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0 Introduction

Book recommendations:

• Algebra & Geometry, Alan Beardon

Notation. ∀ denotes “for all”; ∃ denotes “there exists”; =⇒ denotes “implies”; ∴
denotes “therefore”; ×××× denotes “contradiction”; and Z, N, Q, R and C denote the
integers, naturals, rationals, reals and complex numbers respectively.
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1 Basic Definitions and Examples

Definition 1 (Binary Operation). A binary operation ∗ on a set X is a way of
combining 2 elements of X to unambiguously give another element of X, i.e. ∗ :
X ×X → X.

Definition 2 (Group). If G is a set and ∗ is a binary operation on G, then (G, ∗)
is a group if the following 4 axioms hold:

(i) x, y ∈ G =⇒ x ∗ y ∈ G (closure)

(ii) ∃ an element e ∈ G satisfying

x ∗ e = x = e ∗ x ∀x ∈ G

(existence of an identity)

(iii) for every x ∈ G there is a y ∈ G such that

x ∗ y = e = y ∗ x

(existence of inverses)

(iv) for every x, y, z ∈ G we have:

x ∗ (y ∗ z) = (x ∗ y) ∗ z

(associative law)

Remark. We can prove that G has only one identity.

Remark. As a result, we can also prove that every element has only one inverse.

Both of these claims are proved in Lemma 1.

1.1 Examples of Groups

(1) (Z,+), e = 0, x−1 = −x.

(2) (Q,+), (R,+)

(3) (Z,−) is not a group because associativity fails.
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(4) (Z,×) is not a group because no inverses.

(5) (Q,×) is not a group because 0−1 does not exist.

(6) (Q \ {0},×)

(7) ({±1},×)
We can write a multiplication table:

x 1 -1

1 1 -1
-1 -1 1

note that closure holds, e = 1 and (−1)−1 = −1.

(8) ({0, 1, 2},+3)

+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

and we have e = 0 and 1−1 = 2.

(9) ({e, a, b, c}, ∗)

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(10) “groups are abstractions of symmetries”: rotations and reflections of an equilateral
triangle are another example of a group.

e

A

B C

σ

C

A B

σ2

B

C A

τ

A

C B

τ ◦ σ

B

A C

τ ◦ σ2

C

B A

4



This forms a group where the binary operator is “do one then the next”

(11) M2(R) = {2× 2 matrices with entries in R}

=

[(
a b
c d

)
: a, b, c, d ∈ R

]
under addition is a group:(

a b
c d

)
+

(
α β
γ δ

)
=

(
a+ α b+ β
c+ γ d+ δ

)
(12) GL2(R) = {invertible 2× 2 matrices with entries in R} under multiplication is a

group.

Lemma 1. Let (G, ∗) be a group. Then

1. The identity element is unique.

2. Inverses are unique.

Proof. (i): Suppose e and e′ are both identities, so

a ∗ e = a = e ∗ a and a ∗ e′ = a = e′ ∗ a ∀a ∈ G.

In particular
e = e ∗ e′ = e′

so e = e′, so the identity must be unique.
Proof. (ii): Suppose both y and z are inverses for x, so

x ∗ y = e = y ∗ x, and x ∗ z = e = z ∗ x x ∈ G.

Then

y = y ∗ e
= y ∗ (x ∗ z)
= (y ∗ x) ∗ z
= e ∗ z
= z

so y = z.

Remark (Unnesessary brackets). Since the definition of a group involves associa-
tivity, we can omit brackets, i.e. x ∗ y ∗ z is unambiguous.
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Remark (Omitting ∗). We often omit “∗” and write xy := x ∗ y and also write
G = (G, ∗). (This is only done when the binary operator can be easily inferred).

Remark (Inverse of product). (xy)−1 = y−1x−1. This follows immediately by the
uniqueness, as it is easy to verify that this is a possible inverse:

(xy)y−1x−1 = x(yy−1)x−1 = xx−1 = e.

Remark (Inverse of inverse). (x−1)−1 = x.

Remark (Coset stuff). If xy = xz then y = z; this easily follows from the existence
of inverses.

Definition 3 (Abelian Groups). A group G is abelian (or commutative) if xy = yx
for all x, y ∈ G.

Remark. Note all our examples above are abelian except (10) and (12). (Symme-
tries of the triangle, and the general linear group).

Definition 4 (Order of a group). Let G be a group. If the number of elements in
the set G is finite, then G is called a finite group. Otherwise G is called an infinite
group. If G is a finite group, denote the number of elements in the set G by |G| and
we call this the order of the group.

Definition 5 (Subgroups). Let (G, ∗) be a group and H a subset of G (H ⊆ G i.e.
h ∈ H =⇒ h ∈ G). Then (H, ∗) is a subgroup of (G, ∗) if (H, ∗) is a group (with
the same operation) i.e. if

(a) h, k ∈ H =⇒ h ∗ k ∈ H.

(b) eG ∈ H

(c) h ∈ H =⇒ h−1 ∈ H.

(Note associativity is inherited).
i.e. “restricting operation to H still gives a group”. We write H ≤ G.
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Examples

• (Z,+) ≤ (Q,+) ≤ (R,+)

• ({±1},×) ≤ (Q \ {0},×).

• In example (10) (symmetries of a triangle), the rotational symmetries form a sub-
group (elements {e, σ, σ2}).

• In example (12) (general linear group), we have that

SL2(R) = {A ∈ GL2(R) : detA = 1}
≤ GL2(R)

(SL2 and GL2 denote the special linear and general linear groups respectively).

• G a group then {e} ≤ G is the trivial subgroup. G ≤ G is the improper subgroup.

• The subgroups of (Z,+) are exactly

nZ = {nk : k ∈ Z}, n ∈ Z≥0.

Proof. First note nZ is a sub group of Z.
– 0 ∈ nZ
– If a, b ∈ nZ, then let a = na′, b = nb′. Then we have

a+ b = na′ + nb′ = n(a′ + b′) ∈ nZ.

– −a = n(−a′) ∈ nZ
– Associativity is inherited.

Conversely assume that H ≤ Z. If H = {0} = 0Z which is of the form we claimed.
Otherwise choose 0 < n ∈ H with n minimal. (Such an n must exist because
H must contain either a negative or positive integer, but since inverses exist this
implies that there must be a positive element). Then nZ ≤ H by closure and
inverses. Now we show that H = nZ. Suppose ∃h ∈ H \ nZ, then we can write
h = nk + h′ with h′ ∈ {1, 2, . . . , n − 1}. But h′ = h − nk ∈ H, contradicting
minimality of n. Thus H = nZ.

Definitions for Functions

Definition 6 (Functions). F is a function between sets A and B if it assigns each
element of A a unique element of B

f : A→ B a 7→ f(a)

For example: f : Z → Z, x 7→ x+ 1 and gZ → Z, x 7→ 2x.

7



Definition 7 (Composition of functions). Suppose g : A → B and f : B → C.
Define f ◦ g : A→ C by

a 7→ (f ◦ g)(a) = f(g(a)).

For example (f ◦ g)(x) = 2x+1 and (g ◦ f)(x) = 2x+2 using the example functions
above.

Suppose f1 : A→ B, f2 : A→ B. Then f1 = f2 if and only if f1(a) = f2(a)∀a ∈ A.

Definition 8 (Bijection). f : A → B is a bijection if it defines a pairing between
elements of A and elements of B. That is, given b ∈ B there exists a unique a ∈ A
such that f(a) = b. For example f : Z → Z, x 7→ x+ 1. Given a bijective function
f , we can define

f−1 : B → A b 7→ a where f(a) = b.

Then f ◦ f−1 = idB and f−1 ◦ f = idA. (idB(b) = b, idA(a) = a)

Lemma 2 (Composition of bijections). If g : A→ B and f : B → C are bijections
then so is f ◦ g : A→ C.

Proof. In Numbers & Sets.

Definition 9 (Homomorphism). Let (G, ∗G) and (H, ∗H) be groups. Then the
function

θ : G→ H

is a homomorphism if

θ(x ∗G y) = θ(x) ∗H θ(y) ∀x, y ∈ G

“a map which respects the group operation”.
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Example. Let G = ({0, 1, 2, 3},+4) and H = ({1, eπi/2, eπi, e3πi/2},×). Then the
function

θ : G→ H n 7→ enπi/2

is a homomorphism. This is because

θ(n+4 m) = e(n+4m)πi/2

= e(n+m)πi/2 since n+m = n+4 m+ 4n

= enπi/2 × emπi/2

= θ(n)× θ(m)

Lemma 3. Let G and H be groups and θ : G→ H be a homomorphism. Then

θ(G) = {θ(g) : g ∈ G},

the image of θ is a subgroup of H, written θ(G) ≤ H.

Proof. We need to prove closure, . . .

• To prove closure, let x, y be elements of θ(G). Then x = θ(g) and y = θ(h) for
some h, g ∈ G. Then:

x ∗H y = θ(g) ∗H θ(h)

= θ(g ∗g h)
∈ θ(G)

• To show that we have an identity, note that

θ(eG) = θ(eG ∗G eG)
= θ(eG) ∗H θ(eG)

and if we premultiply by θ(eG)
−1 ∈ H then we get

eH = θ(eG) ∈ θ(G)

• To get inverses, let x = θ(g) ∈ θ(G). Then

eH = θ(eG) = θ(g ∗G g−1)

= θ(g) ∗H θ(g−1)

= x ∗H θ(g−1)

= θ(g−1 ∗G g)
= θ(g−1) ∗H x
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And since inverses are unique we get

θ(g)−1 = θ(g−1) ∈ θ(G)

• And finally associativity is just inherited.

Definition 10 (Isomorphism). A bijective homomorphism is called an isomorphism
if G and H are groups and θ : G → H is a homomorphism. We say G and H are
isomorphic and write G ∼= H.

Example. Let G = ({0, 1, 2, 3},+4) and H = ({1, eiπ/2, eiπ, e3iπ/2,×). Then G ∼=
H, which can be shown by considering

θ : G→ H

n 7→ eiπn/2

(θ is an isomorphism.)

Isomorphism means roughly “They are essentially the same”

Lemma 4.

(i) The composition of two homomorphisms is a homomorphism. Similarly for
isomorphisms, thus if G1

∼= G2 and G2
∼= G3, then G1

∼= G3.

(ii) If θ : G1 → G2 then so is its inverse θ−1 : G2 → G1. So G1
∼= G2 =⇒ G2

∼=
G1.

Proof.

(i) Suppose
θ1 : (G1, ∗1) → (G2, ∗2)

θ2 : (G2, ∗2) → (G3, ∗3)

are homomorphisms. Then θ2 ◦ θ1 is a function from G1 to G3, we need to check
its a homomorphism. Let x, y ∈ G1. Then

θ2 ◦ θ1(x ∗1 y) = θ2(θ1(x) ∗2 θ1(y))
= θ2(θ1(x)) ∗3 θ2(θ1(y))
= (θ2 ◦ θ1)(x) ∗3 (θ2 ◦ θ1)(y)
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(ii) θ is a bijection so θ−1 exists. We need to show it is a homomorphsim.
Let y, z ∈ G2. Then ∃x, k ∈ G1 such that

θ−1(y) = x, θ−1(z) = k.

Note

θ(x ∗1 k) = θ(x) ∗2 θ(k)
= y ∗2 z =⇒ θ−1(y ∗2 z) = x ∗1 k
= θ−1(y) ∗1 θ−1(z)

Notation. If x ∈ (G, ∗), n ∈ Z then

xn =



n︷ ︸︸ ︷
x ∗ x ∗ · · · ∗ x n > 0

e n = 0

x−1 ∗ x−1 ∗ · · · ∗ x−1︸ ︷︷ ︸
(−n)

n < 0

Definition 11 (Cyclic Groups). A group H is cyclic if ∃h ∈ H such that each
element of H is a power of h, i.e. for each x ∈ H∃n ∈ Z such that x = hn. Then h
is called a generator of H and we write H = ⟨h⟩.

Example. • (Z,+) = ⟨1⟩ = ⟨−1⟩ is the infinite cyclic group. We showed all
subgroups of (Z,+) are cyclic.

• ({±1},×) = ⟨−1⟩

• ({0, 1, 2, 3},+4) = ⟨1⟩ = ⟨3⟩

Note that a cyclic group is always abelian.

Definition 12 (Orders). Let G be a group and g ∈ G. The order of g written o(g),
is the least positive integer n such that gn = e, if it exists. Otherwise g has infinite
order.

Lemma 5. Suppose G is a group, g ∈ G and o(g) = m. Let n ∈ N>0. Then

gn = e ⇐⇒ m | n.
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Proof. (⇐) Suppose m | n, then n = qm for some q ∈ N. This implies that

gn = gqm = (gm)q = eq = e.

( =⇒ ) Suppose gn = e. Then we can write n = qm + r with 0 ≤ r < m, with q ∈ N.
Then

e = gn = gqm+r

= (gm)qgr

= eqgr

= egr

= gr

This implies r = 0 by minimality of m, hence n = qm as required.

Remarks

(1) Suppose g ∈ G¿ Then {gn : n ∈ Z} is a subgroup of G, in fact it is the smallest
subgroup of G containing g. We call it the subgroup of G generated by g and write

⟨g⟩ = {gn : n ∈ Z}.

Also |⟨g⟩| = o(g) if finite, since if o(g) = m then

⟨g⟩ = {e, g, g2, . . . , gm−1︸ ︷︷ ︸
=g−1

}

Otherwise both are infinite.

(2) We can define the abstract cyclic group of order n

Cn = ⟨x⟩ o(x) = n

Then
({0, 1, . . . , n− 1},+n) and ({nth roots of unity},×)

are realisations of this group, and they are all isomorphic.

