G) = \theta(e_G *_G e_G)
$$

= $\theta(e_G) *_H \theta(e_G)$

and if we premultiply by $\theta(e_G)^{-1} \in H$ then we get

$$
e_H = \theta(e_G) \in \theta(G)
$$

• To get inverses, let $x = \theta(g) \in \theta(G)$. Then

$$
e_H = \theta(e_G) = \theta(g *_G g^{-1})
$$

= $\theta(g) *_H \theta(g^{-1})$
= $x *_H \theta(g^{-1})$
= $\theta(g^{-1} *_G g)$
= $\theta(g^{-1}) *_H x$

And since inverses are unique we get

$$
\theta(g)^{-1} = \theta(g^{-1}) \in \theta(G)
$$

• And finally associativity is just inherited.

 \Box

Definition 10 (Isomorphism). A bijective homomorphism is called an isomorphism if G and H are groups and $\theta : G \to H$ is a homomorphism. We say G and H are isomorphic and write $G \cong H$.

Example. Let $G = (\{0, 1, 2, 3\}, +4)$ and $H = (\{1, e^{i\pi/2}, e^{i\pi}, e^{3i\pi/2}, \times)$. Then $G \cong$ H, which can be shown by considering

$$
\theta: G \to H
$$

$$
n \mapsto e^{i\pi n/2}
$$

 $(\theta$ is an isomorphism.)

Isomorphism means roughly "They are essentially the same"

Lemma 4.

- (i) The composition of two homomorphisms is a homomorphism. Similarly for isomorphisms, thus if $G_1 \cong G_2$ and $G_2 \cong G_3$, then $G_1 \cong G_3$.
- (ii) If $\theta: G_1 \to G_2$ then so is its inverse $\theta^{-1}: G_2 \to G_1$. So $G_1 \cong G_2 \implies G_2 \cong$ G_1 .

Proof.

(i) Suppose

$$
\theta_1 : (G_1, *_1) \to (G_2, *_2)
$$

$$
\theta_2 : (G_2, *_2) \to (G_3, *_3)
$$

are homomorphisms. Then $\theta_2 \circ \theta_1$ is a function from G_1 to G_3 , we need to check its a homomorphism. Let $x, y \in G_1$. Then

$$
\theta_2 \circ \theta_1(x *_{1} y) = \theta_2(\theta_1(x) *_{2} \theta_1(y))
$$

= $\theta_2(\theta_1(x)) *_{3} \theta_2(\theta_1(y))$
= $(\theta_2 \circ \theta_1)(x) *_{3} (\theta_2 \circ \theta_1)(y)$

(ii) θ is a bijection so θ^{-1} exists. We need to show it is a homomorphsim. Let $y, z \in G_2$. Then $\exists x, k \in G_1$ such that

$$
\theta^{-1}(y) = x, \qquad \theta^{-1}(z) = k.
$$

Note

$$
\theta(x *_{1} k) = \theta(x) *_{2} \theta(k)
$$

= $y *_{2} z \implies \theta^{-1}(y *_{2} z)$
= $\theta^{-1}(y) *_{1} \theta^{-1}(z)$
= $x *_{1} k$

Notation. If $x \in (G, *)$, $n \in \mathbb{Z}$ then

$$
x^{n} = \begin{cases} \overbrace{x * x * \cdots * x}^{n} & n > 0\\ e & n = 0\\ \underline{x^{-1} * x^{-1} * \cdots * x^{-1}}^{n} & n < 0 \end{cases}
$$

Definition 11 (Cyclic Groups). A group H is cyclic if $\exists h \in H$ such that each element of H is a power of h, i.e. for each $x \in H \exists n \in \mathbb{Z}$ such that $x = h^n$. Then h is called a *generator* of H and we write $H = \langle h \rangle$.

Example. • $(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle$ is the infinite cyclic group. We showed all subgroups of $(\mathbb{Z}, +)$ are cyclic.

$$
\bullet \ (\{\pm 1\}, \times) = \langle -1 \rangle
$$

$$
\bullet \ (\{0,1,2,3\},+_4) = \langle 1 \rangle = \langle 3 \rangle
$$

Note that a cyclic group is always abelian.

Definition 12 (Orders). Let G be a group and $g \in G$. The order of g written $o(g)$, is the least positive integer n such that $g^n = e$, if it exists. Otherwise g has infinite order.

Lemma 5. Suppose G is a group, $g \in G$ and $o(g) = m$. Let $n \in \mathbb{N}_{>0}$. Then

 $g^n = e \iff m \mid n$.

Proof. (\Leftarrow) Suppose m | n, then $n = qm$ for some $q \in \mathbb{N}$. This implies that

$$
g^n = g^{qm} = (g^m)^q = e^q = e.
$$

 (\implies) Suppose $g^n = e$. Then we can write $n = qm + r$ with $0 \le r < m$, with $q \in \mathbb{N}$. Then

$$
e = gn = gqm+r
$$

$$
= (gm)qgr
$$

$$
= eqgr
$$

$$
= egr
$$

$$
= gr
$$

This implies $r = 0$ by minimality of m, hence $n = qm$ as required.

 \Box

Remarks

(1) Suppose $g \in G_{\mathcal{L}}$ Then $\{g^n : n \in \mathbb{Z}\}\$ is a subgroup of G, in fact it is the smallest subgroup of G containing g. We call it the subgroup of G generated by g and write

$$
\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.
$$

Also $|\langle q \rangle| = o(q)$ if finite, since if $o(q) = m$ then

$$
\langle g \rangle = \{e, g, g^2, \dots, \underbrace{g^{m-1}}_{=g^{-1}}\}
$$

Otherwise both are infinite.

(2) We can define the abstract cyclic group of order n

$$
C_n = \langle x \rangle \qquad o(x) = n
$$

Then

 $(\{0, 1, \ldots, n-1\}, +_n)$ and $(\{n^{th} \text{ roots of unity}\}, \times)$

are realisations of this group, and they are all isomorphic.

(3) Let G be a group and $g_1, \ldots, g_k \in G$. Then the subgroup of G generated by g_1, \ldots, g_k denoted by $\langle g_1, \ldots, g_k \rangle$ is the smallest subgroup of G containing all the g_i . It is the intersection of all the subgroups of G containing all the g_i .

2 The Dihedral and Symmetric Groups

First note composition of functions is associative:

$$
f, g, h: X \to X, \qquad x \in X
$$

Then

$$
(f \circ (g \circ h))(x) = f((g \circ h)(x))
$$

= $f(g(h(x)))$
= $(f \circ g)(h(x))$
= $((f(\circ g) \circ h)(x)) \implies f \circ (g \circ h) = (f \circ g) \circ h$

2.1 Dihedral Groups

Let P be a regular polygon with n sides and V its set of vertices. We can assume

$$
V = \{e^{2\pi i k/n} : 0 \le k < n\}
$$

n-th roots of unity in $\mathbb C$. Then the symmetries of P are the isometries (i.e. distance preserving maps of $\mathbb C$ that map V to V .

We will show that for $n \geq 3$ the set of symmetries of P, under composition form a nonabelian group of order $2n$. This group is called the *dihedral group* of order $2n$ and denoted by D_{2n} .

Notation. Sometimes D_{2n} is denoted D_n .

We have already met D_6 in example 10.

Consider D_8

Let $r: P \rightarrow P$

$$
z \mapsto e^{2\pi i/n}z
$$

$$
t: p \to P
$$

$$
z \mapsto \overline{z}
$$

These are both isometries.

$$
|r(z) - r(w)| = |e^{2\pi i/n}z - e^{2\pi i/n}w|
$$

= $|e^{2\pi i/n}||z - w|$
= $|z - w|$

$$
|t(z) - t(w)|^2 = |\overline{z} - \overline{w}|^2
$$

$$
= (\overline{z} - \overline{w})(z - w)
$$

$$
= |z - w|^2
$$

$$
\implies |t(z) - t(w)| = |z - w|
$$

Note, $r^n = id =$ identity

$$
\implies r^{-1} = r^{n-1}
$$

−1

and also

$$
t^{2} = id \implies t = t^{-1}
$$

$$
tr(z) = e^{-2\pi i/n}\overline{z} = r^{-1}t(z)
$$

$$
\implies tr = r^{-1}t
$$

We show that the symmetries of P is

$$
\{\underbrace{e = \text{id}, r, r^2, \dots, r^{n-1}}_{\text{rotations}}, \underbrace{t, rt, \dots, r^{n-1}t}_{\text{reflections}}\}
$$

Then this set under composition of functions gives the group D_{2n} .

Let f be a symmetry of P. Then $f(1) = e^{2\pi i k/n}$ for some k.

$$
\implies r^{-k} \circ f(1) = 1.
$$

So, $g(e^{2\pi i/n}) = e^{2\pi i/n}$ or $e^{-2\pi i/n}$. If $g(e^{2\pi i/n}) = e^{2\pi i/n}$ then g fixes 1 and $e^{2\pi i/n}$, Also g interchanges vertices of P so fixes P 's centre of mass

$$
\frac{1}{n} = \sum_{k=0}^{n-1} e^{2\pi i k/n} = 0.
$$

So g fixes 0, 1 and $e^{2\pi i/n}$

$$
g = \mathrm{id} \implies f = r^k.
$$

If $g(e^{2\pi i/n}) = e^{-2\pi i/n}$ then

$$
t \circ g(e^{2\pi i/n} = e^{2\pi i/n}
$$

\n
$$
t \circ g(1) = 1
$$

\n
$$
t \circ g(0) = 0
$$

\n
$$
\implies t \circ g = \text{id}
$$

\n
$$
t \circ r^{-k} \circ f = \text{id}
$$

\n
$$
\implies f = r^k \circ t^{-1}
$$

\n
$$
= r^k \circ t
$$

Algebraically we write,

$$
D_{2n} = \langle \underbrace{r, t}_{\text{generators}} | \underbrace{r^n = e, t^2 = e, trt = r^{-1}}_{\text{relations}}
$$

Finally, $D_2 \cong C_2$ and $D_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ are the only abelian dihedral groups. Also note that D_{∞} exists.

2.2 Symmetric Groups

Let X be a set. A bijection

$$
f:X\to X
$$

is called a *permutation* of X. Let $Sym(X)$ denote the set of all permutations of X.

Proposition 1. Sym (X) is a group under composition of functions. It is called the symmetric group on X .

Proof.

- $\bullet\,$ Closure follows from a lemma in Numbers $\&$ Sets
- identity, define $c(x) = x \quad \forall x \in X$
- Let $f \in Sym(X)$. As f is a bijection, f^{-1} exists and is a bijection and satisfies

$$
f\circ f^{-1}=c=f^{-1}\circ f
$$

• composition of functions is associative as shown earlier

 \Box

Notation (Symmetric Groups). Suppose X is finite and $X = |n|$. Then we often take X to be the set $\{1, 2, ..., n\}$ and we write S_n for $Sym(X)$. We call S_n the symmetric group of degree n.

We'll use double row notation (for now).

If $\sigma \in S_n$ write

$$
\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}
$$

For example

and

$$
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \in S_5
$$

 $\sqrt{1}$

 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$

Composition:

$$
\begin{pmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \ 2 & 1 & 3 \ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \ 3 & 2 & 1 \end{pmatrix}
$$

or

Small n

$$
S_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \{c\} \right\} \qquad \text{trivial group}
$$
\n
$$
S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cong (\{\pm 1\}, \times) \cong C_2 \right\}.
$$
\n
$$
S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\} \cong D_6
$$

Remarks

- (i) $|S_n| = n!$ because number of choices for $\sigma(1)$ is n, number of choices for $\sigma(2)$ is $n-1...$
- (ii) For $n \geq 3$, S_n is not abelian. Consider

(iii) D_{2n} naturally embeds in S_n . For example $D_8 \lesssim S_4$

$$
r = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}
$$

"Double row notation is cumbersome and hides what's going on. We introduce cycle notation."

New Notation

Definition 13. Let a_1, \ldots, a_k be distinct integers in $\{1, \ldots, n\}$. Suppose $\sigma \in S_n$ and

> $\sigma(a) = \begin{cases} a_{i+1} & \text{if there exists } i \text{ such that } a_i = a \text{ (taken modulo } k). \end{cases}$ a otherwise

Then σ is a k-angle and we write $\sigma = (a_1, a_2, \ldots, a_k)$. For example

$$
\sigma = (1, 2, 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}
$$

Remarks

(i)

$$
(a_1, a_2, \ldots, a_k) = (a_k, a_1, a_2, \ldots, a_{k-1}) = \cdots
$$

We usually write the smallest a_i first.

(ii)

$$
(a_1, a_2, \dots, a_k)^{-1} = (a_1, a_k, a_{k-1}, \dots, a_2)
$$

(iii) $o(\sigma) = k$, σ is like rotations of k points

(iv) a 2-cycle is called a transposition.

Definition 14. Two cycles $\sigma(a_1, \ldots, a_k)$ and $\tau = (b_1, \ldots, b_l)$ are disjoint if $\{a_1, \ldots, a_k\}$ ${b_1, \ldots, b_l} = \emptyset.$

Lemma 6. If $\sigma, \tau \in S_n$ are disjoint then $\sigma\tau = \tau\sigma \qquad (\sigma \circ \tau = \tau \circ \sigma).$

Proof. If $x \in \{1, ..., n\} \setminus \{a_1, ..., a_k\} \cup \{b_1, ..., b_l\}$, then

$$
(\sigma \circ \tau)(x) = \sigma(\tau(x)) = x = (\tau \circ \sigma)(x).
$$

For $1 \leq i \leq k-1$ we have

$$
(\sigma \circ \tau)(a_i) = \sigma(\tau(a_i))
$$

= $\sigma(a_i)$
= a_{i+1}

$$
(\tau \circ \sigma)(a_i) = \tau(\sigma(a_i))
$$

= $\tau(a_{i+1}) = a_{i+1}$

And $\sigma \circ \tau(a_k) = a_1$ and $a\tau \circ \sigma(a_k) = a_1$. The same argument works for the b_i . Thus $\sigma \circ \tau$ and $\tau \circ \sigma$ agree everywhere which implies that $\sigma \circ \tau = \tau \circ \sigma$. \Box

Example.

$$
(1\;2)(3\;4\;5) = (3\;4\;5)(1\;2)
$$

However this is not necessarily true if two cycles are disjoint.

Example. Consider $\sigma = (1\ 2\ 3)$ and $\tau = (2\ 4)$. Then we have

 $\sigma \circ \tau(1) = \sigma(1) = 2$ $\sigma \circ \tau(2) = \sigma(4) = 4$ $\sigma \circ \tau(3) = \sigma(2) = 1$ $\sigma \circ \tau(4) = \sigma(3) = 3$

Hence $\sigma \circ \tau = (1\ 2\ 4\ 3)$ but $\tau \circ \sigma = (1\ 4\ 2\ 3)$.

Notation. When using cycle notation, we often suppress 1-cycles.

Theorem 1. Every permutation can be written as a product of disjoint cycles (in an essentially unique way).

Example.

$$
\sigma = \begin{pmatrix}\n1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 4 & 5 & 7 & 6 & 3 & 1 & 9 & 8\n\end{pmatrix}
$$
\n
$$
= (1 2 4 7)(3 5 6)(8 9)
$$

Proof. Let $a_1 \in \{1, 2, ..., n\} = X$. Consider $a_1, \sigma(a_1), \sigma^2(a_1), \ldots$ Since X is finite there exists a minimal j such that $\sigma^j(a_1) \in \{a_1, \sigma(a_1), \ldots, \sigma^{j-1}(a_1)\}\.$ We claim: $\sigma^j(a_1) = a_1$ since if not we can assume

$$
\sigma^j(a_1)=\sigma^i(a_i)
$$

where $j > i \geq 1$. Then this implies

 $\sigma^{j-i}(a_1)=a_1$

which contradicts the minimality of j. So, $(a_1, \sigma(a_1), \ldots, \sigma^{j-1}(a_1))$ is a cycle in σ . If there exists $b \in X \setminus \{a_1, \sigma(a_1), \ldots, \sigma^{j-1}(a_1)\}\)$ consider $b, \sigma(b), \ldots$. Now we can note that $(b, \sigma(b), \ldots, \sigma^{k-1}(b))$ is disjoint from $(a_1, \sigma(a_1), \ldots, \sigma^{j-1}(a_1))$ since σ is a bijection. Continue in this way until all elements of X are reached. \Box **Lemma 7.** Let σ , τ be disjoint cycles in S_n . Then

 $o(\sigma\tau) = \text{lcm}\lbrace o(\sigma), o(\tau) \rbrace.$

Proof. Let $\text{lcm}\lbrace o(\sigma), o(\tau) \rbrace$ so $o(\sigma) | k$ and $o(\tau) | k$. Then

$$
(\sigma \tau)^k = \sigma \tau \sigma \tau \cdots \sigma \tau
$$

$$
= \sigma^k \tau^k
$$

$$
= ee
$$

$$
= e
$$

$$
\implies o(\sigma \tau) | k
$$

Now suppose $o(\sigma\tau) = n$. Then

$$
(\sigma \tau)^n = e
$$

\n
$$
\implies \sigma^n \tau^n
$$

\n
$$
= e
$$

But σ , τ move different elements of X which implies that we must have $\sigma^n = e$ and $\sigma^n = e$, which implies that $o(\sigma) | n$ and $o(\tau) | n$ which implies that $k | n$, and hence

$$
o(\sigma\tau) = \operatorname{lcm}\{o(\sigma), o(\tau)\}\
$$

as desired.

Proposition 2. Any $\sigma \in S_n$ (with $n \geq 2$) can be written as a product of transpositions.

Proof. By the previous theorem it is sufficient to show that a k-cycle can be written as a product of transpositions. We can do this directly:

$$
(a_1, a_2, \ldots, a_k) = (a_1, a_2)(a_2, a_3) \cdots (a_{k-2}, a_{k-1})(a_{k-1}, a_1)
$$

 \Box

 \Box

Example.

$$
(1\ 2\ 3\ 4\ 5) = (1\ 2)(2\ 3)(3\ 4)(4\ 5) = (1\ 2)(1\ 2)(1\ 2)(2\ 3)(3\ 4)(4\ 5) = (1\ 5)(1\ 4)(1\ 3)(1\ 2).
$$

Note that the representation as a product of transpositions is not unique.

Definition 15. Let $\sigma \in S_n$ with $(n \geq 2)$. Then the sign of σ , written sgn(σ) is $(-1)^k$ where k is the number of transpositions in some expression of σ as a product of transpositions.

Lemma 8. The function sgn : $S_n \to {\pm 1}$ defined by $\sigma \mapsto \text{sgn}(\sigma)$ is well-defined. i.e. if

$$
\sigma = \tau_1 \cdots \tau_a
$$

$$
= \tau'_1 \cdots \tau'_b
$$

with τ_i and τ'_i transpositions then

$$
(-1)^a = (-1)^b.
$$

Proof. Let $c(\sigma)$ denote the number of cycles in a disjoint cycle decomposition of σ including 1-cycles, so $c(id) = n$. Let τ be a transposition.

Claim.

$$
c(\sigma \tau) = c(\sigma) \pm 1 \equiv c(\sigma) + 1 \pmod{2}
$$

Let $\tau = (k, l)$. 2 cases:

(i) k, l in different cycles of σ :

$$
(k, a_1, \ldots, a_r)(l, b_1, \ldots, b_s)(k, l) = (k, b_1, b_2, \ldots, b_s, l, a_1, \ldots, a_r)
$$

and hence $c(\sigma \tau) = c(\sigma) - 1$.

(ii) when k, l in same cycle in σ we have

$$
(k, a_1, \dots, a_r, l, b_1, \dots, b_s)(k, l) = (k, b_1, \dots, b_s)(l, a_1, \dots, a_r)
$$

$$
\implies c(\sigma \tau) = c(\sigma) + 1.
$$

Now assume

$$
\sigma = id \cdot \tau_1 \cdots \tau_a
$$

$$
= id \cdot \tau'_1 \cdots \tau'_a
$$

Then

$$
c(\sigma) \equiv n + a \pmod{2}
$$

$$
\equiv n + b \pmod{2}
$$

$$
\implies a \equiv b \pmod{2}
$$

$$
\implies (-1)^a = (-1)^b
$$

Aside

Subgroup lattice of $D_6 = \{e, r, r^2, t, rt, r^2t\}$:

So we just connect subgroups with a line if one is a subgroup of another.

Theorem 2. Let $n \geq 2$. The map $sgn : (S_n, \circ) \to (\{\pm 1\}, \times) \qquad \sigma \mapsto sgn(\sigma)$ is a well-defined non-trivial homomorphism.

Proof.

- Well-defined as proven earlier.
- sgn $((1 2)) = -1$, so non-trivial.
- $\bullet\,$ Now we prove that it is a homomorphism: Let $\alpha, \beta \in S_n$ with $sgn(\alpha) = (-1)^k$, $sgn(\beta) = (-1)^k$, so there exists transpositions τ_i and τ_i' such that

$$
\alpha = \tau_1 \cdots \tau_k \qquad \beta = \tau'_1 \cdots \tau'_l
$$

\n
$$
\implies \alpha \beta = \tau_1 \cdots \tau_k \tau'_1 \cdots \tau'_l
$$

\n
$$
\implies \text{sgn}(\alpha \beta) = (-1)^{k+l}
$$

\n
$$
= (-1)^k (-1)^l
$$

\n
$$
= \text{sgn}(\alpha) \text{sgn}(\beta)
$$

 $\hfill \square$

Definition 16. σ is an even permutation if $sgn(\sigma) = 1$ and an odd permutation if $sgn(\sigma) = -1.$

Corollary 1. The even permutations of S_n ($n \geq 2$) form a subgroup called the alternating group and denoted A_n .

Proof.

• Identity: id = $(1\ 2)(1\ 2) \in A_n$.

$$
\bullet
$$

$$
sgn(\sigma) = 1 = sgn(\rho)
$$

\n
$$
\implies sgn(\sigma \rho) = sgn(\sigma)sgn(\rho) = 1
$$

by the previous theorem

• If

then

$$
\sigma^{-1} = \tau_k \cdots \tau_1
$$

\n
$$
\implies \text{sgn}(\sigma) = \text{sgn}(\sigma^{-1})
$$

 $\sigma = \tau_1 \cdots \tau_k$

• Associativity is inherited.

 \Box

Remarks

(i) $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$ $\frac{n!}{2}$ (exercise - see later)

- (ii) cycles of even length are odd, and cycles of odd length are even.
- (iii) $A_n = \text{Ker}(\text{sgn})$, hence a subgroup. (question 9, sheet 1)

3 Cosets and Lagrange

Definition 17 (Cosets). Let $H \leq G$ and $g \in G$. The *left coset gH* is defined to be

{ $gh : h \in H$ }.

Similarly the right coset is given by

$$
Hg = \{hg : h \in H\}.
$$

Example.

$$
S_r = \{e, (1\ 2\ 3), (1\ 3\ 2), (1\ 2), (1\ 3), (2\ 3)\}.
$$

$$
H = \{\text{id}, (1\ 2\ 3), (1\ 3\ 2)\} = A_3.
$$

$$
(1\ 2)H = \{(1\ 2), (1\ 2)(1\ 2\ 3), (1\ 2)(1\ 3\ 2)\} = \{(1\ 2), (2\ 3), (1\ 3)\}
$$

$$
(1\ 2\ 3)H = H
$$

Note, $H\dot{\cup}(1\ 2)H = S_3$.

Notation. We sometimes use $\dot{\cup}$ instead of \cup if we wish to emphasise that we have a disjoint union.

Lemma 9. Let $H \leq G$ and $g \in G$. Then there is a bijection between H and gH. In particular if H is finite then

 $|H| = |gH|.$

Proof. Define

$$
\theta_g: H \to gH \qquad h \mapsto gh
$$

We show θ_g is a bijection.

surj: If $gh \in gH$ then $\theta_g(h) = gh$.

inj: If

$$
\theta_g(h_1) = \theta_g(h_2)
$$

\n
$$
\implies gh_1 = gh_2
$$

\n
$$
\implies h_1 = h_2
$$

Lemma 10. The left cosets of H in G form a partition called of G i.e.

- (i) each $g \in G$ lies in some left coset of H in G.
- (ii) if $aH \cap bH \neq \emptyset$ for some $a, b \in G$ then $aH = bH$.

Proof.

- (i) $g \in gH$.
- (ii) Suppose $c \in aH \cup bH$. Then we claim that $aH = cH = bH$. Now $c \in aH$ so $c = ak$ for some $k \in H$

$$
\implies cH = \{ch : h \in H\}
$$

$$
= \{akh : h \in H\} \subseteq aH
$$

Similarly, $a = ck^{-1} \in cH$

$$
\implies aH \subseteq cH
$$

So $aH = cH$. Similarly $cH = bH$.

For example $S_n = A_n \dot{\cup} (1\ 2) A_n$.

Lemma 11. Let $H \leq G$, $a, b \in G$. Then

$$
aH = bH \iff a^{-1}b \in H.
$$

(⇒) $b ∈ bH = aH$

$$
\implies b = ah \qquad \text{for some } h \in H
$$

$$
\implies a^{-1}b = h \in H
$$

(←) Suppose $a^{-1}b = k \in H$.

$$
\implies b = ak \in aH
$$

also $b \in bH$,

$$
\implies aH = bH
$$
 by earlier lemma

 \Box

 \Box

Theorem 3 (Lagrange's Theorem). Let H be a subgroup of the finite group G . Then the order of H divides the order of G (i.e. $|H| ||G|$).

Proof. By Lemma 10 G is partitioned into distinct cosets of H , say

$$
G = g_1 H \dot{\cup} g_2 H \dot{\cup} \cdots \dot{\cup} g_k H
$$

 $(g_1 = e \text{ say})$ By Lemma 9

$$
|g_i H| = |H| \qquad 1 \le i \le k
$$

$$
\implies |G| = |H|k
$$

so the order of H divides the order of G .

 \Box

 \Box

Definition 18 (14). Let $H \leq G$. The *index* of H in G is the number of left cosets of H in G, denoted $|G : H|$.

Remark. (i) If G is finite, $|G:H| = \frac{|G|}{|H|}$ $\frac{|G|}{|H|}$. But can have $|G:H|$ finite but G and H both infinite.

(ii) We write $(G : H)$ for the set of left cosets of H in G.

Corollary 2 (Lagrange's Corollary). Let G be a finite group and g an element of G. Then $o(g) | |G|$. In particular, $g^{|G|} = e$.

Proof. Note

$$
\langle g \rangle = \{e, g, \dots, g^{n-1}\}
$$

$$
o(g) = |\langle g \rangle| \, |G|
$$

$$
\implies g^{|G|} = e.
$$

by Lagrange's Theorem

where $o(g) = n$. Then

Corollary 3. If $|G| = p$ for some prime p, then G is cyclic.

Proof. Let $e \neq g$. Then

$$
\{e\} \neq \langle g \rangle \leq G
$$

BY Lagrange

$$
1 \neq |\langle g \rangle| \, |G| = p.
$$

$$
\implies |\langle g \rangle| = p = |G|
$$

$$
\implies \langle g \rangle = |G|
$$

i.e. G is cyclic.

Definition 19 (Euler Totient Function). Let $n \in \mathbb{N}$ then we define

 $\varphi(n) = |\{1 \le a \le n : (a, n) = 1\}|$

so for example $\varphi(12) = |\{1, 5, 7, 11\}| = 4.$

Theorem 4 (Fermat-Euler Theorem). Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$ with $(a, n) = 1$. Then

$$
a^{\varphi(n)} \equiv 1 \pmod{n}.
$$

Fermat's Little Theorem is a special case: P prime, $a \in \mathbb{Z}$, $(a, p) = 1$, then

$$
a^{p-1} \equiv 1 \pmod{p}.
$$

We prove Fermat-Euler Theorem by using Lagrange, first we need to set it up. Let $n \in \mathbb{N}$,

$$
R_n = \{0, 1, \dots, n-1\}
$$

$$
R_n^* = \{a \in R_n : (a, n) = 1\}.
$$

Define \times_n to be multiplication modulo *n*.

Claim. (R_n^*, \times_n) is a group.

Notation, $u \in \mathbb{Z}$ then $u \in R_n$ such that $u \equiv u \pmod{n}$. Closure:

$$
(a, n) = 1 = (b, n) \implies (ab, n) = 1 \implies (\underline{ab}, n) = 1
$$

Identity is 1, and clearly associative. Inverses: Let $a \in R_n^*$ with $(a, n) = 1$.

$$
\implies \exists u, v \in \mathbb{Z}
$$

such that $au + vn = 1$ (Bezout's Theorem)

 $\implies au \equiv 1 \pmod{n}$

Then $\underline{u} \in R_n^*$ is a^{-1} .

 \Box

 \Box

4 Normal Subgroups, Quotient Groups and Homomorphisms

Given a group G , subgroup H of G and the set of left cosets of H in G , $(G : H)$, we would like to define a group operation on the cosets, \circ , so that $((G : H), \circ)$ is a group. We would like

$$
(gH) \circ (kH) = gkH.
$$

When does this work?

$$
gHkH = gkHH = gkH \iff kH = Hk
$$

This motivates the following definition:

Definition 20 (15). A subgroup K of G is called normal if $gK = Kg$ for all $g \in G$. We write $K \trianglelefteq G$.

 $(1, (1, 0, 0), (1, 0, 0))$ $(1, 0, 0)$

Example.

$$
K = \{1d, (1\ 2\ 3), (1\ 3\ 2)\}\leq S_3.
$$
\n
$$
(1\ 2)K = \{(1\ 2), (2\ 3), (1\ 3)\} = K(1\ 2)
$$
\n
$$
(1\ 3)K = K(1\ 3)
$$
\n
$$
(2\ 3)K = K(2\ 3)
$$
\nAnd $(1\ 2\ 3)K = K = K(1\ 2\ 3)$ etc. But $H = \{1, (1\ 2)\}$ is not normal in S_3 :\n
$$
(1\ 3)H = \{(1\ 3), (1\ 2\ 3)\}
$$
\n
$$
H(1\ 3) = \{(1\ 2), (1\ 3\ 2)\}.
$$

Proposition 3 (4). Let $K \leq G$. TFAE (the following are equivalent): (i) $gK = Kg \forall g \in G$ (ii) $gKg^{-1} = K \ \forall g \in G$ (iii) $gkg^{-1} \in K \ \forall k \in K, g \in G.$

Proof. (i) \implies (ii):

$$
gKg^{-1} = \{gkg^{-1} : k \in K\}
$$

$$
= (gK)g^{-1}
$$

$$
= (Kg)g^{-1}
$$

$$
= K
$$

(ii) \implies (iii): trivial.

(iii) \implies (i): For any $k \in K$, $g \in G$, there exists $k' \in K$ such that

$$
gkg^{-1} = k'
$$

\n
$$
\implies gk = k'g \in Kg
$$

\n
$$
\implies gK \subseteq Kg
$$

Similarly $g^{-1}kg = k''$ for some $k'' \in K$

$$
\implies kg = gk''
$$

$$
\implies Kg \subseteq gK
$$

$$
\implies gK = Kg.
$$

 \Box

Examples

- $\{e\} \trianglelefteq G, G \trianglelefteq G.$
- If G is abelian then all subgroups are normal. Since if $k \in K$, $g \in G$, $K \trianglelefteq G$ follows from

$$
gkg^{-1} = gg^{-1}k = k \in K.
$$

• Kernels of homomorphisms are normal subgroups (Sheet 1, question 9).

$$
\implies A_n \trianglelefteq S_n
$$

since $A_n = Ker(sgn)$.

• $D_{2n} = \langle r, y : r^n = 1 = t^2, \text{tr}t = r^{-1} \rangle$ Then $\langle r \rangle \le D_{2n}$. Clearly $r^i r^j r^{-i} = r^j \in \langle r \rangle$. Also

$$
(rit)rj(rit)-1 = ritrjtr-1
$$

$$
= ri - j - i = r-j \in \langle r \rangle
$$

Or we can use the following lemma.

Lemma 12. If $K \leq G$ and the index of K in G is 2, then $K \leq G$.