(3) LetG be a group and g1, . . . , gk ∈ G. Then the subgroup ofG generated by g1, . . . , gk
denoted by ⟨g1, . . . , gk⟩ is the smallest subgroup of G containing all the gi. It is the
intersection of all the subgroups of G containing all the gi.
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2 The Dihedral and Symmetric Groups

First note composition of functions is associative:

f, g, h : X → X, x ∈ X

Then

(f ◦ (g ◦ h))(x) = f((g ◦ h)(x))
= f(g(h(x)))

= (f ◦ g)(h(x))
= ((f(◦g) ◦ h)(x) =⇒ f ◦ (g ◦ h) = (f ◦ g) ◦ h

2.1 Dihedral Groups

Let P be a regular polygon with n sides and V its set of vertices. We can assume

V = {e2πik/n : 0 ≤ k < n}

n-th roots of unity in C. Then the symmetries of P are the isometries (i.e. distance
preserving maps of C that map V to V .

We will show that for n ≥ 3 the set of symmetries of P , under composition form a
nonabelian group of order 2n. This group is called the dihedral group of order 2n and
denoted by D2n.

Notation. Sometimes D2n is denoted Dn.

We have already met D6 in example 10.

Consider D8

1 2

34 e

1

23

4

r 12

3 4

r2 1

2 3

4r3

12

3 4tr2 1 2

34

t

1

2 3

4

tr 1

23

4 tr3
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Let r : P → P
z 7→ e2πi/nz

t : p→ P

z 7→ z

These are both isometries.

|r(z)− r(w)| = |e2πi/nz − e2πi/nw|
= |e2πi/n||z − w|
= |z − w|

|t(z)− t(w)|2 = |z − w|2

= (z − w)(z − w)

= |z − w|2

=⇒ |t(z)− t(w)| = |z − w|

Note, rn = id = identity
=⇒ r−1 = rn−1

and also
t2 = id =⇒ t = t−1

tr(z) = e−2πi/nz = r−1t(z)

=⇒ tr = r−1t

We show that the symmetries of P is

{e = id, r, r2, . . . , rn−1︸ ︷︷ ︸
rotations

, t, rt, . . . , rn−1t︸ ︷︷ ︸
reflections

}

Then this set under composition of functions gives the group D2n.

Let f be a symmetry of P . Then f(1) = e2πik/n for some k.

=⇒ r−k ◦ f(1) = 1.

So, g(e2πi/n) = e2πi/n or e−2πi/n. If g(e2πi/n = e2πi/n then g fixes 1 and e2πi/n, Also g
interchanges vertices of P so fixes P ’s centre of mass

1

n
=

n−1∑
k=0

e2πik/n = 0.
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So g fixes 0, 1 and e2πi/n

g = id =⇒ f = rk.

If g(e2πi/n) = e−2πi/n then

t ◦ g(e2πi/n = e2πi/n

t ◦ g(1) = 1

t ◦ g(0) = 0

=⇒ t ◦ g = id

t ◦ r−k ◦ f = id

=⇒ f = rk ◦ t−1

= rk ◦ t

Algebraically we write,

D2n = ⟨ r, t︸︷︷︸
generators

| rn = e, t2 = e, trt = r−1︸ ︷︷ ︸
relations

⟩

Finally, D2
∼= C2 and D4

∼= Z/2Z × Z/2Z are the only abelian dihedral groups. Also
note that D∞ exists.

2.2 Symmetric Groups

Let X be a set. A bijection
f : X → X

is called a permutation of X. Let Sym(X) denote the set of all permutations of X.

Proposition 1. Sym(X) is a group under composition of functions. It is called the
symmetric group on X.

Proof.

• Closure - follows from a lemma in Numbers & Sets

• identity, define c(x) = x ∀x ∈ X

• Let f ∈ Sym(X). As f is a bijection, f−1 exists and is a bijection and satisfies

f ◦ f−1 = c = f−1 ◦ f

• composition of functions is associative as shown earlier
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Notation (Symmetric Groups). Suppose X is finite and X = |n|. Then we often
take X to be the set {1, 2, . . . , n} and we write Sn for Sym(X). We call Sn the
symmetric group of degree n.

We’ll use double row notation (for now).

If σ ∈ Sn write

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
For example (

1 2 3
2 3 1

)
∈ S3

and (
1 2 3 4 5
2 3 1 4 5

)
∈ S5

Composition:

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 1 3

)
= “

1 2 3
2 1 3
3 2 1

 ” =

(
1 2 3
3 2 1

)
or

=

Small n

S1 =

{(
1
1

)
= {c}

}
trivial group

S2 =

{(
1 2
1 2

)
,

(
1 2
2 1

)
∼= ({±1},×) ∼= C2

}
.

S3 =

{(
1 2 3
1 2 3

) (
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)}
∼= D6
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Remarks

(i) |Sn| = n! because number of choices for σ(1) is n, number of choices for σ(2) is
n− 1. . .

(ii) For n ≥ 3 , Sn is not abelian. Consider(
1 2 3 4 · · · n
2 3 1 4 · · ·n

)
,

(
1 2 3 4 · · · n
1 3 2 4 · · · n

)
(iii) D2n naturally embeds in Sn. For example D8 ≲ S4

r =

(
1 2 3 4
2 3 4 1

)
t =

(
1 2 3 4
4 3 2 1

)
“Double row notation is cumbersome and hides what’s going on. We introduce cycle

notation.”

New Notation

Definition 13. Let a1, . . . , ak be distinct integers in {1, . . . , n}. Suppose σ ∈ Sn
and

σ(a) =

{
ai+1 if there exists i such that ai = a (taken modulo k).

a otherwise

Then σ is a k-angle and we write σ = (a1, a2, . . . , ak). For example

σ = (1, 2, 3) =

(
1 2 3
2 3 1

)

Remarks

(i)
(a1, a2, . . . , ak) = (ak, a1, a2, . . . , ak−1) = · · ·

We usually write the smallest ai first.

(ii)
(a1, a2, . . . , ak)

−1 = (a1, ak, ak−1, . . . , a2

(iii) o(σ) = k, σ is like rotations of k points
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σ

ak

a1
a2

(iv) a 2-cycle is called a transposition.

Definition 14. Two cycles σ(a1, . . . , ak) and τ = (b1, . . . , bl) are disjoint if {a1, . . . , ak}∩
{b1, . . . , bl} = ∅.

Lemma 6. If σ, τ ∈ Sn are disjoint then

στ = τσ (σ ◦ τ = τ ◦ σ).

Proof. If x ∈ {1, . . . , n} \ {a1, . . . , ak} ∪ {b1, . . . , bl}, then

(σ ◦ τ)(x) = σ(τ(x)) = x = (τ ◦ σ)(x).

For 1 ≤ i ≤ k − 1 we have

(σ ◦ τ)(ai) = σ(τ(ai))

= σ(ai)

= ai+1

(τ ◦ σ)(ai) = τ(σ(ai))

= τ(ai+1) = ai+1

And σ ◦ τ(ak) = a1 and aτ ◦ σ(ak) = a1. The same argument works for the bi. Thus
σ ◦ τ and τ ◦ σ agree everywhere which implies that σ ◦ τ = τ ◦ σ.

Example.
(1 2)(3 4 5) = (3 4 5)(1 2)

However this is not necessarily true if two cycles are disjoint.
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Example. Consider σ = (1 2 3) and τ = (2 4). Then we have

σ ◦ τ(1) = σ(1) = 2

σ ◦ τ(2) = σ(4) = 4

σ ◦ τ(3) = σ(2) = 1

σ ◦ τ(4) = σ(3) = 3

Hence σ ◦ τ = (1 2 4 3) but τ ◦ σ = (1 4 2 3).

Example. (1 2 3)(2 3) = (1 2)(3) = (1 2)

but
(2 3)(1 2 3) = (1 3)

Notation. When using cycle notation, we often suppress 1-cycles.

Theorem 1. Every permutation can be written as a product of disjoint cycles (in
an essentially unique way).

Example.

σ =

(
1 2 3 4 5 6 7 8 9
2 4 5 7 6 3 1 9 8

)
= (1 2 4 7)(3 5 6)(8 9)

Proof. Let a1 ∈ {1, 2, . . . , n} = X. Consider a1, σ(a1), σ
2(a1), . . . . Since X is finite there

exists a minimal j such that σj(a1) ∈ {a1, σ(a1), . . . , σj−1(a1)}. We claim: σj(a1) = a1
since if not we can assume

σj(a1) = σi(ai)

where j > i ≥ 1. Then this implies

σj−i(a1) = a1

which contradicts the minimality of j. So, (a1, σ(a1), . . . , σ
j−1(a1)) is a cycle in σ. If

there exists b ∈ X \ {a1, σ(a1), . . . , σj−1(a1)} consider b, σ(b), . . . . Now we can note
that (b, σ(b), . . . , σk−1(b)) is disjoint from (a1, σ(a1), . . . , σ

j−1(a1)) since σ is a bijection.
Continue in this way until all elements of X are reached.
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Lemma 7. Let σ, τ be disjoint cycles in Sn. Then

o(στ) = lcm{o(σ), o(τ)}.

Proof. Let lcm{o(σ), o(τ)} so o(σ) | k and o(τ) | k. Then

(στ)k = στστ · · ·στ
= σkτk

= ee

= e

=⇒ o(στ) | k
Now suppose o(στ) = n. Then

(στ)n = e

=⇒ σnτn

= e

But σ, τ move different elements of X which implies that we must have σn = e and
σn = e, which implies that o(σ) | n and o(τ) | n which implies that k | n, and hence

o(στ) = lcm{o(σ), o(τ)}

as desired.

Proposition 2. Any σ ∈ Sn (with n ≥ 2) can be written as a product of transpo-
sitions.

Proof. By the previous theorem it is sufficient to show that a k-cycle can be written as
a product of transpositions. We can do this directly:

(a1, a2, . . . , ak) = (a1, a2)(a2, a3) · · · (ak−2, ak−1)(ak−1, a1)

Example.

(1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5) = (1 2)(1 2)(1 2)(2 3)(3 4)(4 5) = (1 5)(1 4)(1 3)(1 2).

Note that the representation as a product of transpositions is not unique.

Definition 15. Let σ ∈ Sn with (n ≥ 2). Then the sign of σ, written sgn(σ) is
(−1)k where k is the number of transpositions in some expression of σ as a product
of transpositions.
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Lemma 8. The function sgn : Sn → {±1} defined by σ 7→ sgn(σ) is well-defined.
i.e. if

σ = τ1 · · · τa
= τ ′1 · · · τ ′b

with τi and τ
′
i transpositions then

(−1)a = (−1)b.

Proof. Let c(σ) denote the number of cycles in a disjoint cycle decomposition of σ
including 1-cycles, so c(id) = n. Let τ be a transposition.

Claim.

c(στ) = c(σ)± 1 ≡ c(σ) + 1 (mod 2)

Let τ = (k, l). 2 cases:

(i) k, l in different cycles of σ:

(k, a1, . . . , ar)(l, b1, . . . , bs)(k, l) = (k, b1, b2, . . . , bs, l, a1, . . . , ar)

and hence c(στ) = c(σ)− 1.

(ii) when k, l in same cycle in σ we have

(k, a1, . . . , ar, l, b1, . . . , bs)(k, l) = (k, b1, . . . , bs)(l, a1, . . . , ar)

=⇒ c(στ) = c(σ) + 1.

Now assume

σ = id · τ1 · · · τa
= id · τ ′1 · · · τ ′a

Then

c(σ) ≡ n+ a (mod 2)

≡ n+ b (mod 2)

=⇒ a ≡ b (mod 2)

=⇒ (−1)a = (−1)b
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Aside

Subgroup lattice of D6 = {e, r, r2, t, rt, r2t}:

D6

< r > < t > < rt > < r2t >

{e}

So we just connect subgroups with a line if one is a subgroup of another.

Theorem 2. Let n ≥ 2. The map

sgn : (Sn, ◦) → ({±1},×) σ 7→ sgn(σ)

is a well-defined non-trivial homomorphism.

Proof.

• Well-defined as proven earlier.

• sgn ((1 2)) = −1, so non-trivial.

• Now we prove that it is a homomorphism:
Let α, β ∈ Sn with sgn(α) = (−1)k, sgn(β) = (−1)k, so there exists transpositions
τi and τ

′
i such that

α = τ1 · · · τk β = τ ′1 · · · τ ′l
=⇒ αβ = τ1 · · · τkτ ′1 · · · τ ′l

=⇒ sgn(αβ) = (−1)k+l

= (−1)k(−1)l

= sgn(α)sgn(β)

Definition 16. σ is an even permutation if sgn(σ) = 1 and an odd permutation if
sgn(σ) = −1.
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Corollary 1. The even permutations of Sn (n ≥ 2) form a subgroup called the
alternating group and denoted An.

Proof.

• Identity: id = (1 2)(1 2) ∈ An.

• sgn(σ) = 1 = sgn(ρ)

=⇒ sgn(σρ) = sgn(σ)sgn(ρ) = 1

by the previous theorem

• If
σ = τ1 · · · τk

then
σ−1 = τk · · · τ1

=⇒ sgn(σ) = sgn(σ−1)

• Associativity is inherited.

Example. A4 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3),

(1 2 3), (1 3 2), (1 2 4), (1 4 2),

(2 3 4), (2 4 3), (1 3 4), (1 4 3)}

Remarks

(i) |An| = |Sn|
2 = n!

2 (exercise - see later)

(ii) cycles of even length are odd, and cycles of odd length are even.

(iii) An = Ker(sgn), hence a subgroup. (question 9, sheet 1)
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3 Cosets and Lagrange

Definition 17 (Cosets). Let H ≤ G and g ∈ G. The left coset gH is defined to be

{gh : h ∈ H}.

Similarly the right coset is given by

Hg = {hg : h ∈ H}.

Example.
Sr = {e, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}.

H = {id, (1 2 3), (1 3 2)} = A3.

(1 2)H = {(1 2), (1 2)(1 2 3), (1 2)(1 3 2)} = {(1 2), (2 3), (1 3)}

(1 2 3)H = H

Note, H∪̇(1 2)H = S3.

Notation. We sometimes use ∪̇ instead of ∪ if we wish to emphasise that we have
a disjoint union.

Lemma 9. Let H ≤ G and g ∈ G. Then there is a bijection between H and gH.
In particular if H is finite then

|H| = |gH|.

Proof. Define
θg : H → gH h 7→ gh

We show θg is a bijection.

surj: If gh ∈ gH then θg(h) = gh.

inj: If

θg(h1) = θg(h2)

=⇒ gh1 = gh2

=⇒ h1 = h2
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Lemma 10. The left cosets of H in G form a partition called of G i.e.

(i) each g ∈ G lies in some left coset of H in G.

(ii) if aH ∩ bH ̸= ∅ for some a, b ∈ G then aH = bH.

H = eH g1H g2H gk−1H· · ·

G

Proof.

(i) g ∈ gH.

(ii) Suppose c ∈ aH ∪ bH. Then we claim that aH = cH = bH. Now c ∈ aH so c = ak
for some k ∈ H

=⇒ cH = {ch : h ∈ H}
= {akh : h ∈ H} ⊆ aH

Similarly, a = ck−1 ∈ cH
=⇒ aH ⊆ cH

So aH = cH. Similarly cH = bH.

For example Sn = An∪̇(1 2)An.

Lemma 11. Let H ≤ G, a, b ∈ G. Then

aH = bH ⇐⇒ a−1b ∈ H.

(⇒) b ∈ bH = aH
=⇒ b = ah for some h ∈ H

=⇒ a−1b = h ∈ H

(⇐) Suppose a−1b = k ∈ H.
=⇒ b = ak ∈ aH

also b ∈ bH,
=⇒ aH = bH by earlier lemma
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Theorem 3 (Lagrange’s Theorem). Let H be a subgroup of the finite group G.
Then the order of H divides the order of G (i.e. |H|

∣∣ |G|).
Proof. By Lemma 10 G is partitioned into distinct cosets of H, say

G = g1H∪̇g2H∪̇ · · · ∪̇gkH

(g1 = e say)
By Lemma 9

|giH| = |H| 1 ≤ i ≤ k

=⇒ |G| = |H|k

so the order of H divides the order of G.

Definition 18 (14). Let H ≤ G. The index of H in G is the number of left cosets
of H in G, denoted |G : H|.

Remark. (i) If G is finite, |G : H| = |G|
|H| . But can have |G : H| finite but G and

H both infinite.

(ii) We write (G : H) for the set of left cosets of H in G.

Corollary 2 (Lagrange’s Corollary). Let G be a finite group and g an element of
G. Then o(g)

∣∣ |G|. In particular, g|G| = e.

Proof. Note
⟨g⟩ = {e, g, . . . , gn−1}

where o(g) = n. Then
o(g) = |⟨g⟩|

∣∣ |G|
by Lagrange’s Theorem

=⇒ g|G| = e.

Corollary 3. If |G| = p for some prime p, then G is cyclic.

Proof. Let e ̸= g. Then
{e} ≠ ⟨g⟩ ≤ G
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BY Lagrange
1 ̸= |⟨g⟩|

∣∣ |G| = p.

=⇒ |⟨g⟩| = p = |G|

=⇒ ⟨g⟩ = |G|

i.e. G is cyclic.

Definition 19 (Euler Totient Function). Let n ∈ N then we define

φ(n) = |{1 ≤ a ≤ n : (a, n) = 1}|

so for example φ(12) = |{1, 5, 7, 11}| = 4.

Theorem 4 (Fermat-Euler Theorem). Let n ∈ N, a ∈ Z with (a, n) = 1. Then

aφ(n) ≡ 1 (mod n).

Fermat’s Little Theorem is a special case:
P prime, a ∈ Z, (a, p) = 1, then

ap−1 ≡ 1 (mod p).

We prove Fermat-Euler Theorem by using Lagrange, first we need to set it up. Let
n ∈ N,

Rn = {0, 1, . . . , n− 1}

R∗
n = {a ∈ Rn : (a, n) = 1}.

Define ×n to be multiplication modulo n.

Claim. (R∗
n,×n) is a group.

Notation, u ∈ Z then u ∈ Rn such that u ≡ u (mod n). Closure:

(a, n) = 1 = (b, n) =⇒ (ab, n) = 1 =⇒ (ab, n) = 1

Identity is 1, and clearly associative.
Inverses: Let a ∈ R∗

n with (a, n) = 1.

=⇒ ∃u, v ∈ Z

such that au+ vn = 1 (Bezout’s Theorem)

=⇒ au ≡ 1 (mod n)

Then u ∈ R∗
n is a−1.
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Now we can prove Fermat Euler Theorem:
Proof. Note |R∗

n| = φ(n)
a ≡ a (mod n) a ∈ R∗

n

By Corollary 2
aφ(n) = a|R

∗
n| = 1 in R∗

n

=⇒ aφ(n) ≡ 1 (mod n)
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4 Normal Subgroups, Quotient Groups and Homomorphisms

Given a group G, subgroup H of G and the set of left cosets of H in G, (G : H), we
would like to define a group operation on the cosets, ◦, so that ((G : H), ◦) is a group.
We would like

(gH) ◦ (kH) = gkH.

When does this work?

gHkH = gkHH = gkH ⇐⇒ kH = Hk

This motivates the following definition:

Definition 20 (15). A subgroup K of G is called normal if gK = Kg for all g ∈ G.
We write K ⊴ G.

Example.
K = {id, (1 2 3), (1 3 2)} ⊴ S3.

(1 2)K = {(1 2), (2 3), (1 3)} = K(1 2)

(1 3)K = K(1 3)

(2 3)K = K(2 3)

And (1 2 3)K = K = K(1 2 3) etc. But H = {1, (1 2)} is not normal in S3:

(1 3)H = {(1 3), (1 2 3)}

H(1 3) = {(1 2), (1 3 2)}.

Proposition 3 (4). Let K ≤ G. TFAE (the following are equivalent):

(i) gK = Kg ∀g ∈ G

(ii) gKg−1 = K ∀g ∈ G

(iii) gkg−1 ∈ K ∀k ∈ K, g ∈ G.

Proof. (i) =⇒ (ii):

gKg−1 = {gkg−1 : k ∈ K}
= (gK)g−1

= (Kg)g−1

= K
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(ii) =⇒ (iii): trivial.
(iii) =⇒ (i): For any k ∈ K, g ∈ G, there exists k′ ∈ K such that

gkg−1 = k′

=⇒ gk = k′g ∈ Kg

=⇒ gK ⊆ Kg

Similarly g−1kg = k′′ for some k′′ ∈ K

=⇒ kg = gk′′

=⇒ Kg ⊆ gK

=⇒ gK = Kg.

Examples

• {e} ⊴ G, G ⊴ G.

• If G is abelian then all subgroups are normal. Since if k ∈ K, g ∈ G, K ⊴ G
follows from

gkg−1 = gg−1k = k ∈ K.

• Kernels of homomorphisms are normal subgroups (Sheet 1, question 9).

=⇒ An ⊴ Sn

since An = Ker(sgn).

• D2n = ⟨r, y : rn = 1 = t2, trt = r−1⟩ Then ⟨r⟩ ⊴ D2n. Clearly rirjr−i = rj ∈ ⟨r⟩.
Also

(rit)rj(rit)−1 = ritrjtr−1

= ri − j − i = r−j ∈ ⟨r⟩

Or we can use the following lemma.

Lemma 12. If K ≤ G and the index of K in G is 2, then K ⊴ G.

Proof.

G = K∪̇gK
= K∪̇Kg

=⇒ gK = Kg ∀g ∈ G
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Theorem 5. If K ⊴ G, the set (G : K) of left cosets of K in G is a group under
coset multiplication, i.e.

gK · hK = ghK

This group is called the quotient group (or factor group of G by K and denoted
G/K.

Proof. We need to check that cost multiplication is well-defined, i.e. if

gK = ĝK

and
hK = ĥK

then
ghK = ĝĥK.

By Lemma 11,
gK = ĝK =⇒ ĝ−1g ∈ K

hK = ĥK =⇒ ĥ−1h ∈ K

Now ĝ−1g ∈ K
=⇒ h−1ĝ−1gh ∈ K

since K ⊴ G.
=⇒ ĥ−1hh−1ĝ−1gh ∈ K

=⇒ ĥ−1ĝ−1gh ∈ K

=⇒ ghK = ĝĥK

by Lemma 11. So coset multiplication is well-defined. Group axioms now follow easily:

• By construction coset multiplication is closed as ghK ∈ (G : H) g1h ∈ G.

• identity given by eK = K

• (gK)−1 = g−1K.

• associativity holds since it does in G, to check:

(gKhK)lK = (gh)lK

= g(hl)K

= gk(HklK)
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Examples

(i) Sn/An = ({An, (1 2)An}, ◦) ∼= C2.

(ii) D8 = ⟨a, b : a4 = 1 = b2, bab = a−1⟨ Let K = {1, a2}.

Claim. K ⊴ D8.

(aib)a2(aib)−1 = aiba2ba−i

= a−2 = a2 ∈ K

aia2a−1 = a2 ∈ K

|D8|
|K|

= 4 = |(D8 : K)|

4 distinct left cosets:

K = {1, a2}
aK = {a, a3}
bK = {b, ba2} = {b, a2b}
abK = {ab, aba2} = {ab, a3b}

◦ K aK bK abK

K K aK bK abK
aK aK K abK bK
bK bK abK K aK
abK abK bK aK K

Note: aKaK = a2K = K ∼= example 9.

(iii) Recall the subgroups of (Z,+) are precisely the groups (nZ,+) where n ∈ N,

nZ = {nk : k ∈ Z}.

Since (Z,+) abelian, all subgroups are normal, nZ ⊴ Z. Suppose n = 5, cosets
given by,

5Z = {5k : k ∈ Z}
1 + 5Z = {1 + 5k : k ∈ Z}
2 + 5Z = {2 + 5k : k ∈ Z}
3 + 5Z = {3 + 5k : k ∈ Z}
4 + 5Z = {4 + 5k : k ∈ Z}
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(1 + 5Z) + (2 + 5Z) = 3 + 5Z.

(3 + 5Z) + (4 + 5Z) = 7 + 5Z = 2 + 5Z.

(Z/5Z, ◦) ∼= ({0, 1, 2, 3, 4},+5)

n+ 5Z → n such that n ≡ n (mod 5)

n ∈ {0, 1, 2, 3, 4}. Well-defined map:
if n+ 5Z = m+ 5Z then

−m+ n ∈ 5Z
=⇒ −m+ n ≡ 0 (mod 5)

=⇒ n ≡ m (mod 5)

=⇒ n = m

homomorphism:

θ((n+ 5Z) + (m+ 5Z)) = θ(n+m+ 5Z)
= n+m

= n+5 m

= θ(n+ 5Z) + θ(m+ 5Z)

In general
(Z/nZ, ◦) ∼= ({0, 1, 2, 3, 4},+n).

Recall θ : G→ H is a homomorphism if

θ(xy) = θ(x)θ(y)

Im(θ) = {θ(g) : g ∈ G} ≤ H

Ker(θ) = {g ∈ G : θg = eH} ⊴ G

Theorem 6 (First Isomorphism Theorem). Let G, H be groups and θ : G→ H be
a group homomorphism. Then Im(θ) ≤ H and Ker(θ) ⊴ G and G/Ker(θ) ∼= Im(θ).

Definition 21 (16). A group is called simple if its only normal subgroups are {e}
and G. For example Cp for some prime p.

Definition (Injection). Suppose f : A→ B. Then f is injective if for any a1, a2 ∈
A, if f(a1) = f(a2) then a1 = a2. (each element of A maps to a different element of
B).
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Definition (Surjection). Suppose f : A → B. Then f is surjective if given b ∈ B,
∃a ∈ A such that f(a) = b. (every element in B is ‘hit’).

Definition 22 (Bijection). A function is bijective if it is both injective and surjec-
tive.

Now we can prove the first isomorphism theorem.
Proof. Need to construct an isomorphism θ : G/Kerθ → Imθ where gK 7→ θ(g). Let
K = Kerθ; need θ well-defined:
Suppose gK = hK, then

h−1g ∈ K

=⇒ θ(h−1g) = eH

=⇒ θ(h)−1θ(g) = eH since θ is a homomorphism

=⇒ θ(g) = θ(h)

=⇒ θ(gK) = θ(hK)

Need θ a homomorphism:

θ(gKhK) = θ(ghK)

= θ(gh)

= θ(g)θ(h) since θ is a homomorpism

= θ(gK)θ(hK)

θ surjective:
θ(g) ∈ Imθ =⇒ θ(gK) = θ(g)

θ injective:
Suppose θ(gK) = θ(hK) then

θ(g) = θ(h)

=⇒ θ(h)−1θ(g) = eH

θ(h−1g) = eH

=⇒ h−1g ∈ K

=⇒ gK = hK
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Examples

(i) sgn : Sn → ({±1},×) with σ 7→ sgn(σ). Then

Im(sgn) = ({±1},×)

Ker(sgn) = An

=⇒ Sn/An
∼= ({±1},×) ∼= C2

=⇒ |An| = |Sn|/2

(ii) θ : (R,+) → (C \ {0},×) defined by r 7→ e2πir. Note, θ(r + s) = θ(r)θ(s). Also,

Im(θ) = S′ = {z ∈ Z : |z| = 1} unit circle

Ker(θ) = (Z,+) ⊴ (R,+)

(R,+)/(Z,+) ∼= S′

(iii) Recall
GL2(R) = {2× 2 matrices, entries in R, det ̸= 0}

Then we observe that det : GL2(R) → (R \ {0},×), M 7→ det(M) is a homomor-
phism since

det(AB) = det(A) det(B).