Proof.

$$
G = K \dot{\cup} gK
$$

$$
= K \dot{\cup} Kg
$$

$$
\implies gK = Kg \ \forall g \in G
$$

 \Box

Theorem 5. If $K \trianglelefteq G$, the set $(G : K)$ of left cosets of K in G is a group under coset multiplication, i.e.

$$
gK \cdot hK = ghK
$$

This group is called the *quotient group* (or factor group of G by K and denoted G/K .

 $qK = \hat{q}K$

 $hK = \hat{h}K$

Proof. We need to check that cost multiplication is well-defined, i.e. if

and

then

$$
ghK = \hat{g}\hat{h}K.
$$

By Lemma 11,

$$
gK = \hat{g}K \implies \hat{g}^{-1}g \in K
$$

$$
hK = \hat{h}K \implies \hat{h}^{-1}h \in K
$$

 $\implies h^{-1}\hat{g}^{-1}gh \in K$

Now $\hat{g}^{-1}g \in K$

since $K \trianglelefteq G$.

$$
\implies \hat{h}^{-1}hh^{-1}\hat{g}^{-1}gh \in K
$$

$$
\implies \hat{h}^{-1}\hat{g}^{-1}gh \in K
$$

$$
\implies ghK = \hat{g}\hat{h}K
$$

by Lemma 11. So coset multiplication is well-defined. Group axioms now follow easily:

- By construction coset multiplication is closed as $ghK \in (G : H)$ $g_1h \in G$.
- identity given by $eK = K$
- $(gK)^{-1} = g^{-1}K$.
- associativity holds since it does in G , to check:

$$
(gKhK)lK = (gh)lK
$$

$$
= g(hl)K
$$

$$
= gk(HklK)
$$

Examples

- (i) $S_n/A_n = (\{A_n, (1\ 2)A_n\}, \circ) \cong C_2.$
- (ii) $D_8 = \langle a, b : a^4 = 1 = b^2, bab = a^{-1} \langle \text{Let } K = \{1, a^2\}.$

Claim. $K \trianglelefteq D_8$.

$$
(aib)a2(aib)-1 = aiba2ba-i
$$

$$
= a-2 = a2 \in K
$$

$$
aia2a-1 = a2 \in K
$$

$$
\frac{|D8|}{|K|} = 4 = |(D8 : K)|
$$

4 distinct left cosets:

$$
K = \{1, a^2\}
$$

\n
$$
aK = \{a, a^3\}
$$

\n
$$
bK = \{b, ba^2\} = \{b, a^2b\}
$$

\n
$$
abK = \{ab, aba^2\} = \{ab, a^3b\}
$$

\n
$$
\frac{\circ}{K} \quad \frac{K}{K} \quad \frac{aK}{AK} \quad \frac{bK}{bK} \quad \frac{abK}{akK}
$$

\n
$$
\frac{aK}{bK} \quad \frac{aK}{abK} \quad \frac{aK}{K} \quad \frac{aK}{aK} \quad \frac{aK}{K}
$$

\n
$$
\frac{aK}{abK} \quad \frac{bK}{abK} \quad \frac{aK}{aK} \quad \frac{K}{K}
$$

Note: $aKaK = a^2K = K \cong$ example 9.

(iii) Recall the subgroups of $(\mathbb{Z}, +)$ are precisely the groups $(n\mathbb{Z}, +)$ where $n \in \mathbb{N}$,

$$
n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}.
$$

Since $(\mathbb{Z}, +)$ abelian, all subgroups are normal, $n\mathbb{Z} \leq \mathbb{Z}$. Suppose $n = 5$, cosets given by,

$$
5\mathbb{Z} = \{5k : k \in \mathbb{Z}\}
$$

$$
1 + 5\mathbb{Z} = \{1 + 5k : k \in \mathbb{Z}\}
$$

$$
2 + 5\mathbb{Z} = \{2 + 5k : k \in \mathbb{Z}\}
$$

$$
3 + 5\mathbb{Z} = \{3 + 5k : k \in \mathbb{Z}\}
$$

$$
4 + 5\mathbb{Z} = \{4 + 5k : k \in \mathbb{Z}\}
$$

$$
(1 + 5\mathbb{Z}) + (2 + 5\mathbb{Z}) = 3 + 5\mathbb{Z}.
$$

\n
$$
(3 + 5\mathbb{Z}) + (4 + 5\mathbb{Z}) = 7 + 5\mathbb{Z} = 2 + 5\mathbb{Z}.
$$

\n
$$
(\mathbb{Z}/5\mathbb{Z}, \circ) \cong (\{0, 1, 2, 3, 4\}, +_5)
$$

\n
$$
n + 5\mathbb{Z} \to \mathbb{n} \qquad \text{such that} \qquad n \equiv \overline{n} \pmod{5}
$$

 $\overline{n} \in \{0, 1, 2, 3, 4\}$. Well-defined map: if $n + 5\mathbb{Z} = m + 5\mathbb{Z}$ then

$$
-m + n \in 5\mathbb{Z}
$$

\n
$$
\implies -m + n \equiv 0 \pmod{5}
$$

\n
$$
\implies n \equiv m \pmod{5}
$$

\n
$$
\implies \overline{n} = \overline{m}
$$

homomorphism:

$$
\theta((n+5\mathbb{Z}) + (m+5\mathbb{Z})) = \theta(n+m+5\mathbb{Z})
$$

$$
= \overline{n+m}
$$

$$
= \overline{n} + 5\overline{m}
$$

$$
= \theta(n+5\mathbb{Z}) + \theta(m+5\mathbb{Z})
$$

In general

$$
(\mathbb{Z}/n\mathbb{Z}, \circ) \cong (\{0, 1, 2, 3, 4\}, +_n).
$$

Recall $\theta : G \to H$ is a homomorphism if

$$
\theta(xy) = \theta(x)\theta(y)
$$

$$
\text{Im}(\theta) = \{\theta(g) : g \in G\} \le H
$$

$$
\text{Ker}(\theta) = \{g \in G : \theta g = e_H\} \le G
$$

Theorem 6 (First Isomorphism Theorem). Let G, H be groups and $\theta : G \to H$ be a group homomorphism. Then $\text{Im}(\theta) \leq H$ and $\text{Ker}(\theta) \leq G$ and $G/\text{Ker}(\theta) \cong \text{Im}(\theta)$.

Definition 21 (16). A group is called *simple* if its only normal subgroups are $\{e\}$ and G . For example C_p for some prime p .

Definition (Injection). Suppose $f : A \rightarrow B$. Then f is *injective* if for any $a_1, a_2 \in$ A, if $f(a_1) = f(a_2)$ then $a_1 = a_2$. (each element of A maps to a different element of B).

Definition (Surjection). Suppose $f : A \rightarrow B$. Then f is *surjective* if given $b \in B$, $\exists a \in A$ such that $f(a) = b$. (every element in B is 'hit').

Definition 22 (Bijection). A function is *bijective* if it is both injective and surjective.

Now we can prove the first isomorphism theorem. *Proof.* Need to construct an isomorphism θ : $G/Ker\theta \to Im\theta$ where $gK \mapsto \theta(g)$. Let $K = \text{Ker}\theta$; need θ well-defined: Suppose $gK = hK$, then

$$
h^{-1}g \in K
$$

\n
$$
\implies \theta(h^{-1}g) = e_H
$$

\n
$$
\implies \theta(h)^{-1}\theta(g) = e_H
$$
 since θ is a homomorphism
\n
$$
\implies \theta(g) = \theta(h)
$$

\n
$$
\implies \theta(gK) = \theta(hK)
$$

Need θ a homomorphism:

$$
\theta(gKhK) = \theta(ghK)
$$

= $\theta(gh)$
= $\theta(g)\theta(h)$ since θ is a homomorphism
= $\theta(gK)\theta(hK)$

 θ surjective:

$$
\theta(g) \in \text{Im}\theta \implies \theta(gK) = \theta(g)
$$

 θ injective: Suppose $\theta(gK) = \theta(hK)$ then

$$
\theta(g) = \theta(h)
$$

\n
$$
\implies \theta(h)^{-1}\theta(g) = e_H
$$

\n
$$
\theta(h^{-1}g) = e_H
$$

\n
$$
\implies h^{-1}g \in K
$$

\n
$$
\implies gK = hK
$$

Examples

(i) sgn : $S_n \to (\{\pm 1\}, \times)$ with $\sigma \mapsto \text{sgn}(\sigma)$. Then

Im(sgn) = (
$$
\{\pm 1\}
$$
, \times)
\nKer(sgn) = A_n
\n $\implies S_n/A_n \cong (\{\pm 1\}, \times) \cong C_2$
\n $\implies |A_n| = |S_n|/2$

(ii)
$$
\theta : (\mathbb{R}, +) \to (\mathbb{C} \setminus \{0\}, \times)
$$
 defined by $r \mapsto e^{2\pi ir}$. Note, $\theta(r + s) = \theta(r)\theta(s)$. Also,
\n
$$
\text{Im}(\theta) = S' = \{z \in \mathbb{Z} : |z| = 1\} \quad \text{unit circle}
$$
\n
$$
\text{Ker}(\theta) = (\mathbb{Z}, +) \leq (\mathbb{R}, +)
$$
\n
$$
(\mathbb{R}, +) / (\mathbb{Z}, +) \cong S'
$$

(iii) Recall

$$
GL_2(\mathbb{R}) = \{2 \times 2 \text{ matrices, entries in } \mathbb{R}, \det \neq 0\}
$$

Then we observe that det : $\mathrm{GL}_2(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times), M \mapsto \det(M)$ is a homomorphism since

$$
det(AB) = det(A) det(B).
$$

Im(det) = ($\mathbb{R} \setminus \{0\}, \times$)

since

$$
\det\begin{pmatrix} \alpha & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \alpha \in \mathbb{R} \setminus \{0\}.
$$

$$
\text{Ker}(\det) = SL_2(\mathbb{R})
$$

\n
$$
= \{2 \times 2 \text{ matrices, entries in } \mathbb{R}, \det = 1.\}
$$

\n
$$
\implies SL_2(\mathbb{R}) \leq GL_2(\mathbb{R})
$$

\nand
$$
GL_2(\mathbb{R})/SL_2(\mathbb{R}) \cong (\mathbb{R} \setminus \{0\}, \times).
$$

\n(iv)
$$
\theta : (\mathbb{Z}, +) \to (\{0, 1, \dots, n-1\}, +_n) \text{ with } n \mapsto \underline{n}.
$$

\n
$$
\text{Ker}\theta = n\mathbb{Z}
$$

Remark. Let $K \trianglelefteq G$. Then K is the kernel of the natural surjective homomorphism

$$
\theta:G\to G/K
$$

$$
g\mapsto gK
$$

Thus homomorphic images of G are equivalent to quotients of G .

Proof.

 (\Rightarrow) Suppose $\theta(g) = e_H = \theta(e_G)$. Injective implies that $g = e_G$. (\Leftarrow) $\theta(g) = \theta(h)$ $\implies \theta(h)^{-1}\theta(g) = e_H$ $\implies \theta(h^{-1}g) = e_H$ $\implies h^{-1}g \in \text{Ker } \theta = \{e_G\}$ $\implies h^{-1}g = e_G$ $\implies h = g$ Recall, $N \trianglelefteq G$, $g \in G$, $n \in N$ implies z^{-1} ∈ N

$$
gng^{-1} \in N
$$

\n
$$
gng^{-1} = \hat{n} \qquad \text{for some } \hat{n} \in N
$$

\n
$$
= gn = \hat{n}g
$$

Lemma 14. (i) Let $N \trianglelefteq G$ and $H \leq G$. Then $NH = \{nh : n \in N, h \in H\} \leq G$. (ii) Let $N \trianglelefteq G, M \trianglelefteq G$, then $NM \trianglelefteq G.$

Proof.

(i) closure, $nh, nh \in NH$, then

$$
n\underbrace{hn}_{\hat{n}h}\underline{h} = n\hat{n}h\underline{h} \in NH
$$

identity: id = $e = ee \in NH$ inverse:

$$
(nh)^{-1} = h^{-1}n^{-1}
$$

= $\hat{n}h^{-1}$ for some $\hat{n} \in N$.
 $\in NH$

(ii) check normality

$$
g(nm)g^{-1} = \underbrace{gng^{-1}}_{\in N} \underbrace{gmg^{-1}}_{\in M} \in NM
$$

5 Direct products and Small Groups

5.1 Direct Products

Let H and K be groups. We construct the (external) direct product, $H \times K$, to be the set

$$
\{(h,k) : h \in H, k \in K\}
$$

with operation

$$
(h_1, k_1) * (h_2, k_2) = (h_1 *_{H} h_2, k_1 *_{K} k_2) = (h_1 h_2, k_1 k_2)
$$

i.e. componentwise multiplication.

Then $(H \times K, *)$ is a group, which can verify easily as follows:

closure H group implies $h_1h_2 \in H$ and K group implies $k_1k_2 \in K$.

identity (e_H, e_K)

inverse $(h, k)^{-1} = (h^{-1}, k^{-1})$

associativity since group operations in both H and K are associative.

Remarks

- (i) If H, K both finite, then $|H \times K| = |H||K|$.
- (ii) $H \times K$ abelian if and only if

$$
(h_1, k_1) * (h_2, k_2) = (h_2, k_2) * (h_1, k_1) \forall h_1, h_2 \in H, k_1, k_2 \in K
$$

\n
$$
\iff (h_1 h_2, k_1 k_2) = (h_2 h_1, k_2 k_1)
$$

\n
$$
\iff h_1 h_2 = h_2 h_2 \qquad \text{and} \qquad k_1 k_2 = k_2 k_1
$$

\n
$$
\iff H \text{ abelian and } K \text{ abelian}
$$

(iii) $H \cong \{(h, e_K) : h \in H\} \leq H \times k$ and $K \cong \{(e_H, k) : k \in K\} \leq H \times K$.

Examples

(i)

$$
C_2 \times C_2 = \langle x \rangle \times \langle y \rangle
$$

= $\{e, x\} \times \{e, y\}$

elements $(e, e), (x, e), (e, y), (x, y).$

Klein 4-group ≅ example 9. Note $o((x, e)) = o(e, y) = o(x, y) = 2$. So $C_2 \times C_2 \not\cong$ C_4 .

(ii) However, $C_2 \times C_3 \cong C_6$. (sheet 2, question 10)

Lemma 15. Let $(h, k) \in H \times K$ where H, K groups. Then $o((h, k)) = \text{lcm}(o(h), o(k))$

Proof. Let $n = o((h,k))$ and $m = \text{lcm}(o(h), o(k))$. Then $h^m = e_H$, $k^m = e_K$. So $(h, k)^m = (h^m, k^m) = (e_H, e_K)$ and hence $n | m$ by Lemma 5. Also,

$$
(e_H, e_K) = (h, k)^n
$$

$$
+ (h^n, k^n)
$$

$$
\implies o(h) | n, o(k) | n
$$

$$
\implies m | n
$$

Thus we know when $C_m \times C_n \cong C_{mn}$ (Sheet 2, q10).

Recognising when a group can be written as a direct product of subgroups is trickier.

Proposition 4 (5). Let G be a group with subgroups H and K, then if

- (i) each element of G can be written as hk for $h \in H$ and $k \in K$;
- (ii) $H \cap K = \{e\};$
- (iii) $hk = kh \ \forall h \in H, k \in K,$

Then $G \cong H \times K$ and we call G the (internal) direct product of H and K.

Proof. Let $\theta : H \times K \to G$ defined by $(h, k) \mapsto hk$. First we check that θ is a homomorphism:

$$
\theta((h_1, k_1)(h_2, k_2)) = \theta((h_1h_2, k_1k_2))
$$

= $h_1h_2k_1k_2$
= $h_1k_1h_2k_2$
= $\theta((h_1, k_1))\theta((h_1, k_2))$

To check that θ is injective,

$$
\theta((h_1, k_1)) = \theta((h_2, k_2))
$$

\n
$$
\implies h_1 k_2 = h_2 k_2
$$

\n
$$
\implies h^{-1} h_1 = k_2 k_1^{-1} \in H \cap K = \{e\}
$$

\n
$$
\implies h_1 = h_2 \quad \text{and} \quad k_1 = k_2
$$

so $(h_1, k_1) = (h_2, k_2)$. θ is surjective by (i), so θ is an isomorphism as required.