Im(det) = (R \ {0},×)

since

det


α 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = α ∈ R \ {0}.

Ker(det) = SL2(R)
= {2× 2 matrices, entries in R, det = 1.}

=⇒ SL2(R) ⊴ GL2(R)

and GL2(R)/SL2(R) ∼= (R \ {0},×).

(iv) θ : (Z,+) → ({0, 1, . . . , n− 1},+n) with n 7→ n.

Kerθ = nZ

Remark. LetK ⊴ G. ThenK is the kernel of the natural surjective homomorphism

θ : G→ G/K

g 7→ gK

Thus homomorphic images of G are equivalent to quotients of G.
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Lemma 13. A homomorphism θ : G→ H is injective if and only if Kerθ = {eG}.

Proof.

(⇒) Suppose θ(g) = eH = θ(eG). Injective implies that g = eG.

(⇐)
θ(g) = θ(h)

=⇒ θ(h)−1θ(g) = eH

=⇒ θ(h−1g) = eH

=⇒ h−1g ∈ Ker θ = {eG}
=⇒ h−1g = eG

=⇒ h = g

Recall, N ⊴ G, g ∈ G, n ∈ N implies

gng−1 ∈ N

gng−1 = n̂ for some n̂ ∈ N

= gn = n̂g

Lemma 14. (i) Let N ⊴ G and H ≤ G. Then NH = {nh : n ∈ N,h ∈ H} ≤ G.

(ii) Let N ⊴ G, M ⊴ G, then
NM ⊴ G.

Proof.

(i) closure, nh, nh ∈ NH, then

n hn︸︷︷︸
n̂h

h = nn̂hh ∈ NH

identity: id = e = ee ∈ NH
inverse:

(nh)−1 = h−1n−1

= n̂h−1 for some n̂ ∈ N .

∈ NH

(ii) check normality
g(nm)g−1 = gng−1︸ ︷︷ ︸

∈N

gmg−1︸ ︷︷ ︸
∈M

∈ NM
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5 Direct products and Small Groups

5.1 Direct Products

Let H and K be groups. We construct the (external) direct product, H ×K, to be the
set

{(h, k) : h ∈ H, k ∈ K}
with operation

(h1, k1) ∗ (h2, k2) = (h1 ∗H h2, k1 ∗K k2) = (h1h2, k1k2)

i.e. componentwise multiplication.
Then (H ×K, ∗) is a group, which can verify easily as follows:

closure H group implies h1h2 ∈ H and K group implies k1k2 ∈ K.

identity (eH , eK)

inverse (h, k)−1 = (h−1, k−1)

associativity since group operations in both H and K are associative.

Remarks

(i) If H, K both finite, then |H ×K| = |H||K|.

(ii) H ×K abelian if and only if

(h1, k1) ∗ (h2, k2) = (h2, k2) ∗ (h1, k1) ∀h1, h2 ∈ H, k1, k2 ∈ K

⇐⇒ (h1h2, k1k2) = (h2h1, k2k1)

⇐⇒ h1h2 = h2h2 and k1k2 = k2k1

⇐⇒ H abelian and K abelian

(iii) H ∼= {(h, eK) : h ∈ H} ≤ H × k and K ∼= {(eH , k) : k ∈ K} ≤ H ×K.

Examples

(i)

C2 × C2 = ⟨x⟩ × ⟨y⟩
= {e, x} × {e, y}

elements (e, e), (x, e), (e, y), (x, y).

◦ (e, e) (x, e) (e, y) (x, y)

(e, e) (e, e) (x, e) (e, y) (x, y)
(x, e) (x, e) (e, e) (x, y) (e, y)
(e, y) (e, y) (x, y) (e, e) (x, e)
(x, y) (x, y) (e, y) (x, e) (e, e)
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Klein 4-group ∼= example 9. Note o((x, e)) = o(e, y)) = o(x, y)) = 2. So C2 ×C2 ̸∼=
C4.

(ii) However, C2 × C3
∼= C6. (sheet 2, question 10)

Lemma 15. Let (h, k) ∈ H ×K where H, K groups. Then

o((h, k)) = lcm(o(h), o(k))

Proof. Let n = o((h, k)) and m = lcm(o(h), o(k)). Then hm = eH , km = eK . So
(h, k)m = (hm, km) = (eH , eK) and hence n | m by Lemma 5. Also,

(eH , eK) = (h, k)n

+ (hn, kn)

=⇒ o(h) | n,o(k) | n
=⇒ m | n

Thus we know when Cm × Cn
∼= Cmn (Sheet 2, q10).

Recognising when a group can be written as a direct product of subgroups is trickier.

Proposition 4 (5). Let G be a group with subgroups H and K, then if

(i) each element of G can be written as hk for h ∈ H and k ∈ K;

(ii) H ∩K = {e};

(iii) hk = kh ∀h ∈ H, k ∈ K,

Then G ∼= H ×K and we call G the (internal) direct product of H and K.

Proof. Let θ : H ×K → G defined by (h, k) 7→ hk. First we check that θ is a homomor-
phism:

θ((h1, k1)(h2, k2)) = θ((h1h2, k1k2))

= h1h2k1k2

= h1k1h2k2

= θ((h1, k1))θ((h1, k2))

To check that θ is injective,

θ((h1, k1)) = θ((h2, k2))

=⇒ h1k2 = h2k2

=⇒ h−1h1 = k2k
−1
1 ∈ H ∩K = {e}

=⇒ h1 = h2 and k1 = k2
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so (h1, k1) = (h2, k2). θ is surjective by (i), so θ is an isomorphism as required.

Remark. There are alternative equivalent definitions of internal direct product. G
is the internal direct product of subgroups H and K if

(i)’ H ⊴ G, K ⊴ G;

(ii)’ H ∩K = {e};

(iii)’ HK = G.

Need to show (i), (ii), (iii) are equivalent to (i)’, (ii)’, (iii)’.

(⇒) we show K ⊴ G. Let k ∈ K, g = h1k1 ∈ G by (i). Then

gkg−1 = h1k1kk
−1
1 h−1 = h1kh

−1 = k ∈ K

Similarly H ⊴ G.

(⇐) Need to show (iii). Let h ∈ H, k ∈ K and consider

h−1 k−1hk︸ ︷︷ ︸
∈H

∈ H since H ⊴ G.

Similarly, this expression is in K, so

h−1k−1hk ∈ H ∩K = {e}
=⇒ hk = kh

Example. G = ⟨a⟩ ∼= C15. Then

C5
∼= ⟨a3⟩ = H ⊴ G

C3
∼= ⟨a5⟩ = K ⊴ G

H ∩K = ⟨a3⟩ ∩ ⟨a5⟩ = {e}
ak = (a3)2k(a5)−k ∈ HK

=⇒ C15
∼= C3 × C5

∼= K ×H

5.2 Small Groups

Recall D2n, the symmetries of a regular n-gon, generated by

r : z 7→ e2iπ/nz

t : z 7→ z
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Then the elements of D2n are

{e, r, . . . , rn−1︸ ︷︷ ︸
rotations

, t, rt, . . . , rtn−1︸ ︷︷ ︸
reflection

}

Now suppose G a group, n ≥ 3 with |G| = 2n, and ∃b ∈ G with o(b) = n and a ∈ G,
o(a) = 2 and aba = b−1. Then G ∼= D2n. Note ⟨b⟩ ⊴ G since of index 2. Also a ̸∈ ⟨b⟩,
since ab ̸= ba. So G = ⟨b⟩ ∪ ⟨b⟩a = {e, b, . . . , bn−1, a, ba, . . . , bn−1a}. Furthermore

ab = b−1a

=⇒ abk = (ab)bk−1

= b−1abk−1

= b−2abk−2

= · · ·
= b−ka

So, (bka)(bka) = bkb−kaa = e. We can check that

θ : D2n → G

r 7→ b

t 7→ a

is an isomorphism.

• |G| = 1, G = {e}.

• |G| = 2 =⇒ G ∼= C2 (by Lagrange’s Theorem)

• |G| = 3 =⇒ G ∼= C3

• |G| = 4, by Lagrange’s Theorem, 1 ̸= g ∈ G then o(g) | 4. If ∃g ∈ G with o(g) = 4
then this implies G ∼= C4. Suppose not. Let 1 ̸= a ∈ G =⇒ o(a) = 2. Then by
sheet 1 q7, G is abelian, so C2

∼= ⟨a⟩ ⊴ G. Now let b ∈ G \ ⟨a⟩, then C2
∼= ⟨b⟩ ⊴ G.

Also, ⟨a⟩ ∩ ⟨b⟩ = {e}. Now consider ab:

– if ab = e =⇒ a = b−1 = b ××××
– if ab = a =⇒ b = e ××××
– if ab = b =⇒ a = e ××××

So,

G = {e, a, b, ab}
= ⟨a⟩⟨b⟩
∼= ⟨a⟩ × ⟨b⟩
∼= C2 × C2

Two groups of order 4: C4 and C2 × C2, both of which are abelian.
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• |G| = 5 =⇒ G ∼= C5 by Lagrange’s Theorem.

• |G| = 6 then 1 ̸= g ∈ G =⇒ o(g) ∈ {2, 3, 6} by Lagrange. If all non-identity
elements have order 2 then |G| is a 2-power, ×××× . So there exists b ∈ G such
that o(b) = 3 (Note if o(g) = 6 then o(g2) = 3). Therefore C3

∼= ⟨b⟩ ⊴ G
since of index 2. Let a ∈ G \ ⟨b⟩. Hence a2 ∈ ⟨b⟩. (Consider a⟨b⟩ ∈ G/⟨b⟩).
If a2 = b or b2 then o(a) = 6 =⇒ G ∼= C6. Now suppose a2 = e. Also
aba−1 ∈ ⟨b⟩. If aba−1 = e then b = e which is a contradiction. If aba−1 = b then
ab = ba =⇒ o(ab) = 6 =⇒ G ∼= C2. If aba

−1 = b2, then in other words we have
aba−1 = b−1, so G = ⟨a, b : a2 = b3 = e, aba−1 = b−1⟩ ∼= D6. So there are two
groups of order 6, they are C6 and D6

∼= S3. Note C6 ̸∼= D6 as C6 is abelian and
D6 is not.

• |G| = 7 =⇒ G ∼= C7.

• |G| = 8. By Lagrange, if 1 ̸= g ∈ G then o(g) ∈ {2, 4, 8}. If all non-identity
elements have order 2 and hence G is abelian. Let 1 ̸= a ∈ G, C2

∼= ⟨a⟩ ⊴ G.
Choose b ̸∈ ⟨a⟩,

⟨a, b⟩ = {1, a, b, ab}
= ⟨a⟩⟨b⟩ ∼= ⟨a⟩ × ⟨b⟩

Choose c ∈ G \ ⟨a, b⟩. Then

G = ⟨a, b⟩ ∪ ⟨a, b⟩c
= ⟨a, b⟩⟨c⟩
∼= ⟨a, b⟩ × ⟨c⟩
∼= ⟨a⟩ × ⟨b⟩ × ⟨c⟩
∼= C2 × C2 × C2

Now suppose ∃g ∈ G such that o(g) > 2 =⇒ ∃a ∈ G, o(a) = 4 =⇒ C4
∼= ⟨a⟩ ⊴

G. Let b ∈ G \ ⟨c⟩ =⇒ b2 ∈ ⟨a⟩. If b2 ∈ {a, a3} =⇒ o(b) = 8 =⇒ G ∼= C8. Now,
bab−1 ∈ ⟨a⟩ (since ⟨a⟩G), so bab−1 = ai for some i. This implies

b2ab−2 = baib−1

= (bab−1)i

= ai
2

But b2 ∈ ⟨a⟩ =⇒ b2ab−2 = a. Hence i2 ≡ 1 (mod 4) =⇒ i ≡ ±1 (mod 4). If
bab−1 = a =⇒ ba = ab so G is abelian. If b2 = e then

G = ⟨a⟩ ∪ ⟨a⟩b
= ⟨a⟩⟨b⟩
∼= ⟨a⟩ × ⟨b⟩
∼= C4 × C2
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if b2 = a2 then (ba−1)2 = e then

G ∼= ⟨a⟩ × ⟨ba−1⟩
∼= C4 × C2

Suppose bab−1 = a−1. Then if b2 = e then G ∼= D8. However if b
2 = a2; we have a

new group Q8, the quaternion group.

Definition (Quaternion Group). Q8 = {±1,±i,±j,±k} with ij = k, jk = i,
ki = j, ji = −k, kj = −i, ik = ij and i2 = j2 = k2 = −1. So o(i) = o(j) =
o(k) = 4 and o(−1) = 2. Another way to define the group is:

{±
(
1 0
0 1

)
,±

(
i 0
0 −i

)
,±

(
0 i
i 0

)
,±

(
0 −1
1 0

)
} ≤ SL2(C).

alternatively,
Q8 = ⟨a, b | a4 = e, b2 = a2, bab−1 = a−1⟩.

So 5 isomorphism classes of groups of order 8:

C8, C4 × C2, C2 × C2 × C2︸ ︷︷ ︸
abelian

all different, because

– C8 has an element of order 8;

– C4 × C2 does not have an element of order 4;

– C2 × C2 × C2 has all elements order 2.

and D8 and Q8 are non-abelian so must be different to these 3. Q8 has 6 elements
of order 4, but D8 only has 2, so these are non-isomorphic.

• |G| = 9. We will show later that groups of order p2 with p prime are abelian.
Either G ∼= C9 or all non-identity elements have order 3. Choose e ̸= a ∈ G,
b ∈ G \ ⟨a⟩, then

G = ⟨a⟩ ∪ ⟨a⟩b ∪ ⟨a⟩b2

= ⟨a⟩⟨b⟩
∼= ⟨a⟩ × ⟨b⟩
∼= C3 × C3

• |G| = 10, must be either C10 or D10 (question 12, sheet 2)

Remark. There are lots and lots of groups of order 2k; there are about 10 of order
16, and about 5× 1010 of order 210.
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6 Group Actions

It’s often easier to understand a group if it’s doing something, permuting elements,
rotating a square etc.

Definition 23 (16). Let G be a group and X a non-empty set. We say that G acts
on X if there is a mapping

ρ : G×X → X (g, x) 7→ ρ(g, x) = g(x)

such that

(0) if g ∈ G, x ∈ X, then ρ(g, x) = g(x) ∈ X (implied by notation ρ : G×X → X)

(i) ρ(gh, x) = ρ(g, ρ(h, x)) (in shorthand, gh(x) = g(h(x)))

(ii) ρ(e, x) = x (in shorthand, e(x) = x)

Examples

(i) trivial action ρ(g, x) = x∀x ∈ X, g ∈ G.

(ii) Sn acts on the set {1, 2, . . . , n} = X by permuting the elements of X. For example,
S3 acts on {1, 2, 3}:

σ = (1 2) ∈ S3 : σ(1) = 2, σ(2) = 1, σ(3) = 3

τ = (1 3) ∈ S3

τσ = (1 3)(1 2) = (1 2 3)

(τσ)(1) = 2 = τ(2) = τ(σ(1))

Similarly subgroups of Sn act on X.

(iii) D8 = {e, r, r2, r3, t, rt, r2t, r3t} acts on edges of a square

a

b

c

d t

r
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t(a) = c, t(c) = a, t(b) = b, t(d) = d, s(a) = b, . . .

Also acts on the vertices of a square

1 2

34

t

r

t(1) = 3, t(4) = 1, t(2) = 3, t(3) = 2

(iv) G acts on itself by left multiplication. This is called the left regular action.

G× → G (g, k) 7→ gk

Check:

(0) gk ∈ G by closure

(i) ρ(gh, k) = ghk, ρ(g, ρ(h, k)) = ρ(g, hk) = ghk. Or, in shorthand (gh)k = ghk,
g(h(k)) = g(hk) = ghk.

(ii) ρ(e, k) = ek = k.

We also have the right regular action

G×G→ G (g, k) 7→ kg−1

(v) G acts on itself by conjugation

G×G→ G

Check:

(0) gkg−1 ∈ G

(i) ρ(gh, k) = (gh)k(gh)−1 = ghkh−1g−1 and ρ(g, ρ(h, k)) = ρ(g, hkh−1) =
g(hkh−1)g−1

(ii) ρ(e, k) = eke−1 = k.

(vi) Let N ⊴ G, then G acts on N by conjugation

G×N → N (g, n) 7→ gng−1

(0) gng−1 ∈ N since N ⊴ G.

44



(i) as above

(ii) as above

(vii) Let H ≤ G, then G acts on the set of left cosets, (G : H), of H in G. Called the
left coset action

G× (G : H) → (G : H) (g, kH) 7→ (gkH)

(0) gkH ∈ (G : H)

(i) ρ(gh, kH) = (gh)kH = ghkH and ρ(g, ρ(h, kH)) = ρ(g, hkH) = ghkH

(ii) ρ(e, kH) = ekH = kH.

Remark. Recall a permutation of a set X is a bijection of X. We have commented
that a bijection f : X → X has a 2-sided inverse, i.e. there exists g : X → X such
that

f ◦ g(x) = x = g ◦ f(x) ∀x ∈ X

Conversely, if f : X → X is a map with a 2-sided inverse, then f is a bijection:

f ◦ g(x) = x ∀x ∈ X =⇒ surjective

g ◦ f(x) = x ∀x ∈ X =⇒ injective

Note. 2-sided is necessary, because we can consider ϕ : Z → Z defined by x 7→ 2x
and ψZ → Z defined by 2x 7→ x and 2x+ 1 7→ 0. Then ψϕ = id but ϕψ ̸= id.

Lemma 16. Suppose the group G acts on the non-empty set X. Fix g ∈ G, then
θg : X → X defined by x 7→ ρ(g, x) = g(x) is a permutation of X, i.e. θg ∈ Sym(X).

Proof. Clearly θg is a map from X to X. We need to show θg is a bijection, enough to
show it has a 2-sided inverse.

θg−1 ◦ θg(x) = θg−1(ρ(g, x))

= ρ(g−1(ρ(g, x)))

= ρ(g−1g, x) since ρ group action

= ρ(e, x)

= x ∀x ∈ X

Similarly,
θg ◦ θg−1(c) = x ∀x ∈ X
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Proposition 5 (6). Suppose G acts on the set X. Then the map

θ : G→ Sym(X) g 7→ θg

as in Lemma 16, is a homomorphism.

Proof. We need to show θ is a homomorphism, i.e. we need

θ(gh) = θ(g) ◦ θ(h)

i.e.
θgh = θg ◦ θh.

Let x ∈ X, then

θgh(x) = ρ(gh, x)

= ρ(g, ρ(h, x))

= θg ◦ θh(x)

True ∀x ∈ X, so done.

Remark. Proposition 6 gives us an equivalent definition of a group action. If G is
a group and X a set such that θ : g → Sym(X) is a group homomorphism, then
ρ : G×X → X defined by (g, x) 7→ θg(x) where θ(g) = θg, is a group action.

Remark. Using notation of proposition 6, by first Isomorphism Theorem,

G/Ker θ ∼= Im θ ≤ Sym(X)

Note

Ker θ = {g ∈ G : θ(g) = idX ∈ Sym(X)}
= {g ∈ G : θg(x) = ρ(g, x) = x∀x}
⊴ G

i.e. all those elements that fix every element of X, that act ‘trivially’. We say the
action is faithful if Ker θ = {e}.

Examples of Kernels

(i) Trivial action - Ker θ = G.

(ii) Sn acts on {1, . . . , n} - faithful
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(iii) D8 acts on edges - faithful

(iv) Left regular action - faithful

(v) Conjugation

Ker θ = {g ∈ G : gkg−1 = k∀k ∈ G}
= z(G)

where z(G) is the centre of G. ‘the elements that commute with everything’

(vi) conjugation on N ⊴ G

Ker θ = {g ∈ G : gng−1 = n∀n ∈ N}
= CG(N)

where CG(N) is the centraliser of N in G.

(vii) Left coset action

Ker θ = {g ∈ G : gkH = kH∀k ∈ G}
= {g ∈ G : k−1gk ∈ H∀k ∈ G}
= {g ∈ G : g ∈ kHk−1∀k ∈ G}

=
⋂
k∈G

kHk−1

= CoreG(H)

⊴ G

≤ H

Note. If Ker θ = {e} then G is isomorphic to a subgroup of Sym(X), we write
G ≲ Sym(X). So if |G| does not divide |Sym(X)| then Ker θ ̸= {e}.

Theorem 7 (Cayley’s Theorem). Any group G is isomorphic to a subgroup of
Sym(X) for some non-empty set X.

Proof. We take X to be G and consider the left regular action G × G → G defined by
(g, h) 7→ gh. This is a faithful action as gh = h ∀h ∈ G =⇒ g = e. Thus we have an
injective homomorphism

θ : G 7→ Sym(G)

and G ≲ Sym(G) as required.
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Definition 24 (17). Let G act on a set X and x ∈ X. The orbit of x ∈ X is given
by

OrbG(x) = {g(x) : g ∈ G} ⊆ X

i.e. the set of points in X which x can be mapped to.

Examples

(i) trivial action, OrbG(x) = {x}.

(ii) Sn acts on {1, 2, . . . , n} = X, OrbG(1) = X. If H = ⟨(1 2)(3 4 5)⟩ acting on
X = {1, 2, 3, 4, 5} then

OrbG(1) = {1, 2}

OrbG(3) = {3, 4, 5}.

(iii) D8 on :
a

b
c

d

OrbD8(a) = {a, b, c, d}.

(iv) left regular action
OrbG(k) = G

since g = g(k−1k) = (gk−1)k for any g ∈ G.

(v) conjugation

OrbG(k) = {g(k) : g ∈ G}
= {gkg−1 : g ∈ G}
= cclG(k)

conjugacy class of k in G. If h ∈ cclG(k) we say h and k are conjugate.

Definition 25 (18). We sayG acts transitively onX if for any x ∈ X, OrbG(x) = X.
Equivalently, if given any pair x1, x2 ∈ X ∃g ∈ G such that g(x1) = x2.

So, the left regular action is a transitive action.

Lemma 17. The distinct G-orbits form a partition of X.

Proof. Let x ∈ X, then x ∈ OrbG(x) since x = ex. Suppose z ∈ OrbG(x) ∩OrbG(y), we
show

OrbG(x) = OrbG(z) = OrbG(y).
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z ∈ OrbG(x) =⇒ ∃g ∈ G such that g(x) = z. Suppose t ∈ OrbG(x), then ∃h ∈ G
such that h(z) = t and hence t = h(g(x)) = (hg)(x). Therefore t ∈ OrbG(x) and hence
OrbG(z) ⊆ OrbG(x). Similarly g(x) = z

x = e(x) = (g−1g)(x) = g−1(z)

and hence OrbG(x) ⊆ OrbG(z). Thus OrbG(x) = OrbG(z). Similarly OrbG(z) =
OrbG(y).

Remarks

(i) We could have proved Lemma 17 by noting that x1 ∼ x2 if ∃g ∈ G such that
g(x1) = x2 is an equivalence relation.

(ii) OrbG(x) is G invariant, i.e.

g(OrbG(x)) ⊆ OrbG(x).

Since if y ∈ OrbG(x), then y = hx for some h ∈ G.

=⇒ g(y) = g(h(x))

= (gh)(x) ∈ OrbG(x)

(iii) G is transitive on OrbG(x). Let y, z ∈ OrbG(x), so y = g(x), z = h(x) for some
g, h ∈ G. Then

z = h(g−1(y))

Definition (19). Let G act on X and x ∈ X. The stabiliser of x in G is given by

StabG(x) = {g ∈ G : g(x) = x} ⊆ G.

i.e. all those elements in G that fix x.

Examples

(i) trivial action,
StabG(x) = G.

(ii) Sn on X = {1, 2, . . . , n}
StabG(1) ∼= Sn−1

H = ⟨(12)(345)⟩ on X

StabH(1) = ⟨(345)⟩
= {e, (345), (354)}
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(iii) D8 on edges of a square,
StabD8(e) = {e, t}

(iv) left regular action
StabG(k) = {e}

gk = k =⇒ g = e

(v) conjugation

StabG(k) = {g ∈ G : g(k) = k}
= {g ∈ G : gkg−1 = k}
= {g ∈ G : gk = kg}
= CG(k)

centraliser of k in G i.e. all elements of G that commute with k.

Lemma 18. StabG(x) is a subgroup of G.

Proof.

• e(x) = x =⇒ e ∈ StabG(x)

• if g, h ∈ StabG(x) then

(gh)(x) = g(h(x))

= g(x)

= x

=⇒ gh ∈ StabG(x)

• g ∈ StabG(x)
g(x) = x

x = e(x) = (g−1g(X) = g−1(gx) = g−1(x)

=⇒ g−1 ∈ StabG(x)

• associativity inherited from G.

Remark. Recall ϕ : G→ Sym(x)

Ker θ = {g ∈ G : g(x) = x ∀x ∈ X}
= ∩StabG(x)

50



Theorem 8 (Orbit-Stabiliser Theorem). Let G be a finite group acting on a non-
empty set X. Then Stabg(x) ≤ G and

|G| = |StabG(x)||Orb(x)|.

Remark. We actually prove that |G : StabG(x)|, the number of left cosets of
StabG(x) in G, is equal to |OrbG(x)|, a more general statement.

Proof. (G : StabG(x)) set of left cosets of StabG(x) in G. Consider the map

θ : OrbG(x) → (G : StabG(x) g(x) 7→ gStabG(x)

θ well-defined because:

g(x) = h(x) =⇒ h−1g(x) = x

=⇒ h−1g ∈ StabG(x)

=⇒ gStabG(x) = hStabG(x)

=⇒ θ(g(x)) = θ(h(x))

θ injective:

θ(g(x)) = θ(h(x))

=⇒ gStabG(x) = hStabG(x)

=⇒ h−1g ∈ StabG(x)

=⇒ h−1g(x) = x

=⇒ g(x) = h(x)

θ surjective:
Given gStabG(x) ∈ (G : StabG(x)) then g(x) ∈ OrbG(x) and

θ(g(x)) = gStabG(x).

Thus θ a well-defined bijection as required.

6.1 Applications to Symmetry Groups of Regular Solids

Let S be a regular solid and V its vertices. Then the symmetries of S are the isometries
(distance preserving maps) of R2 or R3 that maps S to itself.
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Examples of Symmetries

Example. (Tetrahedron)
This is self-duel. Let G be group of symmetries of T , and X = {vertices of T} =
{1, 2, 3, 4}.

T =

4

1

3

2

faces are 4

equilateral triangles

Then ∃ group homomorphism

ϕ : G→ Sym(X) ∼= S4

(Proposition 6). Note Ker ϕ = {e}, if all vertices fixed, then T fixed.
Consider G′ ≤ G subgroup of rotations.

4

1

3

2

rotation of 2π
3

3-cycle (2 3 4)

and 4π
3

(2 4 3)

4 such axes implies 8 rotations of order 3 (3-cycles).