Remark. There are alternative equivalent definitions of internal direct product. G is the internal direct product of subgroups H and K if

(i)' $H \trianglelefteq G, K \trianglelefteq G;$ (ii)' $H \cap K = \{e\};$

(iii)' $HK = G$.

Need to show (i), (ii), (iii) are equivalent to (i)', (ii)', (iii)'.

(⇒) we show $K \trianglelefteq G$. Let $k \in K$, $g = h_1 k_1 \in G$ by (i). Then

$$
gkg^{-1} = h_1k_1kk_1^{-1}h^{-1} = h_1\underline{k}h^{-1} = \underline{k} \in K
$$

Similarly $H \trianglelefteq G$.

(∈) Need to show (iii). Let $h \in H$, $k \in K$ and consider

$$
h^{-1} \underbrace{k^{-1} h k}_{\in H} \in H \qquad \text{since } H \leq G.
$$

Similarly, this expression is in K , so

$$
h^{-1}k^{-1}hk \in H \cap K = \{e\}
$$

$$
\implies hk = kh
$$

Example. $G = \langle a \rangle \cong C_{15}$. Then $C_5 \cong \langle a^3 \rangle = H \trianglelefteq G$ $C_3 \cong \langle a^5 \rangle = K \trianglelefteq G$ $H \cap K = \langle a^3 \rangle \cap \langle a^5 \rangle = \{e\}$ $a^k = (a^3)^{2k} (a^5)^{-k} \in HK$ $\implies C_{15} \cong C_3 \times C_5 \cong K \times H$

5.2 Small Groups

Recall D_{2n} , the symmetries of a regular *n*-gon, generated by

$$
r: z \mapsto e^{2i\pi/n}z
$$

$$
t: z \mapsto \underline{z}
$$

Then the elements of D_{2n} are

$$
\{e, \underbrace{r, \dots, r^{n-1}}_{\text{rotations}}, \underbrace{t, rt, \dots, rt^{n-1}}_{\text{reflection}}\}
$$

Now suppose G a group, $n \geq 3$ with $|G| = 2n$, and $\exists b \in G$ with $o(b) = n$ and $a \in G$, $o(a) = 2$ and $aba = b^{-1}$. Then $G \cong D_{2n}$. Note $\langle b \rangle \subseteq G$ since of index 2. Also $a \notin \langle b \rangle$, since $ab \neq ba$. So $G = \langle b \rangle \cup \langle b \rangle a = \{e, b, \ldots, b^{n-1}, a, ba, \ldots, b^{n-1}a\}$. Furthermore

$$
ab = b^{-1}a
$$

\n
$$
\implies ab^k = (ab)b^{k-1}
$$

\n
$$
= b^{-1}ab^{k-1}
$$

\n
$$
= b^{-2}ab^{k-2}
$$

\n
$$
= \cdots
$$

\n
$$
= b^{-k}a
$$

So, $(b^k a)(b^k a) = b^k b^{-k} a a = e$. We can check that

$$
\theta: D_{2n} \to G
$$

$$
r \mapsto b
$$

$$
t \mapsto a
$$

is an isomorphism.

- $|G| = 1, G = \{e\}.$
- $|G| = 2 \implies G \cong C_2$ (by Lagrange's Theorem)
- $|G| = 3 \implies G \cong C_3$
- $|G| = 4$, by Lagrange's Theorem, $1 \neq g \in G$ then $o(g) | 4$. If $\exists g \in G$ with $o(g) = 4$ then this implies $G \cong C_4$. Suppose not. Let $1 \neq a \in G \implies o(a) = 2$. Then by sheet 1 q7, G is abelian, so $C_2 \cong \langle a \rangle \trianglelefteq G$. Now let $b \in G \setminus \langle a \rangle$, then $C_2 \cong \langle b \rangle \trianglelefteq G$. Also, $\langle a \rangle \cap \langle b \rangle = \{e\}$. Now consider ab:
	- $-$ if $ab = e \implies a = b^{-1} = b \times x$ – if $ab = a \implies b = e \times x$ – if $ab = b \implies a = e \times$

So,

$$
G = \{e, a, b, ab\}
$$

$$
= \langle a \rangle \langle b \rangle
$$

$$
\cong \langle a \rangle \times \langle b \rangle
$$

$$
\cong C_2 \times C_2
$$

Two groups of order 4: C_4 and $C_2 \times C_2$, both of which are abelian.

- $|G| = 5 \implies G \cong C_5$ by Lagrange's Theorem.
- $|G| = 6$ then $1 \neq g \in G \implies o(g) \in \{2, 3, 6\}$ by Lagrange. If all non-identity elements have order 2 then |G| is a 2-power, \mathbb{X} . So there exists $b \in G$ such that $o(b) = 3$ (Note if $o(g) = 6$ then $o(g^2) = 3$). Therefore $C_3 \cong \langle b \rangle \subseteq G$ since of index 2. Let $a \in G \setminus \langle b \rangle$. Hence $a^2 \in \langle b \rangle$. (Consider $a \langle b \rangle \in G/\langle b \rangle$). If $a^2 = b$ or b^2 then $o(a) = 6 \implies G \cong C_6$. Now suppose $a^2 = e$. Also $aba^{-1} \in \langle b \rangle$. If $aba^{-1} = e$ then $b = e$ which is a contradiction. If $aba^{-1} = b$ then $ab = ba \implies o(ab) = 6 \implies G \cong C_2$. If $aba^{-1} = b^2$, then in other words we have $aba^{-1} = b^{-1}$, so $G = \langle a, b : a^2 = b^3 = e, aba^{-1} = b^{-1} \rangle \cong D_6$. So there are two groups of order 6, they are C_6 and $D_6 \cong S_3$. Note $C_6 \not\cong D_6$ as C_6 is abelian and D_6 is not.
- $|G| = 7 \implies G \cong C_7$.
- $|G| = 8$. By Lagrange, if $1 \neq g \in G$ then $o(g) \in \{2, 4, 8\}$. If all non-identity elements have order 2 and hence G is abelian. Let $1 \neq a \in G$, $C_2 \cong \langle a \rangle \subseteq G$. Choose $b \notin \langle a \rangle$,

$$
\langle a, b \rangle = \{1, a, b, ab\}
$$

= $\langle a \rangle \langle b \rangle$ $\cong \langle a \rangle \times \langle b \rangle$

Choose $c \in G \setminus \langle a, b \rangle$. Then

$$
G = \langle a, b \rangle \cup \langle a, b \rangle c
$$

= $\langle a, b \rangle \langle c \rangle$
 $\cong \langle a, b \rangle \times \langle c \rangle$
 $\cong \langle a \rangle \times \langle b \rangle \times \langle c \rangle$
 $\cong C_2 \times C_2 \times C_2$

Now suppose $\exists g \in G$ such that $o(g) > 2 \implies \exists a \in G$, $o(a) = 4 \implies C_4 \cong \langle a \rangle \subseteq$ G. Let $b \in G \setminus \langle c \rangle \implies b^2 \in \langle a \rangle$. If $b^2 \in \{a, a^3\} \implies o(b) = 8 \implies G \cong C_8$. Now, $bab^{-1} \in \langle a \rangle$ (since $\langle a \rangle G$), so $bab^{-1} = a^i$ for some *i*. This implies

$$
b2ab-2 = baib-1
$$

$$
= (bab-1)i
$$

$$
= ai2
$$

But $b^2 \in \langle a \rangle \implies b^2ab^{-2} = a$. Hence $i^2 \equiv 1 \pmod{4} \implies i \equiv \pm 1 \pmod{4}$. If $bab^{-1} = a \implies ba = ab$ so G is abelian. If $b^2 = e$ then

$$
G = \langle a \rangle \cup \langle a \rangle b = \langle a \rangle \langle b \rangle \cong \langle a \rangle \times \langle b \rangle \cong C_4 \times C_2
$$

if $b^2 = a^2$ then $(ba^{-1})^2 = e$ then

$$
G \cong \langle a \rangle \times \langle ba^{-1} \rangle
$$

$$
\cong C_4 \times C_2
$$

Suppose $bab^{-1} = a^{-1}$. Then if $b^2 = e$ then $G \cong D_8$. However if $b^2 = a^2$; we have a new group Q_8 , the quaternion group.

Definition (Quaternion Group). $Q_8 = {\pm 1, \pm i, \pm j, \pm k}$ with $ij = k, jk = i$, $ki = j, ji = -k, kj = -i, ik = ij \text{ and } i^2 = j^2 = k^2 = -1. \text{ So } o(i) = o(j) =$ $o(k) = 4$ and $o(-1) = 2$. Another way to define the group is:

$$
\{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \} \le SL_2(\mathbb{C}).
$$

alternatively,

$$
Q_8 = \langle a, b \mid a^4 = e, b^2 = a^2, bab^{-1} = a^{-1} \rangle.
$$

So 5 isomorphism classes of groups of order 8:

$$
\underbrace{C_8, \quad C_4 \times C_2, \quad C_2 \times C_2 \times C_2}_{\text{abelian}}
$$

all different, because

- C_8 has an element of order 8;
- $C_4 \times C_2$ does not have an element of order 4;
- $-C_2 \times C_2 \times C_2$ has all elements order 2.

and D_8 and Q_8 are non-abelian so must be different to these 3. Q_8 has 6 elements of order 4, but D_8 only has 2, so these are non-isomorphic.

• $|G| = 9$. We will show later that groups of order p^2 with p prime are abelian. Either $G \cong C_9$ or all non-identity elements have order 3. Choose $e \neq a \in G$, $b \in G \setminus \langle a \rangle$, then

$$
G = \langle a \rangle \cup \langle a \rangle b \cup \langle a \rangle b^2
$$

= $\langle a \rangle \langle b \rangle$
 $\cong \langle a \rangle \times \langle b \rangle$
 $\cong C_3 \times C_3$

• $|G| = 10$, must be either C_{10} or D_{10} (question 12, sheet 2)

Remark. There are lots and lots of groups of order 2^k ; there are about 10 of order 16, and about 5×10^{10} of order 2^{10} .

6 Group Actions

It's often easier to understand a group if it's doing something, permuting elements, rotating a square etc.

Definition 23 (16). Let G be a group and X a non-empty set. We say that G acts on X if there is a mapping

$$
\rho: G \times X \to X \qquad (g, x) \mapsto \rho(g, x) = g(x)
$$

such that

- (0) if $g \in G$, $x \in X$, then $\rho(g, x) = g(x) \in X$ (implied by notation $\rho : G \times X \to X$)
- (i) $\rho(gh, x) = \rho(g, \rho(h, x))$ (in shorthand, $gh(x) = g(h(x))$)
- (ii) $\rho(e, x) = x$ (in shorthand, $e(x) = x$)

Examples

- (i) trivial action $\rho(g, x) = x \forall x \in X, g \in G$.
- (ii) S_n acts on the set $\{1, 2, ..., n\} = X$ by permuting the elements of X. For example, S_3 acts on $\{1, 2, 3\}$:

$$
\sigma = (1 \ 2) \in S_3: \qquad \sigma(1) = 2, \quad \sigma(2) = 1, \quad \sigma(3) = 3
$$

$$
\tau = (1 \ 3) \in S_3
$$

$$
\tau \sigma = (1 \ 3)(1 \ 2) = (1 \ 2 \ 3)
$$

$$
(\tau \sigma)(1) = 2 = \tau(2) = \tau(\sigma(1))
$$

Similarly subgroups of S_n act on X.

(iii) $D_8 = \{e, r, r^2, r^3, t, rt, r^2t, r^3t\}$ acts on edges of a square

$$
t(a) = c, t(c) = a, t(b) = b, t(d) = d, s(a) = b, \dots
$$

Also acts on the vertices of a square

(iv) G acts on itself by left multiplication. This is called the left regular action.

$$
G \times \to G \qquad (g, k) \mapsto gk
$$

Check:

- (0) $gk \in G$ by closure
- (i) $\rho(gh, k) = ghk$, $\rho(g, \rho(h, k)) = \rho(g, hk) = ghk$. Or, in shorthand $(gh)k = ghk$, $g(h(k)) = g(hk) = ghk.$
- (ii) $\rho(e,k) = ek = k$.

We also have the right regular action

$$
G \times G \to G \qquad (g, k) \mapsto kg^{-1}
$$

(v) G acts on itself by conjugation

$$
G\times G\to G
$$

Check:

(0) $gkg^{-1} ∈ G$ (i) $\rho(gh, k) = (gh)k(gh)^{-1} = ghkh^{-1}g-1$ and $\rho(g, \rho(h, k)) = \rho(g, hkh-1) =$ $g(hkh^{-1})g^{-1}$ (ii) $\rho(e, k) = e k e^{-1} = k$.

(vi) Let $N \leq G$, then G acts on N by conjugation

$$
G \times N \to N \qquad (g, n) \mapsto g n g^{-1}
$$

(0) $gng^{-1} \in N$ since $N \trianglelefteq G$.

- (i) as above
- (ii) as above
- (vii) Let $H \leq G$, then G acts on the set of left cosets, $(G : H)$, of H in G. Called the left coset action

$$
G \times (G : H) \to (G : H) \qquad (g, kH) \mapsto (gkH)
$$

- (0) $qkH \in (G : H)$
- (i) $\rho(gh, kH) = (gh)kH = ghkH$ and $\rho(g, \rho(h, kH)) = \rho(g, hkH) = ghkH$
- (ii) $\rho(e, kH) = ekH = kH$.

Remark. Recall a permutation of a set X is a bijection of X . We have commented that a bijection $f: X \to X$ has a 2-sided inverse, i.e. there exists $g: X \to X$ such that

$$
f \circ g(x) = x = g \circ f(x) \quad \forall x \in X
$$

Conversely, if $f : X \to X$ is a map with a 2-sided inverse, then f is a bijection:

$$
f \circ g(x) = x \quad \forall x \in X \implies
$$
 surjective

$$
g \circ f(x) = x \quad \forall x \in X \implies \text{injective}
$$

Note. 2-sided is necessary, because we can consider $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $x \mapsto 2x$ and $\psi \mathbb{Z} \to \mathbb{Z}$ defined by $2x \mapsto x$ and $2x + 1 \mapsto 0$. Then $\psi \phi = id$ but $\phi \psi \neq id$.

Lemma 16. Suppose the group G acts on the non-empty set X. Fix $g \in G$, then $\theta_g: X \to X$ defined by $x \mapsto \rho(g, x) = g(x)$ is a permutation of X, i.e. $\theta_g \in \text{Sym}(X)$.

Proof. Clearly θ_g is a map from X to X. We need to show θ_g is a bijection, enough to show it has a 2-sided inverse.

$$
\theta_{g-1} \circ \theta_g(x) = \theta_{g-1}(\rho(g, x))
$$

= $\rho(g^{-1}(\rho(g, x)))$
= $\rho(g^{-1}g, x)$ since ρ group action
= $\rho(e, x)$
= x $\forall x \in X$

Similarly,

$$
\theta_g \circ \theta_{g-1}(c) = x \qquad \forall x \in X
$$

Proposition 5 (6). Suppose G acts on the set X. Then the map

 $\theta : G \to \text{Sym}(X) \qquad g \mapsto \theta_g$

as in Lemma 16, is a homomorphism.

Proof. We need to show θ is a homomorphism, i.e. we need

$$
\theta(gh) = \theta(g) \circ \theta(h)
$$

i.e.

$$
\theta_{gh} = \theta_g \circ \theta_h.
$$

Let $x \in X$, then

$$
\theta_{gh}(x) = \rho(gh, x)
$$

= $\rho(g, \rho(h, x))$
= $\theta_g \circ \theta_h(x)$

True $\forall x \in X$, so done.

Remark. Proposition 6 gives us an equivalent definition of a group action. If G is a group and X a set such that $\theta : g \to \text{Sym}(X)$ is a group homomorphism, then $\rho: G \times X \to X$ defined by $(g, x) \mapsto \theta_g(x)$ where $\theta(g) = \theta_g$, is a group action.

Remark. Using notation of proposition 6, by first Isomorphism Theorem,

$$
G/\text{Ker }\theta \cong \text{Im }\theta \leq \text{Sym}(X)
$$

Note

$$
\begin{aligned} \text{Ker } \theta &= \{ g \in G : \theta(g) = \text{id}_X \in \text{Sym}(X) \} \\ &= \{ g \in G : \theta_g(x) = \rho(g, x) = x \forall x \} \\ &\leq G \end{aligned}
$$

i.e. all those elements that fix every element of X , that act 'trivially'. We say the action is *faithful* if Ker $\theta = \{e\}.$

Examples of Kernels

- (i) Trivial action Ker $\theta = G$.
- (ii) S_n acts on $\{1, \ldots, n\}$ faithful

- (iii) D_8 acts on edges faithful
- (iv) Left regular action faithful
- (v) Conjugation

$$
\begin{aligned} \text{Ker } \theta &= \{ g \in G : gkg^{-1} = k \forall k \in G \} \\ &= z(G) \end{aligned}
$$

where $z(G)$ is the *centre of G*. 'the elements that commute with everything'

(vi) conjugation on $N \triangleleft G$

$$
\text{Ker } \theta = \{ g \in G : gng^{-1} = n \forall n \in N \}
$$

$$
= C_G(N)
$$

where $C_G(N)$ is the *centraliser of* N in G.

(vii) Left coset action

$$
\begin{aligned}\n\text{Ker } \theta &= \{ g \in G : gkH = kH \forall k \in G \} \\
&= \{ g \in G : k^{-1}gk \in H \forall k \in G \} \\
&= \{ g \in G : g \in kHk^{-1} \forall k \in G \} \\
&= \bigcap_{k \in G} kHk^{-1} \\
&= \text{Core}_G(H) \\
\leq G \\
&\leq H\n\end{aligned}
$$

Note. If Ker $\theta = \{e\}$ then G is isomorphic to a subgroup of Sym (X) , we write $G \lesssim \text{Sym}(X)$. So if |G| does not divide $|\text{Sym}(X)|$ then Ker $\theta \neq \{e\}$.

Theorem 7 (Cayley's Theorem). Any group G is isomorphic to a subgroup of $Sym(X)$ for some non-empty set X.

Proof. We take X to be G and consider the left regular action $G \times G \to G$ defined by $(g, h) \mapsto gh$. This is a faithful action as $gh = h \forall h \in G \implies g = e$. Thus we have an injective homomorphism

$$
\theta: G \mapsto \text{Sym}(G)
$$

and $G \lesssim \text{Sym}(G)$ as required.

Definition 24 (17). Let G act on a set X and $x \in X$. The *orbit* of $x \in X$ is given by

$$
\mathrm{Orb}_G(x) = \{ g(x) : g \in G \} \subseteq X
$$

i.e. the set of points in X which x can be mapped to.

Examples

- (i) trivial action, $Orb_G(x) = \{x\}.$
- (ii) S_n acts on $\{1, 2, ..., n\} = X$, $Orb_G(1) = X$. If $H = \langle (1\ 2)(3\ 4\ 5) \rangle$ acting on $X = \{1, 2, 3, 4, 5\}$ then O_{nb} (1) $(1, 2)$

$$
Orb_G(1) = \{1, 2\}
$$

\n
$$
Orb_G(3) = \{3, 4, 5\}.
$$

(iii) D_8 on d | |b : a b c d

$$
\mathrm{Orb}_{D_8}(a) = \{a, b, c, d\}.
$$

(iv) left regular action

$$
\mathrm{Orb}_G(k) = G
$$

- since $g = g(k^{-1}k) = (gk^{-1})k$ for any $g \in G$.
- (v) conjugation

$$
\begin{aligned} \text{Orb}_G(k) &= \{ g(k) : g \in G \} \\ &= \{ gkg^{-1} : g \in G \} \\ &= \text{ccl}_G(k) \end{aligned}
$$

conjugacy class of k in G. If $h \in \text{ccl}_G(k)$ we say h and k are conjugate.

Definition 25 (18). We say G acts transitively on X if for any $x \in X$, $Orb_G(x) = X$. Equivalently, if given any pair $x_1, x_2 \in X \exists g \in G$ such that $g(x_1) = x_2$.

So, the left regular action is a transitive action.

Lemma 17. The distinct G -orbits form a partition of X .

Proof. Let $x \in X$, then $x \in \text{Orb}_G(x)$ since $x = ex$. Suppose $z \in \text{Orb}_G(x) \cap \text{Orb}_G(y)$, we show

$$
\mathrm{Orb}_G(x) = \mathrm{Orb}_G(z) = \mathrm{Orb}_G(y).
$$

 $z \in \text{Orb}_G(x) \implies \exists g \in G \text{ such that } g(x) = z.$ Suppose $t \in \text{Orb}_G(x)$, then $\exists h \in G$ such that $h(z) = t$ and hence $t = h(g(x)) = (hg)(x)$. Therefore $t \in Orb_G(x)$ and hence $Orb_G(z) \subseteq Orb_G(x)$. Similarly $g(x) = z$

$$
x = e(x) = (g^{-1}g)(x) = g^{-1}(z)
$$

and hence $Orb_G(x) \subseteq Orb_G(z)$. Thus $Orb_G(x) = Orb_G(z)$. Similarly $Orb_G(z)$ $Orb_G(y)$. \Box

Remarks

- (i) We could have proved Lemma 17 by noting that $x_1 \sim x_2$ if $\exists g \in G$ such that $g(x_1) = x_2$ is an equivalence relation.
- (ii) $Orb_G(x)$ is G invariant, i.e.

$$
g(\mathrm{Orb}_G(x)) \subseteq \mathrm{Orb}_G(x).
$$

Since if $y \in \text{Orb}_G(x)$, then $y = hx$ for some $h \in G$.

$$
\implies g(y) = g(h(x))
$$

= $(gh)(x) \in \text{Orb}_G(x)$

(iii) G is transitive on $Orb_G(x)$. Let $y, z \in Orb_G(x)$, so $y = g(x), z = h(x)$ for some $g, h \in G$. Then

 $z = h(g^{-1}(y))$

Definition (19). Let G act on X and $x \in X$. The *stabiliser* of x in G is given by

$$
Stab_G(x) = \{ g \in G : g(x) = x \} \subseteq G.
$$

i.e. all those elements in G that fix x .

Examples

(i) trivial action,

$$
\mathrm{Stab}_G(x)=G.
$$

(ii) S_n on $X = \{1, 2, ..., n\}$

$$
\mathrm{Stab}_G(1) \cong S_{n-1}
$$

$$
H = \langle (12)(345) \rangle \text{ on } X
$$

Stab_H(1) =
$$
\langle
$$
(345) \rangle
= {e, (345), (354)}

(iii) D_8 on edges of a square,

$$
\mathrm{Stab}_{D_8}(e) = \{e, t\}
$$

(iv) left regular action

$$
Stab_G(k) = \{e\}
$$

$$
gk = k \implies g = e
$$

(v) conjugation

$$
\begin{aligned} \text{Stab}_G(k) &= \{ g \in G : g(k) = k \} \\ &= \{ g \in G : gkg^{-1} = k \} \\ &= \{ g \in G : gk = kg \} \\ &= C_G(k) \end{aligned}
$$

centraliser of k in G i.e. all elements of G that commute with k .

Lemma 18. Stab $_G(x)$ is a subgroup of G.

Proof.

- $e(x) = x \implies e \in \text{Stab}_G(x)$
- if $g, h \in \text{Stab}_G(x)$ then

$$
(gh)(x) = g(h(x))
$$

$$
= g(x)
$$

$$
= x
$$

$$
\implies gh \in \text{Stab}_G(x)
$$

• $g \in \text{Stab}_G(x)$

$$
g(x) = x
$$

$$
x = e(x) = (g^{-1}g(X) = g^{-1}(gx) = g^{-1}(x)
$$

$$
\implies g^{-1} \in \text{Stab}_G(x)
$$

 \bullet associativity inherited from G .

 \Box

Remark. Recall $\phi: G \to \text{Sym}(x)$ Ker $\theta = \{g \in G : g(x) = x \,\,\forall x \in X\}$ $=\bigcap \text{Stab}_G(x)$

Theorem 8 (Orbit-Stabiliser Theorem). Let G be a finite group acting on a nonempty set X. Then $\text{Stab}_q(x) \leq G$ and

$$
|G| = |\text{Stab}_G(x)| |\text{Orb}(x)|.
$$

Remark. We actually prove that $|G|$: Stab_G(x), the number of left cosets of $\text{Stab}_G(x)$ in G, is equal to $|\text{Orb}_G(x)|$, a more general statement.

Proof. $(G : \text{Stab}_G(x))$ set of left cosets of $\text{Stab}_G(x)$ in G. Consider the map

$$
\theta : \text{Orb}_G(x) \to (G : \text{Stab}_G(x)) \qquad g(x) \mapsto g\text{Stab}_G(x)
$$

 θ well-defined because:

$$
g(x) = h(x) \implies h^{-1}g(x) = x
$$

\n
$$
\implies h^{-1}g \in \text{Stab}_G(x)
$$

\n
$$
\implies g\text{Stab}_G(x) = h\text{Stab}_G(x)
$$

\n
$$
\implies \theta(g(x)) = \theta(h(x))
$$

 θ injective:

$$
\theta(g(x)) = \theta(h(x))
$$

\n
$$
\implies g\text{Stab}_G(x) = h\text{Stab}_G(x)
$$

\n
$$
\implies h^{-1}g \in \text{Stab}_G(x)
$$

\n
$$
\implies h^{-1}g(x) = x
$$

\n
$$
\implies g(x) = h(x)
$$

 θ surjective:

Given $g\text{Stab}_G(x) \in (G : \text{Stab}_G(x))$ then $g(x) \in \text{Orb}_G(x)$ and

$$
\theta(g(x)) = g\text{Stab}_G(x).
$$

Thus θ a well-defined bijection as required.

6.1 Applications to Symmetry Groups of Regular Solids

Let S be a regular solid and V its vertices. Then the symmetries of S are the isometries (distance preserving maps) of \mathbb{R}^2 or \mathbb{R}^3 that maps S to itself.

Examples of Symmetries

Example. (Tetrahedron)

This is self-duel. Let G be group of symmetries of T, and $X = \{$ vertices of T $\} =$ ${1, 2, 3, 4}.$

Then ∃ group homomorphism

$$
\phi: G \to \text{Sym}(X) \cong S_4
$$

(Proposition 6). Note Ker $\phi = \{e\}$, if all vertices fixed, then T fixed. Consider $G' \leq G$ subgroup of rotations.

4 such axes implies 8 rotations of order 3 (3-cycles).

3 such axes and identity

$$
\implies G^+ \cong A_4
$$

Now consider G (all symmetries). Clearly

$$
\text{Orb}_G(1) = \{1, 2, 3, 4\}
$$

$$
= \text{Orb}_{G^+}
$$

Consider Stab_G(1). Note if 3 vertices are fixed then T fixed. Consider Stab_G(1). Note if 3 Suppose vertices 1 and 2 are fixed.

If just 1 fixed have order 3 rotation from before $=\sigma$. This is everything

$$
\begin{aligned} \text{Stab}_G(1) &= \langle \sigma, \tau \rangle \\ &\cong D_6 \\ &\implies |G| = |\text{Orb}_G(1)| |\text{Stab}_G(1)| \\ &= 4 \times 6 \\ &= 24 \\ &\implies G \cong S_4 \end{aligned}
$$

Note $\text{Stab}_{G^+}(1) = \langle G \rangle$. Also $(1234) = (12)(234)$.

Example. (Cube) Dual to octahedron.

Let G^+ be group of rotations of C. Then G^+ acts on set of diagonals $X = \{D_1, D_2, D_3, D_4\}.$ If a rotation σ fixes all diagonals, then $\sigma = id$. So we have an injective homomorphism

$$
\phi: G^+ \to \text{Sym}(C) \cong S_4
$$

roatations: −id

3 such axes, hence 6 elements of order 4, 3 elements of order 2.

4 such axes, hence 8 elements of order 3.

6 such axes, i.e. $G^+ \cong S_4$. Note $Orb_{G+}(D_1) = \{D_1, D_2, D_3, D_4\}$

$$
Stab_{G^+}(D_1) = \langle \sigma, \tau' \rangle
$$

or consider G^+ acting on vertex 1

$$
|\text{Orb}_{G^+}(1)| = 8
$$

$$
|\text{Stab}_G(1)| = |\langle \rho \rangle| = 3
$$

$$
\implies |G^+| = 24
$$

Now consider full symmetry group of C, call it G. Consider action on faces F_1, \ldots, F_6 . Yields an injective homomorphism (faithful)

$$
\phi: G \to \text{Sym}\{F_i\} \cong S_6
$$

$$
|\text{Orb}(F_1)| = 6
$$

$$
\text{Stab}(F_1) \cong D_8
$$

$$
\implies |G| = 6 \times 8 = 48.
$$

So, action on diagonals is not faithful;

$$
\exists g \in G \quad g(D_i) = D(i) \qquad i \le i \le 4
$$

but $g \neq id$. Label vertices of C as $\{(\pm 1, \pm 1, \pm 1)\}\$

$$
g: (x, y, z) \mapsto (-x, -y, -z)
$$

if label faces of cube as a dice; 1 opposite 6, 2 opposite 5, 3 opposite 4 then

$$
g = (16)(25)(34)
$$

Then $G \cong F^+ \times \langle g \rangle$. Then $G^+ \subseteq G$ (index 2) and $\langle g \rangle \subseteq G$ (commutes with all rotations) and

$$
G^{+} \cap \langle g \rangle = \{e\}
$$

$$
|G^{+} \langle g \rangle| = 48 = |G|.
$$

Example. (Dodecahedron)

Dual to icosahedron. We denote by D. 12 regular pentagonal faces, 30 edges, 20 vertices. Let G^+ be the grou pof rotations of D. Let F be a face of D.

$$
|\text{Orb}_{G^+}(F)| = 12
$$

$$
|\text{Stab}_{G^+}(F)| = 5
$$

$$
\implies |G^+| = 5 \times 12 = 60
$$

There are five cubes embedded in D:

 G^+ acts faithfully on cubes

$$
\implies \phi: G^+ \to S_5
$$

injective and $|G^+| = 60$ hence $G^+ \cong A_5$ (there is some work in the "hence" here but one can do it with some determination). Can find elements of A_5 :

- rotations through opposite faces 5 cycles. (6 axes, 4 elements per axis)
- rotation through opposite vertices 3 cycles.
- rotation through opposite edges double transpositions (15 such).

Another application of the Orbit Stabiliser Theorem:

Theorem 8 (Cauchy's Theorem). Let G be a finite group and p a prime that divides $|G|$. Then there exists an element in G of order p.

Proof. Let

$$
X = \{(x_1, x_2, \dots, x_p) : x_1, x_2, \dots, x_p = e, x_i \in G\}.
$$

Let $H = \langle h : h^p = e \rangle \cong C_p$ act on X as follows:

$$
H \times X \to X \qquad (h, (x_1, \ldots, x_p)) \mapsto (x_2, x_3, \ldots, x_p, x_1)
$$

in general,

$$
(h^i, (x_1, \ldots, x_p)) \mapsto (x_{1+i}, x_{2+i}, \ldots, x_{p+i})
$$

where suffices are taken modulo p . Check this is a group action:

(0) Since $x_1x_2\cdots x_p=e$, we have

$$
x_1 x_2 \cdots x_p = (x_1 x_2 \cdots x_i)^{-1} x_1 x_2 \cdots x_p (x_1 x_2 \cdots x_i)
$$

= $(x_1 x_2 \cdots x_i)^{-1} e(x_1 x_2 \cdots x_i)$
= e

(i) We simply check that

$$
h^{i+j} = (x_{1+i+j}, \dots, x_{p+i+j})
$$

= $h^{i}(h^{j}(x_1, \dots, x_p))$

(ii) For identity, we heck that

$$
e(x_1, \ldots, x_p) = h^p(x_1, \ldots, x_p)
$$

$$
= (x_1, \ldots, x_p)
$$

Let

$$
\overline{x} = (x_1, x_2, \dots, x_p) \in X.
$$

As distinct orbits partition X (Lemma 17)

$$
\implies \sum_{\substack{\text{distinct} \\ \text{orbits}}} |\text{Orb}_H(\overline{x})| = |X|
$$

Note $|X| = |G|^{p-1}$ (choose x_1, \ldots, x_{p-1} then x_p determined)

$$
\implies p \, | \, |X|
$$
\n
$$
\implies p \, | \, LHS
$$

But by Orbit Stabiliser Theorem:

$$
|\text{Orb}_H(\overline{x})| \, | |H| = p
$$

\n
$$
\implies |\text{Orb}_H(\overline{x})| = 1 \text{ or } p
$$

Now,

$$
\overline{e} = (e, e, \dots, e) \in X \qquad |\text{Orb}_H(\overline{e})| = 1.
$$

So there exists at least $p-1$ other orbits of length 1. So there exists $\overline{x} \in X$ with $Orb_H(\overline{x}) = 1$

$$
\implies \overline{X} = (x, x, \dots, x)
$$

so $x \neq e$ and $x^p = e$.