3 such axes and identity
=⇒ G+ ∼= A4
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Now consider G (all symmetries). Clearly

OrbG(1) = {1, 2, 3, 4}
= OrbG+

Consider StabG(1). Note if 3 vertices are fixed then T fixed. Consider StabG(1). Note
if 3 Suppose vertices 1 and 2 are fixed.

If just 1 fixed have order 3 rotation from before = σ. This is everything

StabG(1) = ⟨σ, τ⟩
∼= D6

=⇒ |G| = |OrbG(1)||StabG(1)|
= 4× 6

= 24

=⇒ G ∼= S4

Note StabG+(1) = ⟨G⟩. Also (1234) = (12)(234).

Example. (Cube)
Dual to octahedron.
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LetG+ be group of rotations of C. ThenG+ acts on set of diagonalsX = {D1, D2, D3, D4}.
If a rotation σ fixes all diagonals, then σ = id. So we have an injective homomorphism

ϕ : G+ → Sym(C) ∼= S4

roatations: −id

3 such axes, hence 6 elements of order 4, 3 elements of order 2.

4 such axes, hence 8 elements of order 3.

6 such axes, i.e. G+ ∼= S4.
Note OrbG+(D1) = {D1, D2, D3, D4}

StabG+(D1) = ⟨σ, τ ′⟩
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or consider G+ acting on vertex 1

|OrbG+(1)| = 8

|StabG(1)| = |⟨ρ⟩| = 3

=⇒ |G+| = 24

Now consider full symmetry group of C, call it G. Consider action on faces F1, . . . ., F6.
Yields an injective homomorphism (faithful)

ϕ : G→ Sym{Fi} ∼= S6

|Orb(F1)| = 6

Stab(F1) ∼= D8

=⇒ |G| = 6× 8 = 48.

So, action on diagonals is not faithful;

∃g ∈ G g(Di) = D)i) i ≤ i ≤ 4

but g ̸= id. Label vertices of C as {(±1,±1,±1)}

g : (x, y, z) 7→ (−x,−y,−z)

if label faces of cube as a dice; 1 opposite 6, 2 opposite 5, 3 opposite 4 then

g = (16)(25)(34)

Then G ∼= F+×⟨g⟩. Then G+ ⊴ G (index 2) and ⟨g⟩ ⊴ G (commutes with all rotations)
and

G+ ∩ ⟨g⟩ = {e}

|G+⟨g⟩| = 48 = |G|.

Example. (Dodecahedron)
Dual to icosahedron. We denote by D. 12 regular pentagonal faces, 30 edges, 20 vertices.
Let G+ be the grou pof rotations of D. Let F be a face of D.

|OrbG+(F )| = 12

|StabG+(F )| = 5

=⇒ |G+| = 5× 12 = 60

There are five cubes embedded in D:
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G+ acts faithfully on cubes
=⇒ ϕ : G+ → S5

injective and |G+| = 60 hence G+ ∼= A5 (there is some work in the “hence” here but one
can do it with some determination). Can find elements of A5:

• rotations through opposite faces - 5 cycles. (6 axes, 4 elements per axis)

• rotation through opposite vertices - 3 cycles.

• rotation through opposite edges - double transpositions (15 such).

Another application of the Orbit Stabiliser Theorem:

Theorem 8 (Cauchy’s Theorem). Let G be a finite group and p a prime that divides
|G|. Then there exists an element in G of order p.

Proof. Let
X = {(x1, x2, . . . , xp) : x1, x2, . . . , xp = e, xi ∈ G}.

Let H = ⟨h : hp = e⟩ ∼= Cp act on X as follows:

H ×X → X (h, (x1, . . . , xp)) 7→ (x2, x3, . . . , xp, x1)

in general,
(hi, (x1, . . . , xp)) 7→ (x1+i, x2+i, . . . , xp+i)

where suffices are taken modulo p.
Check this is a group action:

(0) Since x1x2 · · ·xp = e, we have

x1x2 · · ·xp = (x1x2 · · ·xi)−1x1x2 · · ·xp(x1x2 · · ·xi)
= (x1x2 · · ·xi)−1e(x1x2 · · ·xi)
= e
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(i) We simply check that

hi+j = (x1+i+j , . . . , xp+i+j)

= hi(hj(x1, . . . , xp))

(ii) For identity, we heck that

e(x1, . . . , xp) = hp(x1, . . . , xp)

= (x1, . . . , xp)

Let
x = (x1, x2, . . . , xp) ∈ X.

As distinct orbits partition X (Lemma 17)

=⇒
∑

distinct
orbits

|OrbH(x)| = |X|

Note |X| = |G|p−1 (choose x1, . . . , xp−1 then xp determined)

=⇒ p
∣∣ |X|

=⇒ p
∣∣LHS

But by Orbit Stabiliser Theorem:

|OrbH(x)|
∣∣ |H| = p

=⇒ |OrbH(x)| = 1 or p

Now,
e = (e, e, . . . , e) ∈ X |OrbH(e)| = 1.

So there exists at least p − 1 other orbits of length 1. So there exists x ∈ X with
OrbH(x) = 1

=⇒ X = (x, x, . . . , x)

so x ̸= e and xp = e.

6.2 Conjugacy Action

Reminder of the definition of conjugation:

G×G→ G (g, h) 7→ ghg−1.

orbits are called conjugacy classes:

cclG(h) = {ghg−1 : g ∈ G}.

Stabilisers are called centralisers:

CG(h) = {g ∈ G : ghg−1 = h}.
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Remarks

(i) By Lemma 17 the conjugacy classes partition G.

(ii) By Orbit Stabiliser Theorem, h ∈ G

|G| = |CG(h)||cclG(h)|.

In particular,
|cclG|

∣∣ |G|.
(iii) If k ∈ cclG(h) then o(k) = o(h). Since k = ghg−1 for some g ∈ G,

ko(h) = (ghg−1)o(h)

= gho(h)g−1

= e

=⇒ o(k) | o(h)

Similarly, h = g−1kg hence o(h) | o(k), so o(h) = o(k) as desired.

(iv) Recall

Z(G) = {g ∈ G : gh = hg ∀h ∈ G}
⊴ G

And,

Z(G) =
⋂
h∈G

CG(h)

Note, z ∈ Z(G) if and only if |cclG(z)| = 1. If z ∈ Z(G)

=⇒ cclG(z) = {gzg−1 : g ∈ G} = {z : g ∈ G} = {z}.

If |cclG(z)| = 1 then note
z = eze−1 ∈ cclG(z).

So gzg−1 = z ∀g ∈ G.

(v) Let H ≤ G, then H is normal if and only if it is a union of conjugacy classes.
(Sheet 3 question 3)

(vi) G abelian if and only if G = Z(G).

Proposition 7. Let p a prime and G a group of order pn. Then Z(G) is nontrivial,
i.e. Z(G) ⪈ {e}.
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Proof. Let G act on G by conjugation. Then the conjugacy classes of G partition it by
Lemma 17:

G =
⋃

distinct
conjugacy
classes

cclG(x)

By Orbit Stabiliser Theorem
|cclG(x)|

∣∣ |G| = pn.

Either |cclG(x) = 1 or p
∣∣ cclG(x). So by (iv) above

|G| =
∑

x∈Z(G)

|cclG(x)|+
∑

distinct
conjugacy
classes
with

p
∣∣ cclG(x)

|cclG(x)|

Now p | LHS so p | RHS

=⇒ p

∣∣∣∣∣ ∑
z∈Z(G)

|cclG(x)| = |Z(G)|.

But e ∈ Z(G), hence we must have |Z(G)| ≥ p > 1, as desired.

Lemma 19. Let G be a finite group and Z(G) the centre of G. If G/Z(G) is cyclic
then G is abelian.

Proof. Let Z = Z(G). Since G/Z is cyclic, G/Z = ⟨yZ⟩ for some y ∈ G. Let g, h ∈ G.
Then gZ = yiZ for some i, so g = ziz1 for some z1 ∈ Z. Similarly, hZ = yjZ for some
j, so g = zjz2 for some z2 ∈ Z. Now,

gh = yiz1y
jz2

= yiyjz1z2 z1 ∈ Z

= yjyiz2z1

= yjz2y
iz1

= hg

so G is abelian as required.

Corollary 5. Suppose |G| = p2 for some prime p. Then G is abelian and there are,
up to isomorphism, just two groups of order p2, namely Cp × Cp and Cp2 .

Proof. (Sheet 3 Question 10)
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Remark

(i) A group of order pn for a prime p is called a finite p-group.

(ii) If all elements have p-power order G is called a p-group. For example Cp∞ (Prüfer
group).

Conjugation in Sn

Definition 20. Let σ ∈ Sn and write σ as a product of disjoint cycles including
1-cycles. Then the cycle-type of σ is (n1, n2, . . . , nk) where n1 ≥ n2 ≥ · · · ≥ nk ≥ 1
and the cycles in σ have length ni. Note n = n1 + n2 + · · ·+ nk. For example

(1234)(567) = (1234)(567(8) ∈ S8

has cycle type (4, 3, 1), and e ∈ S5 has cycle type (1, 1, 1, 1, 1).

Theorem 9. The permutations π and σ in Sn are conjugate in Sn if and only if
they have the same cycle type.

Proof. Suppose σ has cycle type (n1, n2, . . . , nk). Write

σ = (a11a12 . . . a1n1)(a21a22 . . . a2n2) · · · (ak1ak2 . . . aknk
).

Let τ ∈ Sn. Then

τστ−1(τ(aij)) = τσ(aij)

=

{
τ(aij) j < ni

τ(aii) j = ni

Thus 2 permutations of the same cycle type are conjugate.
For example,

(14)(123)(14)−1 = (423)

(1l)(1k)(1l) = (lk).

Consider S4: let x ∈ S4. Recall 24 = |S4| = |cclS4(x)||CS4(x)| by Orbit-Stabiliser
Theorem.

example member x cycle type size sign |CS4(x)| CS4(x)

e (1, 1, 1, 1) 1 1 24 S4
(12)(3)(4) (2, 1, 1) 6 −1 4 ⟨(12), (34)⟩ ∼= C2 × C2

(123)(4) (3, 1) 8 1 3 ⟨(123)⟩ ∼= C3

(12)(34) (2, 2) 3 1 8 ⟨(1234), (12)⟩ ∼= D8

(1234) (4) 6 −1 4 ⟨(1234)⟩ ∼= C4
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Corollary 6. The number of distinct conjugacy classes of Sn is given by p(n),
the number of partitions of n into positive integers, i.e. n = n1 + · · · + nk with
n1 ≥ n2 ≥ · · · ≥ nk ≥ 1.

However in An conjugation is less clear. Certainly

cclAn(x) = {gxg−1 : g ∈ An} ⊆ {gxg−1 : g ∈ Sn} = cclSn(x)

since An ≤ Sn.
So if two elements are conjugate in An they have the same cycle type. But having
the same cycle type in An does not guarantee being conjugate. For example (123) not
conjugate to (132) in A4. If τ(123)τ−1 = (132) then τ = (12), or (32) or (13), none of
which are in A4.

Or consider CA4((123)) = CS4((123)) ∩A4. For example

CS4((123)) = ⟨(123)⟩ ≤ A4

So, CA4((123)) = CS4((123))

=⇒ |ccl((123))| = |A4|
|CA4((123))|

=
|S4|/2

|CS4((123))|
=

|cclS4((123))|
2

So the conjugacy of 8 3-cycles in S4 splits into 2 conjugacy classes in A4.

Key point: let x ∈ An. If CAn(x) = C5n(x)

=⇒ |cclAn(x)| =
|cclSn(x)|

2
.

If CAn(x) ≤ CSn(x), then CSn(x) contains an odd permutation and

|CAn(x)| = |CSn(x) ∩An| =
|CSn(x)|

2

(Sheet 2, Q4)
=⇒ |cclAn(x)| = |cclSn(x)|.

example member x cycle type CA4(x) size of conj class

e (1, 1, 1, 1) A4 1
(123) (3, 1) ⟨(123)⟩ 4
(132) (3, 1) ⟨(132)⟩ 4

(12)(34) (2, 2) {e, (12)(34), (13)(24), (14)(23)} ∼= C2 × C2 3
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Remark. The number of elements in Sn with kl cycles of length l is given by

n!∏
l kl!l

kl

Think of cycles as trays, put in elements of X = {1, 2, . . . , n}. This gives n! options,
but we’ve overcounted. Each cycle of length l can be written l ways, this gives lkl

factor. Also kl cycles of length l can be permuted kl! ways.

Let us consider S5 (note |S5| = 120).

Example member x Cycle type # sgn |CS5(x)| CS5(x)

e (1, 1, 1, 1, 1) 1 1 120 S5
(12) (2, 1, 1, 1) 10 -1 12 ⟨(12)⟩ × Sym{3, 4, 5} ∼= C2 × S3

(12)(34) (2, 2, 1) 15 1 8 ⟨(1324), (12)⟩ ∼= D8

(123) (3, 1, 1) 20 1 6 ⟨(123), (45)⟩ ∼= C6

(123)(45) (32) 20 -1 6 ⟨(123), (45)⟩ ∼= C6

(1234) (4, 1) 30 -1 4 ⟨(1234)⟩ ∼= C4

(12345) (5) 24 1 5 ⟨(12345)⟩ ∼= C5

Now consider A5 (note |A5| = 60).

Example member x Cycle type CA5(x) |cclA5(x)|
e (1, 1, 1, 1, 1) A5 1

(12)(34) (2, 2, 1) ⟨(12)(34), (13)(24)⟩ 15
(123) (3, 1, 1) ⟨(123)⟩ 20

(12345) (5) ⟨(12345)⟩ 12
(21345) (5) ⟨(21345)⟩ 12

Recall a group is simple if it has no non-trivial proper normal subgroups, i.e. if only
normal subgroups are {e} and G.

Theorem 10. A5 is a simple group.

Proof. Suppose N ⊴ A5. Then N is a union of conjugacy classes (Sheet 3, question
3(a)). Hence

|N | = 1 + 15a+ 20b+ 12c

where b, a ∈ {0, 1} and c ∈ {0, 1, 2}. But by Lagrange’s Theorem, |N |
∣∣ |A5| = 60. Only

possibility is |N | = 1 or |N | = 60.
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Comments

(i) A5 is the smallest non-abelian simple group.

(ii) An simple ∀n ≥ 5 (GRM). But A4 is not simple.

(iii) Classification of finite simple groups exists, includes infinite families.

• Cp for p prime (only abelian simple groups).

• An with n ≥ 5.

• groups of ‘Lie type’ (matrix groups)

• 26 sporadic groups (including the monster and baby monster)

Aside

For example, number of cycles in S5 of type (• •)(• •) so k2 = 2, k1 = 1.

# =
q5!

2!w2 · 1! · 1
= 15

For (• • •)(• •) we have k3 = 1, k2 = 1

# =
5!

1!311!21
= 20.
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7 Matrix Groups

Let Mn(R) denote the set of all n× n matrices with entries in R. Define

GLn(R) = {A ∈Mn(R) : detA ̸= 0}

Proposition 8. GLn(R) is a group under matrix multiplication. It is called the
general linear group.

Proof. Closure: A,B ∈ GLn(R) clearly AB ∈Mn(R) and det(AB) = detAdetB ̸= 0 so
AB ∈ GLn(R).
Identity:

In =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 ∈ GLn(R)

Inverse: detA ̸= 0 implies A−1 exists and det(A−1) = 1
detA ̸= 0.

Associative:

(A(BC))ij = Aix(BC)xj

= AixBxtCtj

((AB)C)ij = (AB)ixCxj

= AitBtxCxj

Example. We have that

GL2(R) =
{(

a b
c d

)
: a, b, c, d ∈ R, ad− bc ̸= 0

}
and we have (

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)

Proposition 9.

det : GLn(R) → (R \ {0},×) A 7→ detA

is a surjective group homomorphism.
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Proof. Note (R \ {0},×) is a group. Determinant is clearly a map to (R \ {0},×). Need
to check it’s a group homomorphism

det(AB) = detA · detB

And we need to show that it is surjective, which follows because given r ∈ (R \ {0},×),
let

A =


r 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 ∈ GLn(R)

and notice that detA = r.
By First Isomorphism Theorem

Ker(det) ⊴ GLn(R)

and we can find that

Ker(det) = {A ∈ GLn(R) : detA = 1}
= SLn(R)

This is known as the special linear group. Furthermore, by First Isomorphism Theorem

GLn(R)/SLn(R) ∼= (R \ {0},×).

Remark. More generally we can define the general linear group and special linear
group over any field. Examples of fields: R, C, Q, Fp where

Fp = ({0, 1, 2, . . . , p− 1},+p,×p)

for some prime p. Note that GLn(Fp) and SLn(Fp) are finite groups.

What is |GL3(Fp)|? Non-zero determinant means we need linearly independent columns.
So the number of choices for first column is p3 − 1 (any choice is fine except (0, 0, 0)).
Second column is not a multiple of first, so number of choices for second column is p3−p.
(Note that the zero vector is a multiple of the first column). Third column not in space
spanned by first two columns, this space has size p2 (consider αc1 + βc2, α, β ∈ Fp). So
number of choices for third column is p3 − p2. So

|GL3(Fp)| = (p3 − 1)(p2 − p)(p3 − p2)

We can still consider

det : GL3(Fp) → (Fp \ {0},×) A 7→ detA
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Note (Fp \ {0},×) is a group.
Proof. Closure, identity and associativity can all easily be verified. Let a ∈ Fp \ {0},
by Bezout’s Theorem, there exists x, y such that ax + py = 1. Then we have ax ≡ 1
(mod p). Choose x ≡ x (mod p) with 1 ≤ x ≤ p− 1. So a−1 ≡ x.

Determinant is a surjective homomorphism to (Fp \ {0},×) so by First Isomorphism
Theorem:

|GL3(Fp)|/|SL2(Fp)| = p− 1

=⇒ |SL3(Fp)| =
(p3 − 1)(p2 − p)(p3 − p2)

p− 1

Actions of GLn(C)

(i) Let Cn denote vectors of length n with entries in C:

GLn(C)× Cn → Cn (A,v) 7→ Av

Note Iv = v, (AB)v = A(B(v)). This action is faithful:

Av = v ∀v ∈ Cn =⇒ A = In

(consider multiplying A by (1, 0, . . . , 0), (0, 1, . . . , 0) etc) The action has two orbits:

OrbGLn(C)(0) = {0} 0 =


0
0
...
0


and for v ̸= 0 we have:

OrbGLn(C)(v) = Cn \ {0}

because given w ̸= 0 there exists A ∈ GLn(C) such that Av = w.

(ii) Conjugation action of GLn(C) on Mn(C)

GLn(C)×Mn(C) →Mn(C) (P,A) 7→ PAP−1

Note:

PQ(A) = PQA(PQ)−1

= PQAQ−1P−1

= P (Q(A))
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Remark. Matrices A and B are conjugate if they represent the same linear map.
If PAP−1 = B, then P represents a change of basis matrix (see linear algebra next
year). For example

e1 =

(
1
0

)
e2 =

(
0
1

)
A : e1 7→ 2e1 e2 7→ 3e2

A =

(
2 0
0 3

)
Let

P : e1 7→ e2, e2 7→ e1

change of basis

P =

(
0 1
1 0

)
= p−1

Then

PAP−1 =

(
0 1
1 0

)(
2 0
0 3

)(
0 1
1 0

)
=

(
0 3
2 0

)(
0 1
1 0

)
=

(
3 0
0 2

)
i.e. e2 7→ 3e2 and e1 7→ 2e1. We will use the following result from Vectors and
Matrices when investigating Möbius groups.
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Result. Let A ∈ M2(C) and consider conjugation action of GL2(C) on M2(C).
Then precisely one of the following occurs:

(i) the orbit of A contains a diagonal matrix(
λ 0
0 µ

)
with λ ̸= µ.

(ii) the orbit of A is (
λ 0
0 λ

)
= λI

for some λ.

(iii) the orbit of A contains a matrix (
λ 1
0 λ

)
for some λ.

Proof. See Vectors and Matrices but essentially

(i) In this case A has 2 distinct eigenvalues λ ̸= µ, take a basis consisting of an
eigenvector for λ and an eigenvector for µ. Distinct pairs give distinct orbits.

(ii) A = λI, eigenvalues λ, λ, 2 linearly independent eigenvectors.

(iii) In this case A has a repeated eigenvalue, but just one linearly independent eigen-
vector.

Recall if A ∈ M(R), A⊤ is defined by (A⊤)ij = Aji, i.e. the ij-th entry of A⊤ is ji-th
entry of A:

A =

(
2 4
3 5

)
A⊤ =

(
2 3
4 5

)
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Note. (i) We have (AB)⊤ = B⊤A⊤ because

[(AB)⊤]ij = (AB)ji = AjkBki

[B⊤A⊤]ij = B⊤
ikA

⊤
kj = BkiAjk

(ii) AA⊤ = I ⇐⇒ A⊤A = I and hence

A⊤A = A−1AA⊤A = A−1A = I

(iii) (A⊤)−1 = (A−1)⊤ since

In = (AA−1)⊤

= (A−1)⊤A⊤

(iv) det(A⊤) = detA.

On(R) = {A ∈Mn(R) : A⊤A = I}
(So columns of A form an orthonormal basis for Rn).

Proposition 10. On(R) is a subgroup of GLn(R) called the orthogonal group.

Proof.

1 = det(A⊤A)

= det(A⊤) det(A)

= (detA)2

=⇒ detA

̸= 0

Hence On(R) is a subset of GLn(R); associativity is inherited.

• In =

1 · · · 0
...

. . .
...

0 · · · 1

 ∈ On(R)

• closure: A,B ∈ On(R),

(AB)⊤(AB) = B⊤A⊤AB

= B⊤B

= I

=⇒ B ∈ On(R)
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• inverse: A⊤A = In =⇒ A⊤ = A−1 and A⊤ ∈ On(R) since (A⊤)⊤ = A and
AA⊤ = I.

Note 1 = (detA)2 =⇒ detA = ±1 if A ∈ On(R). So, Det : On(R) → ({±1},×),
A 7→ detA is a surjective homomorphism, as

−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ On(R)

So
Ker(Det) = {A ∈ On(R) : detA = 1} = SOn(R) ⊴ On(R)

By First Isomorphism Theorem:

On(R)/SOn(R) ∼= C2

Lemma 20. Let A ∈ On(R) and x,y ∈ Rn. Then

(i) Ax ·Ay = x · y

(ii) |Ax| = |x|

So A is an isometry (distance preserving map) of Euclidean space Rn.

Proof.

(i) Ax ·Ay = (Ax)⊤(Ay)

= x⊤A⊤Ay

= x⊤y

= x · y

(ii)
|Ax|2 = Ax ·Ax = x · x = |x|2

Note by (ii) if λ an eigenvalue of A, then Ax = λx

=⇒ |λx| = |x|

i.e. |λ| = 1.
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In 2 dimensions

Let

A =

(
a b
c d

)
∈ GL2(R)

I = AA⊤ =

(
a b
c d

)(
a c
b d

)
=⇒ 1 = a2 + b2 = c2 + d2

0 = ac+ bd.

I = A⊤A =

(
a c
b d

)(
a b
c d

)
=⇒ 1 = a2 + c2 = b2 + d2

0 = ab+ cd

For 0 ≤ θ < 2π let (
a
c

)
=

(
cos θ
sin θ

)
so

(
b
d

)
= ±

(
− sin θ
cos θ

)
First case:

A =

(
cos θ − sin θ
sin θ cos θ

)
detA = 1

A

(
x
y

)
=

(
cos θx − sin θy
sin θx cos θy

)
A represents a rotation.
Let z = x+ iy then

eiθz = (cos θx− sin θy) + i(sin θx+ cos θy)

All elements of SO2(R) are of this form.

Second case

A =

(
cos θ sin θ
sin θ − cos θ

)
detA = −1

A

(
x
y

)
=

(
cos θx sin θy
sin θx − cos θy

)
eiθz = (cos θx+ sin θy) + i(sin θx− cos θy)
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What are the fixed points?

z = eiθz ⇐⇒ e−θ/2z = eiθ/2z

⇐⇒ e−iθ/2z = t ∈ R

⇐⇒ z = eiθ/2t

hence a reflection in line teiθ/2.
All elements of O2(R) \ SO2(R) are of this form.

So,

O2(R) = SO2(R) ∪
(
1 0
0 −1

)
SO2(R)

Note any element of O2(R) is a product of at most two reflections. Since if A ∈ SO2(R)
then

A =

(
A

(
1 0
0 −1

))(
1 0
0 −1

)
3 dimensions

Proposition 11. Let A ∈ SO3(R). Then A has an eigenvector with eigenvalue 1.

Proof.

det(A− I) = det(A−AA⊤)

= detAdet(I −A⊤)

= det((I −A)⊤)

= det(I −A)

= (−1)3 det(A− I)

= −det(A− I)

hence det(A− I) = 0 and A has eigenvalue 1.
Alternatively consider χA(x) the characteristic polynomial of A, it is a cubic in R. Thus
has a real root, λ = 1 or λ = −1. But the other eigenvalues are either a complex
conjugate pair, then λ = 1 or all are real either 1,−1,−1 or 1, 1, 1.

Theorem 11. Let A ∈ SO3(R) then A Is conjugate to a matrix of the formcos θ − sin θ 0
sin θ cos θ 0
0 0 1


for some θ ∈ [0, 2π]. In particular, A is a rotation round an axis through the origin.
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Proof. By proposition 11, there is a v ∈ R3 with Av = v, and we can assume |v| = 1.
Let {e1, e2, e3} be the standard orthonormal basis for R3. There exists P ∈ SO3(R) such
that Pv = e3. So PAP

−1(e3) = e3 and for π plane perpendicular to e3 then PAP−1(π)
perpendicular to e3. So,

detPAP−1 = detA = 1, so detQ = 1, Q⊤Q = I. So

Q =

(
cos θ − sin θ
sin θ cos θ

)
for some θ as required.
Suppose r is a reflection in a plane π through 0. Let n be unit vector perpendicular to
π. Then

r(x) = x− 2(x · n)n

n 7→ −n

π fixed. So r is conjugate to −1 0 0
0 1 0
0 0 1

 ∈ O3(R)

O3(R) = SO3(R) ∪

−1 0 0
0 1 0
0 0 1

 SO3(R)

Theorem 13. Any element of O3(R) is a product of at most 3 reflections.

Proof. Let {e1, e2, e3} be standard orthonormal basis for R3. Let A ∈ O3(R). Then

|Ae3| = |e3| = 1,

since A is an isometry. So there exists a reflection r1 such that

r1A(e3) = e3.

Let π = ⟨e1, e2⟩ (the plane perpendicular to e3). Then r1A(π) = π. There exists a
reflection r2 such that

r2(e3) = e3, r2(r1A(e2)) = e2.
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So r2r1A fixes e2 and e3. So r2r1A(e1) = ±e1. If e1 = e1, set r3 = id. If e1 = −e1, let
r3 be reflection in plane perpendicular to e1. So r3r2r1A fixes e1, e2, e3, so

r3r2r1A = id

=⇒ A = r−1
1 r−1

2 r−1
3 = r1r2r3.