6.2 Conjugacy Action

Reminder of the definition of conjugation:

$$
G \times G \to G \qquad (g, h) \mapsto ghg^{-1}.
$$

orbits are called conjugacy classes:

$$
\operatorname{ccl}_G(h) = \{ ghg^{-1} : g \in G \}.
$$

Stabilisers are called centralisers:

$$
C_G(h) = \{ g \in G : ghg^{-1} = h \}.
$$

Remarks

- (i) By Lemma 17 the conjugacy classes partition G.
- (ii) By Orbit Stabiliser Theorem, $h \in G$

$$
|G| = |C_G(h)| |\operatorname{ccl}_G(h)|.
$$

In particular,

 $|\mathrm{ccl}_G|\big||G|.$

(iii) If $k \in \text{ccl}_G(h)$ then $o(k) = o(h)$. Since $k = ghg^{-1}$ for some $g \in G$,

$$
k^{o(h)} = (ghg^{-1})^{o(h)}
$$

$$
= gh^{o(h)}g^{-1}
$$

$$
= e
$$

$$
\Rightarrow o(k) | o(h)
$$

Similarly, $h = g^{-1} k g$ hence $o(h) | o(k)$, so $o(h) = o(k)$ as desired.

=⇒ o(k) | o(h)

(iv) Recall

$$
Z(G) = \{ g \in G : gh = hg \,\,\forall h \in G \}
$$

$$
\trianglelefteq G
$$

And,

$$
Z(G) = \bigcap_{h \in G} C_G(h)
$$

Note, $z \in Z(G)$ if and only if $|{\rm ccl}_G(z)| = 1$. If $z \in Z(G)$

$$
\implies \operatorname{ccl}_G(z) = \{ gzg^{-1} : g \in G \} = \{ z : g \in G \} = \{ z \}.
$$

If $|cd_G(z)| = 1$ then note

$$
z = eze^{-1} \in \operatorname{ccl}_G(z).
$$

So $gzg^{-1} = z \ \forall g \in G$.

- (v) Let $H \leq G$, then H is normal if and only if it is a union of conjugacy classes. (Sheet 3 question 3)
- (vi) G abelian if and only if $G = Z(G)$.

Proposition 7. Let p a prime and G a group of order p^n . Then $Z(G)$ is nontrivial, i.e. $Z(G) \geq \{e\}.$

Proof. Let G act on G by conjugation. Then the conjugacy classes of G partition it by Lemma 17:

$$
G = \bigcup_{\substack{\text{distinct} \\ \text{conjugacy} \\ \text{classes}}} \text{ccl}_G(x)
$$

By Orbit Stabiliser Theorem

$$
|\mathrm{ccl}_G(x)| || G | = p^n.
$$

Either $| \operatorname{ccl}_G(x) = 1$ or $p | \operatorname{ccl}_G(x)$. So by (iv) above

$$
|G| = \sum_{x \in Z(G)} |\text{ccl}_G(x)| + \sum_{\substack{\text{distinct} \\ \text{conjugacy} \\ \text{classes} \\ p \mid \text{ccl}_G(x) }} |\text{ccl}_G(x)|
$$

Now $p \mid LHS$ so $p \mid RHS$

$$
\implies p \bigg| \sum_{z \in Z(G)} |\text{ccl}_G(x)| = |Z(G)|.
$$

But $e \in Z(G)$, hence we must have $|Z(G)| \ge p > 1$, as desired.

Lemma 19. Let G be a finite group and $Z(G)$ the centre of G. If $G/Z(G)$ is cyclic then G is abelian.

Proof. Let $Z = Z(G)$. Since G/Z is cyclic, $G/Z = \langle yZ \rangle$ for some $y \in G$. Let $g, h \in G$. Then $gZ = y^i Z$ for some i, so $g = z^i z_1$ for some $z_1 \in Z$. Similarly, $hZ = y^j Z$ for some j, so $g = z^j z_2$ for some $z_2 \in Z$. Now,

$$
gh = yi z1 yj z2
$$

= $yi yj z1 z2$
= $yj yi z2 z1$
= $yj z2 yi z1$
= hg

so G is abelian as required.

Corollary 5. Suppose $|G| = p^2$ for some prime p. Then G is abelian and there are, up to isomorphism, just two groups of order p^2 , namely $C_p \times C_p$ and C_{p^2} .

Proof. (Sheet 3 Question 10)

 \Box

 \Box

Remark

- (i) A group of order p^n for a prime p is called a finite p-group.
- (ii) If all elements have p-power order G is called a p-group. For example $C_{p^{\infty}}$ (Prüfer group).

Conjugation in S_n

Definition 20. Let $\sigma \in S_n$ and write σ as a product of disjoint cycles including 1-cycles. Then the cycle-type of σ is (n_1, n_2, \ldots, n_k) where $n_1 \geq n_2 \geq \cdots \geq n_k \geq 1$ and the cycles in σ have length n_i . Note $n = n_1 + n_2 + \cdots + n_k$. For example

$$
(1234)(567) = (1234)(567(8) \in S_8
$$

has cycle type $(4, 3, 1)$, and $e \in S_5$ has cycle type $(1, 1, 1, 1, 1)$.

Theorem 9. The permutations π and σ in S_n are conjugate in S_n if and only if they have the same cycle type.

Proof. Suppose σ has cycle type (n_1, n_2, \ldots, n_k) . Write

$$
\sigma = (a_{11}a_{12}\ldots a_{1n_1})(a_{21}a_{22}\ldots a_{2n_2})\cdots (a_{k1}a_{k2}\ldots a_{kn_k}).
$$

Let $\tau \in S_n$. Then

 \overline{a}

$$
\tau \sigma \tau^{-1}(\tau(a_{ij})) = \tau \sigma(a_{ij})
$$

$$
= \begin{cases} \tau(a_{ij}) & j < n_i \\ \tau(a_{ii}) & j = n_i \end{cases}
$$

 \Box

Thus 2 permutations of the same cycle type are conjugate. For example,

$$
(14)(123)(14)^{-1} = (423)
$$

$$
(1l)(1k)(1l) = (lk).
$$

Consider S_4 : let $x \in S_4$. Recall $24 = |S_4| = |\text{ccl}_{S_4}(x)||C_{S_4}(x)|$ by Orbit-Stabiliser Theorem.

Corollary 6. The number of distinct conjugacy classes of S_n is given by $p(n)$, the number of partitions of n into positive integers, i.e. $n = n_1 + \cdots + n_k$ with $n_1 \geq n_2 \geq \cdots \geq n_k \geq 1.$

However in A_n conjugation is less clear. Certainly

$$
\mathrm{ccl}_{A_n}(x) = \{ gxg^{-1} : g \in A_n \} \subseteq \{ gxg^{-1} : g \in S_n \} = \mathrm{ccl}_{S_n}(x)
$$

since $A_n \leq S_n$.

So if two elements are conjugate in A_n they have the same cycle type. But having the same cycle type in A_n does not guarantee being conjugate. For example (123) not conjugate to (132) in A_4 . If $\tau(123)\tau^{-1} = (132)$ then $\tau = (12)$, or (32) or (13), none of which are in A_4 .

Or consider $C_{A_4}((123)) = C_{S_4}((123)) \cap A_4$. For example

$$
C_{S_4}((123)) = \langle (123) \rangle \le A_4
$$

So, $C_{A_4}((123)) = C_{S_4}((123))$

$$
\implies |\text{ccl}((123))| = \frac{|A_4|}{|C_{A_4}((123))|} = \frac{|S_4|/2}{|C_{S_4}((123))|} = \frac{|\text{ccl}_{S_4}((123))|}{2}
$$

So the conjugacy of 8 3-cycles in S_4 splits into 2 conjugacy classes in A_4 .

Key point: let $x \in A_n$. If $C_{A_n}(x) = C_{5_n}(x)$

$$
\implies |\mathrm{ccl}_{A_n}(x)| = \frac{|\mathrm{ccl}_{S_n}(x)|}{2}.
$$

If $C_{A_n}(x) \leq C_{S_n}(x)$, then $C_{S_n}(x)$ contains an odd permutation and

$$
|C_{A_n}(x)| = |C_{S_n}(x) \cap A_n| = \frac{|C_{S_n}(x)|}{2}
$$

(Sheet 2, Q4)

$$
\implies |\mathrm{ccl}_{A_n}(x)| = |\mathrm{ccl}_{S_n}(x)|.
$$

Remark. The number of elements in S_n with k_l cycles of length l is given by

$$
\frac{n!}{\prod_l k_l! l^{k_l}}
$$

Think of cycles as trays, put in elements of $X = \{1, 2, \ldots, n\}$. This gives n! options, but we've overcounted. Each cycle of length l can be written l ways, this gives l^{k_l} factor. Also k_l cycles of length l can be permuted $k_l!$ ways.

Let us consider S_5 (note $|S_5| = 120$).

Now consider A_5 (note $|A_5| = 60$).

Recall a group is simple if it has no non-trivial proper normal subgroups, i.e. if only normal subgroups are $\{e\}$ and G.

Theorem 10. A_5 is a simple group.

Proof. Suppose $N \leq A_5$. Then N is a union of conjugacy classes (Sheet 3, question $3(a)$). Hence

$$
|N| = 1 + 15a + 20b + 12c
$$

where $b, a \in \{0, 1\}$ and $c \in \{0, 1, 2\}$. But by Lagrange's Theorem, $|N| |A_5| = 60$. Only possibility is $|N| = 1$ or $|N| = 60$. \Box

Comments

- (i) A_5 is the smallest non-abelian simple group.
- (ii) A_n simple $\forall n \geq 5$ (GRM). But A_4 is not simple.
- (iii) Classification of finite simple groups exists, includes infinite families.
	- C_p for p prime (only abelian simple groups).
	- A_n with $n \geq 5$.
	- groups of 'Lie type' (matrix groups)
	- 26 sporadic groups (including the monster and baby monster)

Aside

For example, number of cycles in S_5 of type $(\bullet \bullet)(\bullet \bullet)$ so $k_2 = 2, k_1 = 1$.

$$
\# = \frac{q5!}{2!w^2 \cdot 1! \cdot 1} = 15
$$

For $(\bullet \bullet \bullet)(\bullet \bullet)$ we have $k_3 = 1, k_2 = 1$

$$
\# = \frac{5!}{1!3^1 1!2^1} = 20.
$$

7 Matrix Groups

Let $M_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with entries in \mathbb{R} . Define

$$
GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : \det A \neq 0 \}
$$

Proposition 8. $GL_n(\mathbb{R})$ is a group under matrix multiplication. It is called the general linear group.

Proof. Closure: $A, B \in GL_n(\mathbb{R})$ clearly $AB \in M_n(\mathbb{R})$ and $\det(AB) = \det A \det B \neq 0$ so $AB \in GL_n(\mathbb{R})$. Identity:

$$
I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in GL_n(\mathbb{R})
$$

Inverse: det $A \neq 0$ implies A^{-1} exists and $\det(A^{-1}) = \frac{1}{\det A} \neq 0$. Associative:

$$
(A(BC))_{ij} = A_{ix}(BC)_{xj}
$$

$$
= A_{ix}B_{xt}C_{tj}
$$

$$
((AB)C)_{ij} = (AB)_{ix}C_{xj}
$$

$$
= A_{it}B_{tx}C_{xj}
$$

 \Box

Example. We have that

$$
GL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\}
$$

and we have

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \ -c & a \end{pmatrix}
$$

Proposition 9.

$$
\det : GL_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times) \qquad A \mapsto \det A
$$

is a surjective group homomorphism.

Proof. Note $(\mathbb{R} \setminus \{0\}, \times)$ is a group. Determinant is clearly a map to $(\mathbb{R} \setminus \{0\}, \times)$. Need to check it's a group homomorphism

$$
\det(AB) = \det A \cdot \det B
$$

And we need to show that it is surjective, which follows because given $r \in (\mathbb{R} \setminus \{0\}, \times)$, let

$$
A = \begin{pmatrix} r & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in GL_n(\mathbb{R})
$$

and notice that $\det A = r$.

By First Isomorphism Theorem

$$
Ker(\det) \leq GL_n(\mathbb{R})
$$

and we can find that

$$
Ker(det) = \{ A \in GL_n(\mathbb{R}) : \det A = 1 \}
$$

$$
= SL_n(\mathbb{R})
$$

This is known as the special linear group. Furthermore, by First Isomorphism Theorem

 $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong (\mathbb{R} \setminus \{0\}, \times).$

Remark. More generally we can define the general linear group and special linear group over any field. Examples of fields: $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{F}_p$ where

$$
\mathbb{F}_p = (\{0, 1, 2, \dots, p-1\}, +_p, \times_p)
$$

for some prime p. Note that $GL_n(\mathbb{F}_p)$ and $SL_n(\mathbb{F}_p)$ are finite groups.

What is $|GL_3(\mathbb{F}_p)|$? Non-zero determinant means we need linearly independent columns. So the number of choices for first column is $p^3 - 1$ (any choice is fine except $(0, 0, 0)$). Second column is not a multiple of first, so number of choices for second column is $p^3 - p$. (Note that the zero vector is a multiple of the first column). Third column not in space spanned by first two columns, this space has size p^2 (consider $\alpha c_1 + \beta c_2, \alpha, \beta \in \mathbb{F}_p$). So number of choices for third column is $p^3 - p^2$. So

$$
|\mathrm{GL}_3(\mathbb{F}_p)| = (p^3 - 1)(p^2 - p)(p^3 - p^2)
$$

We can still consider

$$
\det : GL_3(\mathbb{F}_p) \to (\mathbb{F}_p \setminus \{0\}, \times) \qquad A \mapsto \det A
$$

Note $(\mathbb{F}_p \setminus \{0\}, \times)$ is a group.

Proof. Closure, identity and associativity can all easily be verified. Let $a \in \mathbb{F}_p \setminus \{0\}$, by Bezout's Theorem, there exists x, y such that $ax + py = 1$. Then we have $ax \equiv 1$ (mod p). Choose $\overline{x} \equiv x \pmod{p}$ with $1 \leq \overline{x} \leq p-1$. So $a^{-1} \equiv x$. \Box

Determinant is a surjective homomorphism to $(\mathbb{F}_p \setminus \{0\}, \times)$ so by First Isomorphism Theorem:

$$
|\text{GL}_3(\mathbb{F}_p)|/|\text{SL}_2(\mathbb{F}_p)| = p - 1
$$

$$
\implies |\text{SL}_3(\mathbb{F}_p)| = \frac{(p^3 - 1)(p^2 - p)(p^3 - p^2)}{p - 1}
$$

Actions of $\mathrm{GL}_n(\mathbb{C})$

(i) Let \mathbb{C}^n denote vectors of length n with entries in \mathbb{C} :

$$
GL_n(\mathbb{C}) \times \mathbb{C}^n \to \mathbb{C}^n \qquad (A, \mathbf{v}) \mapsto A\mathbf{v}
$$

Note $I\mathbf{v} = \mathbf{v}$, $(AB)\mathbf{v} = A(B(\mathbf{v}))$. This action is faithful:

$$
A\mathbf{v} = \mathbf{v} \,\forall \mathbf{v} \in \mathbb{C}^n \implies A = I_n
$$

(consider multiplying A by $(1, 0, \ldots, 0), (0, 1, \ldots, 0)$ etc) The action has two orbits:

Orb_{GL_n}(
$$
\mathbb{C}
$$
) $(0) = \{0\}$ $0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

and for $\mathbf{v} \neq 0$ we have:

$$
\mathrm{Orb}_{\mathrm{GL}_n(\mathbb{C})}(\mathbf{v})=\mathbb{C}^n\setminus\{\mathbf{0}\}
$$

because given $\mathbf{w} \neq \mathbf{0}$ there exists $A \in GL_n(\mathbb{C})$ such that $A\mathbf{v} = \mathbf{w}$.