Alternatively, any element in S02(R) is a product of at most 2 reflections, via 2-dimensional
case. Thus any element of −1 0 0

0 1 0
0 0 1

 SO3(R)

is a product of at most 3 reflections. Note we do need 3, for example consider−1 0 0
0 −1 0
0 0 −1
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8 Möbius Groups

A Möbius transformation (or map) is a function of a complex variable z that can be
written in the form

f(z) =
az + b

cz + d

for some a, b, c, d ∈ C with ad− bc ̸= 0. Why ad− bc ̸= 0?

f(z)− f(w) =
(ad− bc)(z − w)

(cz + d)(cw + d)
.

So, ad− bc = 0 implies f constant (not interesting), and ad− bc ̸= 0 implies f injective.
When does f(z) = g(z)?
Suppose there exists at least 3 values of z in C such that

az + b

cz + d
=
αz + β

γz + δ

ad− bc ̸= 0, αδ − βγ ̸= 0. Then there exists λ ̸= 0, λ ∈ C such that(
α β
γ δ

)
= λ

(
a b
c d

)
Since, we have 3 distinct values of z for which

(az + b)(γz + δ) = (αz + β)(cz + d)

so these quadratics are identical. Hence

aγ = αc, bδ = βd

aδ + bγ = αd+ βc

Let µ = aδ − βc = αd− bγ (so µ2 = (ad− bc)(αδ − βγ) ̸= 0). Then(
d −b
−c a

)(
α β
γ δ

)
=

(
µ 0
0 µ

)

=⇒
(
α β
γ δ

)
=

µ

ad− bc

(
a b
c d

)

Problem: f is not defined at z = −d
c . We would like f

(
−d

c

)
= ∞. We consider f defined

on C ∪ {∞} = C∞, the extended complex plane. So if

f(z) =
az + b

cz + d
,

domain is now C∞; c ̸= 0; f(∞) = a
c , f

(
−d

c

)
= ∞. For c = 0; f(∞) = ∞.
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(Riemann Sphere and stereographic projection.)

Theorem 14. The set M of all Möbius maps on C∞ is a group under composition.
It is a subgroup of Sym(C∞).

Proof.

• composition of maps is associative

• I(z) = z ∈ M.

• closure: Let

f(z) =
az + b

cz + d
, g(z) =

αz + β

γz + δ

Suppose c ̸= 0, δ ̸= 0. First suppose z ∈ C \ {−δ/γ}. Then

f(g(z)) =
a
(
αz+β
γz+δ

)
+ b

c
(
αz+β
γz+δ

)
+ d

=
(aα+ bγ)z + (aβ + bδ)

(cα+ dγ) + (cβ + δd)
∈ M

since

(aα+ bγ)(cβ + δd)− (aβ + bδ)(cα+ dγ) = (ad− bc)(αδ − βγ) ̸= 0.

Also, f
(
g
(
− δ

γ

))
= f(∞) = a

c . And

(aα+ bγ)
(
− δ

γ

)
+ (aβ + bδ)

(cα+ dγ)
(
− δ

γ

)
+ (cβ + δd)

=
aα

(
− δ

γ

)
+ αβ

cα
(
− δ

γ

)
+ cβ

=
a

c

Need to check c = 0 separately.
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• inverses: For some a, b, c, d with ad− bc ̸= 0, let

f(z) =
az + b

cz + d
and f∗(z) =

dz − b

−cz + a

Then f(f∗(z)) = z = f∗(f(z)) for z ̸= −d
c ,−

a
c ,∞. These are cases are ok. If c = 0

then
f(f∗(∞)) = f(∞ = ∞ = f∗(f(∞)).

Theorem 15.
GL2(C)
Z

∼= M

where

Z = {
(
λ 0
0 λ

)
: λ ∈ C \ {0}}.

Proof. We construct a surjective homomorphism from GL2(C) onto M with kernel Z.
Let ϕ : GL2(C) → M (

a b
c d

)
7→ f(z) =

az + b

cz + d
.

Note ϕ a homomorphism:

f(z) =
az + b

cz + d
, g(z) =

αz + β

γz + δ
.

ϕ

((
a b
c d

))
ϕ

((
α β
γ δ

))
(z) = f ◦ g(z)

=
(aα+ bγ)z + (aβ + bδ

(cα+ dγ)z + (cβ + δd)

= ϕ

((
a b
c d

)(
α β
γ δ

))
Clearly ϕ surjective. (

a b
c d

)
∈ Ker ϕ

if and only if az+b
cz+d = z ∀ z ∈ C∞. Note

z = ∞ =⇒ c = 0

z = 0 =⇒ b = 0

z = 1 =⇒ a = d

=⇒ Ker ϕ = z

Finally apply First Isomorphism Theorem.
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Corollary 7.
SL2(C)
{±I}

∼= M.

Proof. Restrict ϕ to SL2(C)
ϕ : SL2(C) → M(
a b
c d

)
7→ az + b

cz + d
.

We require ϕ to be surjective:

f(z) =
az + b

cz + d
=

(
a

(ad−bc)1/2

)
z + b

(ad−bc)1/2(
c

(ad−bc)1/2

)
z + d

(ad−bc)1/2

.

And Ker ϕ = {±I}.

Proposition 13. Every Möbius map can be written as a somposition of maps of
the following forms:

(i) z 7→ az, a ̸= 0; represents a dilation or rotation

(ii) z 7→ z + b; a translation

(iii) z 7→ 1
z ; inversion.

Proof. Let f(z) = az+b
cz+d . If c = 0;

z 7→
(a
d

)
z →7→

(a
d

)
z +

(
b

d

)
f1 is type (i), f2 is type (ii). We can write f = f2 ◦ f1. If c ̸= 0, write

f(z) =
az + b

cz + d

=

(
a
c

)
z +

(
b
c

)
z +

(
d
c

)
=
a

c
+

(−ad+bc
c2

)(
z + d

c

)
= A+

B

z + d
c

z
(ii)7→ z +

d

c

(iii)7→ 1

z + d
c

(i)7→ B

z + d
c

(ii)7→ A+
B

z + d
c

.

Now we can write f = f4 ◦ f3 ◦ f2 ◦ f1.
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Definition 22. A group G acts triply transitively on a set X if given x1, x2, x3 ∈ X
all distinct and y1, y2, y3 ∈ X all distinct, there exists g ∈ G such that g(xi) = yi,
for i = 1, 2, 3.
A group G acts sharply triply transitively if such a g is unique.

Theorem 16. The action of M on C∞ is sharply triply transitive.

Proof. Label first triple {z0, z1, z∞} and second triple {ω0, ω1, ω∞}. We construct g ∈ M
such that

g : z0 7→ 0

z1 7→ 1

z∞ 7→ ∞

First suppose z0, z1, z∞ ̸= ∞

g(z) =
(z − z0)(z1 − z∞)

(z − z∞)(z1 − z0)

check: “ad− bc” = (z0 − z∞)(z1 − z∞)(z1 − z0) ̸= 0. If z∞ = ∞:

g(z) =
(z − z0)

(z1 − z0)

If z1 = ∞:

g(z) =
(z − z0)

(z − z∞)

If z0 = ∞:

g(z) =
(z1 − z∞)

(z − z∞)
.

Similarly find h such that

h : ω0 7→ 0

ω1 7→ 1

ω∞ 7→ ∞

Then f = h−1g : zi 7→ ωi as required. Now to prove uniqueness. Suppose f ′ : zi 7→ ωi.
Then f−1f ′ : zi 7→ zi. Let g be as above, then

gf−1f ′g−1 : 0 7→ 0 =⇒ b = 0

1 7→ 1 =⇒ a = d

∞ 7→ ∞ =⇒ c = 0
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=⇒ gf−1f ′g−1 = id

=⇒ f−1f ′ = id

=⇒ f = f ′.

So, the image of just three points determines the map.

Conjugacy classes in M

Recall ϕ : GL2(C) ↠ M. Suppose A, B conjugate in GL2(C), i.e. there exists P ∈
GL2(C) such that

PAP−1 = B

then

ϕ(P )ϕ(A)ϕ(P )−1 = ϕ(PAP−1)

= ϕ(B) ∈ B

i.e. ϕ(A) and ϕ(B) are conjugate in M. Use knowledge of conjugacy classes in GL2(C).

(i) For some λ ̸= µ, λ ̸= 0 ̸= µ (
λ 0
0 µ

)
ϕ

((
λ 0
0 µ

))
= f

f(z) = νz, ν ̸= 0, 1.

(ii) For some λ ̸= 0, (
λ 0
0 λ

)
ϕ

((
λ 0
0 λ

))
= id.

(iii) For some λ ̸= 0, (
λ 1
0 λ

)
ϕ

((
λ 1
0 λ

))
= f

f(z) = λz+1
λ = z + 1

λ , i.e.

f = ϕ

((
1 1

λ
0 1

))
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And it’s conjugate to (
1 1
0 1

)
=

(
λ 0
0 1

)(
1 1

λ
0 1

)(
1
λ 0
0 1

)
So f conjugate to g where g(z) = z + 1.

Theorem 17. Any non-identity Möbius map is conjugate to one of

(i) z 7→ νz, ν ̸= 0, 1

(ii) z 7→ z + 1.

Corollary 8. A non-identity Möbius map f has either

(i) 2 fixed points or

(ii) 1 fixed point.

Proof. Suppose gfg−1 = h. Then α is a fixed point of f (i.e. f(α) = α) if and only if
g(α) is a fixed point of h (i.e. h(g(α)) = g(α)). So number of fixed points of f is the
same as the number of fixed points of h. By Theorem 17 either,

• f conjugate to z 7→ νz which has 2 fixed points: 0, ∞.

• or f conjugate to z 7→ z + 1 which has 1 fixed points; ∞.

8.1 Circles in C∞

A Euclidean circle is the set of points in C given by some equation

|z − z0| = r, r > 0.

A Euclidean line is the set of points in C given by some equation

|z − a| = |z − b|

A circle in C∞ is either a Euclidean circle or a set L∪{∞} where L is a Euclidean line.
Its general equation is of the form

Azz +Bz +Bz + C = 0

for some A,C ∈ R, |B|2 > AC. Where z = ∞ is a solution if and only if A = 0.

• A = 0: line

• C = 0: goes through origin

There is a unique circle passing through any 3 distinct points in C∞.
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Theorem. Let f ∈ M and C a circle in C∞, then f(C) is a circle in C∞.

Proof. By proposition 13, just need to consider f(z) = az, z + b or 1
z . Let SA,B,C be

circle defined by (∗). Then

f(z) = az : SA,B,C 7→ SA/aa,B/a,C

f(z) = z + b : SA,B,C 7→ SA,B−Ab,C+Abb−Bb−Bb

f(z) =
1

z
:= ω : SA,B,C 7→ A+Bω +Bω +Bω + Cωω = 0 = SC,B,A

e.g. Consider the image of R ∪ {∞} under

f(z) =
z − i

z + i
.

It is a circle in C∞ containing

f(0) = −1, f(∞) = 1, f(1) = −i

So f(R ∪ {∞}) = unit circle. Furthermore, complimentary components are mapped to
complimentary components.

i

i→

8.2 Cross-Ratios

Definition 23. The cross-ratio of distinct points z1, z2, z3, z4 ∈ C is defined by

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)

[∞, z2, z3, z4] =
(z2 − z4
(z3 − z4)

[z1,∞z3, z4] = −(z1 − z3)

(z3 − z4)

[z1, z2, z3,∞] =
(z1 − z3)

(z1 − z2)

[z1, z2,∞, z4] = −(z2 − z4)

(z1 − z2)
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Note [0, 1, ω,∞] = ω.

Notation. Different authors use different permutations of 1, 2, 3, 4 as definition.

Theorem. Given z1, z2, z3, z4 ∈ C∞ distinct and ω1, ω2, ω3, ω4 ∈ C∞ distinct then
there exists f ∈ M such that f(zi) = f(ωi) if and only if

[z1, z2, z3, z4] = [ω1, ω2, ω3, ω4].

In particular, Möbius maps preserve cross-ratios

[z1, z2, z3, z4] = [f(z1), f(z2), f(z3), f(z4)].

Proof. For the forward direction, suppose f(zj) = ωj and zi, ωi ̸= ∞ for all i and

f(z) =
az + b

cz + d

then czj + d ̸= 0∀j. So

ωj − ωk = f(zj)− f(zk)

+
(ad− bc)(zj − zk)

(czj + d)(czk + d)

=⇒ [z1, z2, z3, z4] = [ω1, ω2, ω3, ω4]

= [f(z1), f(z2), f(z3), f(z4)]

Need to check other cases; zi = ∞, ωi = f(∞ = a
c etc.

For the other direction, suppose that

[z1, z2, z3, z4] = [ω1, ω2, ω3, ω4]

Let g ∈ M such that g(z1) = 0, g(z2) = 1 and g(z4) = ∞. Let h ∈ M such that
h(ω1) = 0, h(ω2) = 1, h(ω4) = ∞. Then

g(z3) = [0, 1, g(z3),∞]

= [g(z1), g(z2), g(z3), g(z4)]

= [z1, z2, z3, z4]

= [ω1, ω2, ω3, ω4]

= [h(ω1), h(ω2), h(ω3), h(ω4)]

= [0, 1, h(ω),∞] = h(ω3)

So h−1g is the required map.
So [z1, z2, z3, z4] = f(z3) where f is the unique Möbius map that sends z1 7→ 0, z2 7→ 1,
z4 7→ ∞.
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Corollary. z1, z2, z3, z4 lie in some circle in C∞ if and only if [z1, z2, z3, z4] ∈ R.

Proof. C circle through z1, z2, z4, Let g : C → R ∪ {∞},

g(z1) = 0, g(z2) = 1, g(z4) = ∞

g(z3) = [0, 1, g(z3),∞]

= [g(z1), g(z2), g(z3), g(z4)]

= [z1, z2, z3, z4]

By Theorem 19. So

[z1, z2, z3, z4] ∈ R ⇐⇒ g(z3) ∈ R ⇐⇒ z3 ∈ C.

THE END
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