(ii) Conjugation action of $\text{GL}_n(\mathbb{C})$ on $M_n(\mathbb{C})$

$$
GL_n(\mathbb{C}) \times M_n(\mathbb{C}) \to M_n(\mathbb{C}) \qquad (P, A) \mapsto PAP^{-1}
$$

Note:

$$
PQ(A) = PQA(PQ)^{-1}
$$

$$
= PQAQ^{-1}P^{-1}
$$

$$
= P(Q(A))
$$

Remark. Matrices A and B are conjugate if they represent the same linear map. If $PAP^{-1} = B$, then P represents a change of basis matrix (see linear algebra next year). For example

$$
e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
A: e_1 \mapsto 2e_1 \qquad e_2 \mapsto 3e_2
$$

$$
A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}
$$

Let

$$
P: e_1 \mapsto e_2, \quad e_2 \mapsto e_1
$$

change of basis

$$
P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = p^{-1}
$$

Then

$$
PAP^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
= \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
= \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}
$$

i.e. $e_2 \mapsto 3e_2$ and $e_1 \mapsto 2e_1$. We will use the following result from Vectors and Matrices when investigating Möbius groups.

Result. Let $A \in M_2(\mathbb{C})$ and consider conjugation action of $GL_2(\mathbb{C})$ on $M_2(\mathbb{C})$. Then precisely one of the following occurs:

(i) the orbit of A contains a diagonal matrix

$$
\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}
$$

with $\lambda \neq \mu$.

(ii) the orbit of A is

$$
\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \lambda I
$$

for some λ .

(iii) the orbit of A contains a matrix

$$
\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}
$$

for some λ .

Proof. See Vectors and Matrices but essentially

- (i) In this case A has 2 distinct eigenvalues $\lambda \neq \mu$, take a basis consisting of an eigenvector for λ and an eigenvector for μ . Distinct pairs give distinct orbits.
- (ii) $A = \lambda I$, eigenvalues λ , λ , 2 linearly independent eigenvectors.
- (iii) In this case A has a repeated eigenvalue, but just one linearly independent eigenvector.

 \Box

Recall if $A \in M(\mathbb{R})$, A^{\top} is defined by $(A^{\top})_{ij} = A_{ji}$, i.e. the *ij*-th entry of A^{\top} is ji-th entry of A:

$$
A = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix} \qquad A^{\top} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}
$$

Note. (i) We have $(AB)^{\top} = B^{\top}A^{\top}$ because

$$
[(AB)^{\top}]_{ij} = (AB)_{ji} = AjkB_{ki}
$$

$$
[B^{\top}A^{\top}]_{ij} = B_{ik}^{\top}A_{kj}^{\top} = B_{ki}A_{jk}
$$

(ii) $AA^{\top} = I \iff A^{\top}A = I$ and hence

$$
A^{\top}A = A^{-1}AA^{\top}A = A^{-1}A = I
$$

(iii) $(A^{\top})^{-1} = (A^{-1})^{\top}$ since

$$
I_n = (AA^{-1})^\top
$$

$$
= (A^{-1})^\top A^\top
$$

(iv) det(A^{\top}) = det A.

$$
\mathcal{O}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : A^\top A = I \}
$$

(So columns of A form an orthonormal basis for \mathbb{R}^n).

Proposition 10. $O_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$ called the *orthogonal group*.

Proof.

$$
1 = \det(A^{\top} A)
$$

= $\det(A^{\top}) \det(A)$
= $(\det A)^2$

 $\implies \det A$
 $\neq 0$

Hence $O_n(\mathbb{R})$ is a subset of $GL_n(\mathbb{R})$; associativity is inherited.

- \bullet $I_n =$ $\sqrt{ }$ $\left\{ \right.$ $1 \cdots 0$ $:$ $\mathbb{R}^3 \times \mathbb{R}^3$ $0 \cdots 1$ \setminus $\Big\} \in \mathrm{O}_n(\mathbb{R})$
- closure: $A, B \in \mathrm{O}_n(\mathbb{R}),$

$$
(AB)^{\top}(AB) = B^{\top}A^{\top}AB
$$

$$
= B^{\top}B
$$

$$
= I
$$

$$
\implies B \in O_n(\mathbb{R})
$$

• inverse: $A^{\top}A = I_n \implies A^{\top} = A^{-1}$ and $A^{\top} \in O_n(\mathbb{R})$ since $(A^{\top})^{\top} = A$ and $AA^{\top} = I.$

Note $1 = (\det A)^2 \implies \det A = \pm 1$ if $A \in O_n(\mathbb{R})$. So, Det : $O_n(\mathbb{R}) \to (\{\pm 1\}, \times)$, $A \mapsto \det A$ is a surjective homomorphism, as

$$
\begin{pmatrix}\n-1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1\n\end{pmatrix} \in O_n(\mathbb{R})
$$

So

$$
Ker(\text{Det}) = \{ A \in O_n(\mathbb{R}) : \det A = 1 \} = \text{SO}_n(\mathbb{R}) \le O_n(\mathbb{R})
$$

By First Isomorphism Theorem:

$$
\mathrm{O}_n(\mathbb{R})/\mathrm{SO}_n(\mathbb{R})\cong C_2
$$

Lemma 20. Let $A \in O_n(\mathbb{R})$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then (i) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ (ii) $|A\mathbf{x}| = |\mathbf{x}|$ So A is an isometry (distance preserving map) of Euclidean space \mathbb{R}^n .

Proof.

(i)
\n
$$
A\mathbf{x} \cdot A\mathbf{y} = (A\mathbf{x})^{\top} (A\mathbf{y})
$$
\n
$$
= \mathbf{x}^{\top} A^{\top} A\mathbf{y}
$$
\n
$$
= \mathbf{x}^{\top} \mathbf{y}
$$
\n
$$
= \mathbf{x} \cdot \mathbf{y}
$$

(ii)

$$
|A\mathbf{x}|^2 = A\mathbf{x} \cdot A\mathbf{x} = \mathbf{x} \cdot \mathbf{x} = |\mathbf{x}|^2
$$

 $\hfill \square$

 \Box

Note by (ii) if λ an eigenvalue of A, then $A\mathbf{x} = \lambda \mathbf{x}$

$$
\implies |\lambda \mathbf{x}| = |\mathbf{x}|
$$

i.e. $|\lambda| = 1$.

In 2 dimensions

Let

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})
$$

\n
$$
I = AA^{\top} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}
$$

\n
$$
\implies 1 = a^2 + b^2 = c^2 + d^2
$$

\n
$$
0 = ac + bd.
$$

\n
$$
I = A^{\top}A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

\n
$$
\implies 1 = a^2 + c^2 = b^2 + d^2
$$

\n
$$
0 = ab + cd
$$

For $0\leq\theta<2\pi$ let

$$
\begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \qquad \text{so} \qquad \begin{pmatrix} b \\ d \end{pmatrix} = \pm \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}
$$

First case:

$$
A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

 $\det A = 1$

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta x & -\sin \theta y \\ \sin \theta x & \cos \theta y \end{pmatrix}
$$

A represents a rotation. Let $z = x + iy$ then

$$
e^{i\theta}z = (\cos\theta x - \sin\theta y) + i(\sin\theta x + \cos\theta y)
$$

All elements of $\text{SO}_2(\mathbb{R})$ are of this form.

Second case

$$
A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}
$$

 $\det A = -1$

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta x & \sin \theta y \\ \sin \theta x & -\cos \theta y \end{pmatrix}
$$

$$
e^{i\theta} \overline{z} = (\cos \theta x + \sin \theta y) + i(\sin \theta x - \cos \theta y)
$$

What are the fixed points?

$$
z = e^{i\theta} \overline{z} \iff e^{-\theta/2} z = e^{i\theta/2} \overline{z}
$$

$$
\iff e^{-i\theta/2} z = t \in \mathbb{R}
$$

$$
\iff z = e^{i\theta/2} t
$$

hence a reflection in line $te^{i\theta/2}$.

All elements of $O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$ are of this form.

So,

$$
O_2(\mathbb{R}) = SO_2(\mathbb{R}) \cup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} SO_2(\mathbb{R})
$$

Note any element of $O_2(\mathbb{R})$ is a product of at most two reflections. Since if $A \in SO_2(\mathbb{R})$ then

$$
A = \left(A \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

3 dimensions

Proposition 11. Let $A \in SO_3(\mathbb{R})$. Then A has an eigenvector with eigenvalue 1.

Proof.

$$
det(A - I) = det(A - AAT)
$$

= det A det(I – A^T)
= det((I – A)^T)
= det(I – A)
= (-1)³ det(A – I)
= - det(A – I)

hence $\det(A - I) = 0$ and A has eigenvalue 1.

Alternatively consider $\chi_A(x)$ the characteristic polynomial of A, it is a cubic in R. Thus has a real root, $\lambda = 1$ or $\lambda = -1$. But the other eigenvalues are either a complex conjugate pair, then $\lambda = 1$ or all are real either 1, -1, -1 or 1, 1, 1.

Theorem 11. Let $A \in SO_3(\mathbb{R})$ then A Is conjugate to a matrix of the form

$$
\begin{pmatrix}\n\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$

for some $\theta \in [0, 2\pi]$. In particular, A is a rotation round an axis through the origin.
Proof. By proposition 11, there is a $\mathbf{v} \in \mathbb{R}^3$ with $A\mathbf{v} = \mathbf{v}$, and we can assume $|\mathbf{v}| = 1$. Let $\{e_1, e_2, e_3\}$ be the standard orthonormal basis for \mathbb{R}^3 . There exists $P \in SO_3(\mathbb{R})$ such that $P\mathbf{v} = e_3$. So $PAP^{-1}(e_3) = e_3$ and for π plane perpendicular to e_3 then $PAP^{-1}(\pi)$ perpendicular to e_3 . So,

$$
\rho A \rho^{-1} = \left(\begin{array}{c|c}\n\alpha & 0 & 0 \\
\hline\n\gamma & 0 & 0 \\
\hline\n0 & 0 & 1\n\end{array}\right) = \left(\begin{array}{c|c}\nQ & 0 \\
\hline\n0 & 0 & 1\n\end{array}\right)
$$

det $PAP^{-1} = \det A = 1$, so $\det Q = 1$, $Q^{\top} Q = I$. So

$$
Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

for some θ as required.

Suppose r is a reflection in a plane π through 0. Let **n** be unit vector perpendicular to π . Then

$$
r(\mathbf{x}) = \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{n})\mathbf{n}
$$

$$
\mathbf{n} \mapsto -\mathbf{n}
$$

 π fixed. So **r** is conjugate to

$$
\begin{pmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \in O_3(\mathbb{R})
$$

$$
O_3(\mathbb{R}) = SO_3(\mathbb{R}) \cup \begin{pmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} SO_3(\mathbb{R})
$$

Theorem 13. Any element of $O_3(\mathbb{R})$ is a product of at most 3 reflections.

Proof. Let $\{e_1, e_2, e_3\}$ be standard orthonormal basis for \mathbb{R}^3 . Let $A \in O_3(\mathbb{R})$. Then

$$
|Ae_3| = |e_3| = 1,
$$

since A is an isometry. So there exists a reflection r_1 such that

$$
r_1A(e_3)=e_3.
$$

Let $\pi = \langle e_1, e_2 \rangle$ (the plane perpendicular to e_3). Then $r_1A(\pi) = \pi$. There exists a reflection r_2 such that

$$
r_2(e_3) = e_3, \qquad r_2(r_1A(e_2)) = e_2.
$$

 \Box

So r_2r_1A fixes e_2 and e_3 . So $r_2r_1A(e_1) = \pm e_1$. If $e_1 = e_1$, set $r_3 = id$. If $e_1 = -e_1$, let r_3 be reflection in plane perpendicular to e_1 . So $r_3r_2r_1A$ fixes e_1, e_2, e_3 , so

$$
r_3r_2r_1A = id
$$

\n $\implies A = r_1^{-1}r_2^{-1}r_3^{-1} = r_1r_2r_3.$

Alternatively, any element in $SO_2(\mathbb{R})$ is a product of at most 2 reflections, via 2-dimensional case. Thus any element of

$$
\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} SO_3(\mathbb{R})
$$

is a product of at most 3 reflections. Note we do need 3, for example consider

$$
\begin{pmatrix}\n-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1\n\end{pmatrix}
$$

8 Möbius Groups

A Möbius transformation (or map) is a function of a complex variable z that can be written in the form

$$
f(z) = \frac{az+b}{cz+d}
$$

for some $a, b, c, d \in \mathbb{C}$ with $ad - bc \neq 0$. Why $ad - bc \neq 0$?

$$
f(z) - f(w) = \frac{(ad - bc)(z - w)}{(cz + d)(cw + d)}.
$$

So, $ad - bc = 0$ implies f constant (not interesting), and $ad - bc \neq 0$ implies f injective. When does $f(z) = g(z)$?

Suppose there exists at least 3 values of z in $\mathbb C$ such that

$$
\frac{az+b}{cz+d} = \frac{\alpha z + \beta}{\gamma z + \delta}
$$

 $ad - bc \neq 0$, $\alpha\delta - \beta\gamma \neq 0$. Then there exists $\lambda \neq 0$, $\lambda \in \mathbb{C}$ such that

$$
\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

Since, we have 3 distinct values of z for which

$$
(az+b)(\gamma z+\delta) = (\alpha z+\beta)(cz+d)
$$

so these quadratics are identical. Hence

$$
a\gamma = \alpha c, \qquad b\delta = \beta d
$$

$$
a\delta + b\gamma = \alpha d + \beta c
$$

Let $\mu = a\delta - \beta c = \alpha d - b\gamma$ (so $\mu^2 = (ad - bc)(\alpha \delta - \beta \gamma) \neq 0$). Then

$$
\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix}
$$

$$
\implies \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \frac{\mu}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

Problem: f is not defined at $z = -\frac{d}{dx}$ $\frac{d}{c}$. We would like $f\left(-\frac{d}{c}\right)$ (c) = ∞ . We consider f defined on $\mathbb{C} \cup \{\infty\} = \mathbb{C}_{\infty}$, the extended complex plane. So if

$$
f(z) = \frac{az+b}{cz+d},
$$

domain is now \mathbb{C}_{∞} ; $c \neq 0$; $f(\infty) = \frac{a}{c}$, $f\left(-\frac{d}{c}\right)$ $(c^d) = \infty$. For $c = 0$; $f(\infty) = \infty$.

(Riemann Sphere and stereographic projection.)

Theorem 14. The set $\mathcal M$ of all Möbius maps on \mathbb{C}_∞ is a group under composition. It is a subgroup of $\mathrm{Sym}(\mathbb{C}_{\infty}).$

Proof.

- composition of maps is associative
- $I(z) = z \in \mathcal{M}$.
- closure: Let

$$
f(z) = \frac{az+b}{cz+d}, \qquad g(z) = \frac{\alpha z + \beta}{\gamma z + \delta}
$$

Suppose $c \neq 0$, $\delta \neq 0$. First suppose $z \in \mathbb{C} \setminus \{-\delta/\gamma\}$. Then

$$
f(g(z)) = \frac{a\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right) + b}{c\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right) + d}
$$

$$
= \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma) + (c\beta + \delta d)} \in \mathcal{M}
$$

since

$$
(a\alpha + b\gamma)(c\beta + \delta d) - (a\beta + b\delta)(c\alpha + d\gamma) = (ad - bc)(\alpha\delta - \beta\gamma) \neq 0.
$$

Also,
$$
f\left(g\left(-\frac{\delta}{\gamma}\right)\right) = f(\infty) = \frac{a}{c}
$$
. And
\n
$$
\frac{(a\alpha + b\gamma)\left(-\frac{\delta}{\gamma}\right) + (a\beta + b\delta)}{(c\alpha + d\gamma)\left(-\frac{\delta}{\gamma}\right) + (c\beta + \delta d)} = \frac{a\alpha\left(-\frac{\delta}{\gamma}\right) + \alpha\beta}{c\alpha\left(-\frac{\delta}{\gamma}\right) + c\beta}
$$
\n
$$
= \frac{a}{c}
$$

Need to check $c = 0$ separately.

• inverses: For some a, b, c, d with $ad - bc \neq 0$, let

$$
f(z) = \frac{az+b}{cz+d} \qquad \text{and} \qquad f^*(z) = \frac{dz-b}{-cz+a}
$$

Then $f(f^*(z)) = z = f^*(f(z))$ for $z \neq -\frac{d}{dz}$ $\frac{d}{c}, -\frac{a}{c}$ $\frac{a}{c}$, ∞ . These are cases are ok. If $c = 0$ then

$$
f(f^*(\infty)) = f(\infty = \infty = f^*(f(\infty)).
$$

Theorem 15.

where

$$
\frac{\mathrm{GL}_2(\mathbb{C})}{Z} \cong \mathcal{M}
$$

$$
Z = \{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} : \lambda \in \mathbb{C} \setminus \{0\} \}.
$$

Proof. We construct a surjective homomorphism from $GL_2(\mathbb{C})$ onto M with kernel Z. Let $\phi: GL_2(\mathbb{C}) \to \mathcal{M}$

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto f(z) = \frac{az+b}{cz+d}.
$$

Note ϕ a homomorphism:

$$
f(z) = \frac{az+b}{cz+d}, \qquad g(z) = \frac{\alpha z + \beta}{\gamma z + \delta}.
$$

$$
\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \phi \left(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right) (z) = f \circ g(z)
$$

$$
= \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma)z + (c\beta + \delta d)}
$$

$$
= \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right)
$$

Clearly ϕ surjective.

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Ker } \phi
$$

if and only if $\frac{az+b}{cz+d} = z \ \forall \ z \in \mathbb{C}_{\infty}$. Note

 $z = \infty \implies c = 0$ $z = 0 \implies b = 0$ $z = 1 \implies a = d$ \implies Ker $\phi = z$

Finally apply First Isomorphism Theorem.

 $\hfill \square$

Corollary 7.

$$
\frac{\operatorname{SL}_2(\mathbb{C})}{\{\pm I\}} \cong \mathcal{M}.
$$

Proof. Restrict ϕ to $SL_2(\mathbb{C})$

$$
\phi: SL_2(\mathbb{C}) \to \mathcal{M}
$$

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{az+b}{cz+d}.
$$

We require ϕ to be surjective:

$$
f(z) = \frac{az+b}{cz+d} = \frac{\left(\frac{a}{(ad-bc)^{1/2}}\right)z + \frac{b}{(ad-bc)^{1/2}}}{\left(\frac{c}{(ad-bc)^{1/2}}\right)z + \frac{d}{(ad-bc)^{1/2}}}.
$$

And Ker $\phi = {\pm I}.$

Proposition 13. Every Möbius map can be written as a somposition of maps of the following forms:

- (i) $z \mapsto az, a \neq 0$; represents a dilation or rotation
- (ii) $z \mapsto z + b$; a translation
- (iii) $z \mapsto \frac{1}{z}$; inversion.

Proof. Let $f(z) = \frac{az+b}{cz+d}$. If $c = 0$;

$$
z \mapsto \left(\frac{a}{d}\right)z \to \mapsto \left(\frac{a}{d}\right)z + \left(\frac{b}{d}\right)
$$

 f_1 is type (i), f_2 is type (ii). We can write $f = f_2 \circ f_1$. If $c \neq 0$, write

$$
f(z) = \frac{az + b}{cz + d}
$$

= $\frac{\left(\frac{a}{c}\right)z + \left(\frac{b}{c}\right)}{z + \left(\frac{d}{c}\right)}$
= $\frac{a}{c} + \frac{\left(-\frac{ad + bc}{c^2}\right)}{\left(z + \frac{d}{c}\right)}$
= $A + \frac{B}{z + \frac{d}{c}}$
 $z \stackrel{\text{(ii)}}{\mapsto} z + \frac{d}{c} \stackrel{\text{(iii)}}{\mapsto} \frac{1}{z + \frac{d}{c}} \stackrel{\text{(i)}}{\mapsto} \frac{B}{z + \frac{d}{c}} \stackrel{\text{(ii)}}{\mapsto} A + \frac{B}{z + \frac{d}{c}}.$

Now we can write $f = f_4 \circ f_3 \circ f_2 \circ f_1$.

 $\hfill \square$

 $\hfill \square$

Definition 22. A group G acts triply transitively on a set X if given $x_1, x_2, x_3 \in X$ all distinct and $y_1, y_2, y_3 \in X$ all distinct, there exists $g \in G$ such that $g(x_i) = y_i$, for $i = 1, 2, 3$.

A group G acts *sharply triply transitively* if such a g is unique.

Theorem 16. The action of M on \mathbb{C}_{∞} is sharply triply transitive.

Proof. Label first triple $\{z_0, z_1, z_\infty\}$ and second triple $\{\omega_0, \omega_1, \omega_\infty\}$. We construct $g \in \mathcal{M}$ such that

$$
g: z_0 \mapsto 0
$$

$$
z_1 \mapsto 1
$$

$$
z_{\infty} \mapsto \infty
$$

First suppose $z_0, z_1, z_\infty \neq \infty$

$$
g(z) = \frac{(z - z_0)(z_1 - z_{\infty})}{(z - z_{\infty})(z_1 - z_0)}
$$

check: " $ad - bc$ " = $(z_0 - z_{\infty})(z_1 - z_{\infty})(z_1 - z_0) \neq 0$. If $z_{\infty} = \infty$:

$$
g(z) = \frac{(z - z_0)}{(z_1 - z_0)}
$$

If $z_1 = \infty$:

$$
g(z) = \frac{(z - z_0)}{(z - z_{\infty})}
$$

If $z_0 = \infty$:

$$
g(z) = \frac{(z_1 - z_{\infty})}{(z - z_{\infty})}.
$$

Similarly find h such that

$$
h: \omega_0 \mapsto 0
$$

$$
\omega_1 \mapsto 1
$$

$$
\omega_{\infty} \mapsto \infty
$$

Then $f = h^{-1}g : z_i \mapsto \omega_i$ as required. Now to prove uniqueness. Suppose $f' : z_i \mapsto \omega_i$. Then $f^{-1}f' : z_i \mapsto z_i$. Let g be as above, then

$$
gf^{-1}f'g^{-1}: 0 \mapsto 0 \implies b = 0
$$

$$
1 \mapsto 1 \implies a = d
$$

$$
\infty \mapsto \infty \implies c = 0
$$

$$
\implies gf^{-1}f'g^{-1} = id
$$

$$
\implies f^{-1}f' = id
$$

$$
\implies f = f'.
$$

 \Box

So, the image of just three points determines the map.

Conjugacy classes in M

Recall $\phi : GL_2(\mathbb{C}) \rightarrow \mathcal{M}$. Suppose A, B conjugate in $GL_2(\mathbb{C})$, i.e. there exists $P \in$ $GL_2(\mathbb{C})$ such that

$$
PAP^{-1} = B
$$

then

$$
\phi(P)\phi(A)\phi(P)^{-1} = \phi(PAP^{-1})
$$

= $\phi(B) \in \mathcal{B}$

i.e. $\phi(A)$ and $\phi(B)$ are conjugate in M. Use knowledge of conjugacy classes in $GL_2(\mathbb{C})$.

(i) For some $\lambda \neq \mu, \lambda \neq 0 \neq \mu$

$$
\begin{pmatrix}\n\lambda & 0 \\
0 & \mu\n\end{pmatrix}
$$

$$
\phi\left(\begin{pmatrix}\n\lambda & 0 \\
0 & \mu\n\end{pmatrix}\right) = f
$$

$$
f(z) = \nu z, \, \nu \neq 0, 1.
$$

(ii) For some $\lambda \neq 0$,

$$
\begin{pmatrix}\n\lambda & 0 \\
0 & \lambda\n\end{pmatrix}
$$

\n
$$
\phi\left(\begin{pmatrix}\n\lambda & 0 \\
0 & \lambda\n\end{pmatrix}\right) = id.
$$

(iii) For some $\lambda \neq 0$,

$$
\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}
$$

$$
\phi \left(\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \right) = f
$$

$$
f(z) = \frac{\lambda z + 1}{\lambda} = z + \frac{1}{\lambda}, \text{ i.e.}
$$

$$
f = \phi \left(\begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix} \right)
$$

And it's conjugate to

$$
\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\lambda} & 0 \\ 0 & 1 \end{pmatrix}
$$

So f conjugate to g where $g(z) = z + 1$.

Theorem 17. Any non-identity Möbius map is conjugate to one of

(i) $z \mapsto \nu z, \nu \neq 0, 1$

(ii) $z \mapsto z + 1$.

Corollary 8. A non-identity Möbius map f has either

- (i) 2 fixed points or
- (ii) 1 fixed point.

Proof. Suppose $gfg^{-1} = h$. Then α is a fixed point of f (i.e. $f(\alpha) = \alpha$) if and only if $g(\alpha)$ is a fixed point of h (i.e. $h(g(\alpha)) = g(\alpha)$). So number of fixed points of f is the same as the number of fixed points of h . By Theorem 17 either,

- f conjugate to $z \mapsto \nu z$ which has 2 fixed points: 0, ∞ .
- or f conjugate to $z \mapsto z + 1$ which has 1 fixed points; ∞ .

8.1 Circles in \mathbb{C}_{∞}

A Euclidean circle is the set of points in $\mathbb C$ given by some equation

$$
|z - z_0| = r, \qquad r > 0.
$$

A Euclidean line is the set of points in $\mathbb C$ given by some equation

$$
|z - a| = |z - b|
$$

A circle in \mathbb{C}_{∞} is either a Euclidean circle or a set $L \cup \{\infty\}$ where L is a Euclidean line. Its general equation is of the form

$$
Az\overline{z} + B\overline{z} + \overline{B}z + C = 0
$$

for some $A, C \in \mathbb{R}, |B|^2 > AC$. Where $z = \infty$ is a solution if and only if $A = 0$.

- $A = 0$: line
- $C = 0$: goes through origin

There is a unique circle passing through any 3 distinct points in \mathbb{C}_{∞} .

 \Box

Theorem. Let $f \in \mathcal{M}$ and C a circle in \mathbb{C}_{∞} , then $f(C)$ is a circle in \mathbb{C}_{∞} .

Proof. By proposition 13, just need to consider $f(z) = az$, $z + b$ or $\frac{1}{z}$. Let $S_{A,B,C}$ be circle defined by (∗). Then

$$
f(z) = az : S_{A,B,C} \mapsto S_{A/a\overline{a},B/\overline{a},C}
$$

$$
f(z) = z + b : S_{A,B,C} \mapsto S_{A,B-Ab,C+Ab\overline{b}-\overline{B}b-\overline{B}\overline{b}}
$$

$$
f(z) = \frac{1}{z} := \omega : S_{A,B,C} \mapsto A + B\omega + B\omega + \overline{B}\overline{\omega} + C\omega\overline{\omega} = 0 = S_{C,\overline{B},A}
$$

e.g. Consider the image of $\mathbb{R} \cup \{\infty\}$ under

$$
f(z) = \frac{z - i}{z + i}.
$$

It is a circle in \mathbb{C}_{∞} containing

$$
f(0) = -1, f(\infty) = 1, f(1) = -i
$$

So $f(\mathbb{R} \cup {\infty})$ = unit circle. Furthermore, complimentary components are mapped to complimentary components.

8.2 Cross-Ratios

Definition 23. The cross-ratio of distinct points $z_1, z_2, z_3, z_4 \in \mathbb{C}$ is defined by

$$
[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_2)(z_3 - z_4)}
$$

$$
[\infty, z_2, z_3, z_4] = \frac{(z_2 - z_4)}{(z_3 - z_4)}
$$

$$
[z_1, \infty z_3, z_4] = -\frac{(z_1 - z_3)}{(z_3 - z_4)}
$$

$$
[z_1, z_2, z_3, \infty] = \frac{(z_1 - z_3)}{(z_1 - z_2)}
$$

$$
[z_1, z_2, \infty, z_4] = -\frac{(z_2 - z_4)}{(z_1 - z_2)}
$$

Note $[0, 1, \omega, \infty] = \omega$.

Notation. Different authors use different permutations of 1, 2, 3, 4 as definition.

Theorem. Given $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$ distinct and $\omega_1, \omega_2, \omega_3, \omega_4 \in \mathbb{C}_{\infty}$ distinct then there exists $f \in \mathcal{M}$ such that $f(z_i) = f(\omega_i)$ if and only if

$$
[z_1, z_2, z_3, z_4] = [\omega_1, \omega_2, \omega_3, \omega_4].
$$

In particular, Möbius maps preserve cross-ratios

$$
[z_1, z_2, z_3, z_4] = [f(z_1), f(z_2), f(z_3), f(z_4)].
$$

Proof. For the forward direction, suppose $f(z_j) = \omega_j$ and $z_i, \omega_i \neq \infty$ for all i and

$$
f(z) = \frac{az+b}{cz+d}
$$

then $cz_j + d \neq 0 \forall j$. So

$$
\omega_j - \omega_k = f(z_j) - f(z_k) \n+ \frac{(ad - bc)(z_j - z_k)}{(cz_j + d)(cz_k + d)} \n\implies [z_1, z_2, z_3, z_4] = [\omega_1, \omega_2, \omega_3, \omega_4] \n= [f(z_1), f(z_2), f(z_3), f(z_4)]
$$

Need to check other cases; $z_i = \infty$, $\omega_i = f(\infty) = \frac{a}{c}$ $\frac{a}{c}$ etc. For the other direction, suppose that

$$
[z_1, z_2, z_3, z_4] = [\omega_1, \omega_2, \omega_3, \omega_4]
$$

Let $g \in \mathcal{M}$ such that $g(z_1) = 0$, $g(z_2) = 1$ and $g(z_4) = \infty$. Let $h \in \mathcal{M}$ such that $h(\omega_1)=0$, $h(\omega_2)=1$, $h(\omega_4)=\infty$. Then

$$
g(z_3) = [0, 1, g(z_3), \infty]
$$

= $[g(z_1), g(z_2), g(z_3), g(z_4)]$
= $[z_1, z_2, z_3, z_4]$
= $[\omega_1, \omega_2, \omega_3, \omega_4]$
= $[h(\omega_1), h(\omega_2), h(\omega_3), h(\omega_4)]$
= $[0, 1, h(\omega), \infty]$ = $h(\omega_3)$

So $h^{-1}g$ is the required map.

So $[z_1, z_2, z_3, z_4] = f(z_3)$ where f is the unique Möbius map that sends $z_1 \mapsto 0$, $z_2 \mapsto 1$, $z_4 \mapsto \infty$.

 \Box

Corollary. z_1, z_2, z_3, z_4 lie in some circle in \mathbb{C}_{∞} if and only if $[z_1, z_2, z_3, z_4] \in \mathbb{R}$.

Proof. C circle through z_1, z_2, z_4 , Let $g: C \to \mathbb{R} \cup \{\infty\}$,

$$
g(z_1) = 0, g(z_2) = 1, g(z_4) = \infty
$$

$$
g(z_3) = [0, 1, g(z_3), \infty]
$$

= [g(z₁), g(z₂), g(z₃), g(z₄)]
= [z₁, z₂, z₃, z₄]

By Theorem 19. So

$$
[z_1, z_2, z_3, z_4] \in \mathbb{R} \iff g(z_3) \in \mathbb{R} \iff z_3 \in C.
$$

THE END