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0 Introduction

Colours for notes:

• Text will be in black

• Displayed maths will be in blue

• Comments will be in green

• Examples will be in red

This is an applied course — we will emphasise methods rather than proofs.
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1 Basic Calculus

1.1 Differentiation

Definition (Derivative of a function). Define the derivative of a function f(x) with
respect to x as a function such that

df

dx

∣∣∣∣
x0

= lim
h→0

f(x0 + h)− f(x)

h

The derivative can sort of be thought of as the “slope”.
For the derivative to exist at x0, the left-hand and right-hand limits must exist and be
equal, i.e.

lim
h→O−

f(x0 + h)− f(x)

h
= lim

h→0+

f(x0 + h)− f(x)

h

Example (f(x) = |x| at x = 0). Then

lim
h→0−

=
|h|
h

= −1 but lim
h→0+

|h|
h

= +1

so |x| is not differentiable at x = 0 (but it is everywhere else).

Notation (Ways of writing a derivative).

df

dx
= f ′(x) = ḟ(x)

and we denote the n-th derivative by f (n)(x).

1.2 O and o notation

These are useful concepts to give comparative scalings of a function as they approach
some limiting point
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Definition (O and o notation). f(x) is o(g(x)) as x→ x0 if

lim
x→x0

f(x)

g(x)
= 0.

This is often written as f(x) = o(g(x)) as x→ x0. Informally you can think of this
as “f(x) is much smaller than g(x) as x→ x0.”
f(x) is O(g(x) as x→ x0 if ∃δ > 0 andM > 0 such that for all x with 0 < |x−x0| <
δ, we have

|f(x)| ≤M |g(x)|.

So f(x)
g(x) is bounded for x sufficiently close to x0.

Remark (Using = for O and O). This is an abuse of notation, because O(g(x)) or
o(g(x)) does note denote a function: it denotes a class of functions. This can be
though of more as f(x) = o(g(x)) means f(x) ∈ o(g(x)).

The definition of O can be extended to behaviour at ∞: we say that f(x) is O(g(x))
as x→ ∞ if ∃X > 0 and M > 0 such that for all x > X we have

|f(x)| ≤M |g(x)|.

Remark (O ⊂ o). f(x) = o(g(x)) =⇒ f(x) = O(g(x)), but not the other way
around.

Example. In this case we have f(x) = O(x) but f(x) ̸= o(x() as x → 0 since the
limit is 2 which is not 0.

Example. We have that x2 + x = O(x2) as x → ∞, since for x > 1, we have that
|x2+x| < 2|x2|. In general, when we focus on behaviour of a polynomial at infinity,
we see that the highest power term dominates.

Example. sin 2x = O(x) as x→ 0 since sin 2x ≈ 2x for small x.

Order parameters are useful to classify remainder terms before taking limits.
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Example.
df

dx

∣∣∣∣
x0

=
f(x0 + h)− f(x0)

h
+
o(h)

h
as h→ 0

(this equation can be understood by considering the limit as h→ 0.) It follows from
this equation that

f(x0 + h) = f(x0) + h
df

dx

∣∣∣∣
x0

+ o(h).

1.3 Rules for differentiation

Theorem (Chain rule). Given f(x) = F (g(x)) we have that

df

dx
= F ′(g(x))× dg

dx
=

dF

dg
× dg

dx

Proof. See printed notes.

Example.
d

dx
sin(x2 + x− 2) = cos(x2 + x− 2)︸ ︷︷ ︸

F ′(g(x))

(2x+ 1)︸ ︷︷ ︸
g′(x)

Theorem (Product rule). Given f(x) = u(x)v(x) we have

df

dx
= v

du

dx
+ u

dv

dx

Proof. Left as an exercise.

Example (Quotient rule). The Quotient Rule is a special case of product rule:

d

dx

(u
v

)
=

1

v
u′ + u

d

dx

(
1

v

)
=
u′

v
− v′u

v2
=
u′v + v′u

v2

Remark. For any real number λ, if a function f(x) = o(g(x)), then we also have
that λf(x) = o(g(x)).
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Leibniz’s rule

Consider f(x) = u(x)v(x); then

f ′ = u′x+ uv′

f ′′ = u′′v + u′v′ + u′v′︸ ︷︷ ︸
2u′v′

+uv′′

f ′′′ = u′′′v + u′′v′ + 2u′′v′︸ ︷︷ ︸
3u′′v′

+2u′v′′ + u′v′′︸ ︷︷ ︸
3u′v′′

+uv′′′

Theorem (Leibniz’s rule). Given f(x) = u(x)v(x) then

f (n)(x) =
n∑

r=0

(
n

r

)
u(n−r)(x)v(r)(x)

= u(n)v + nu(n−1)v(1) +
n(n− 1)

2!
u(n−2)v(2)

+ · · ·+ n!

m!(n−m)!
u(n−m)v(m) + · · ·+ uv(n)

Proof. Induction.

1.4 Taylor Series

Taylor’s Theorem

Previously:
f(x0 + h) = f(x0) + hf ′(x0) + o(h) as h→ 0

This extends to the following theorem:

Theorem (Taylor’s Theorem). For n-times differentiable f(x), then

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) + · · ·+ h(n)

n!
f (n)(x0) + En

where En is o(hn) as h→ 0.

Stronger version if f (n+1)(x) exists ∀x ∈ (x0, x0+h) and f
(n) is continuous in this range:

En = O(hn+1) as H → 0

= f (n+1)(xn)
hn+1

(n+ 1)!
for some x0 ≤ xn ≤ x0 + h
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Remark. En = O(hn+1) is a stronger statement than o(hn). For example

hn+1/2 = o(h(n)) but hn+1/2 ̸= O(hn+1) as h→ 0

Taylor Polynomials

With x0 + h = x, Taylor’s theorem gives

f(x) = f(x0) + hf ′(x0) + · · ·+ (x− x0)
n

n!
f (n)(x0) + En.

This is called the n-th order Taylor polynomial of f(n) about x0.

• n-th order Taylor polynomial matches first f derivatives of f(x) at x0.

• Provides local approximation to f(x) in vicinity of x0, with error En = O(hn+1.

• If Taylor polynomial converges (as x varies) as n→ ∞, gives Taylor series of f(x)
about x0.

1.5 L’Hôpital’s Rule

L’Hôpital’s Rule is used to deal with indeterminate forms in limits.

Theorem (L’Hôpital’s Rule). Let f(n) and g(n) be differentiable at x0, with con-
tinuous first derivatives there, and

lim
x→x0

= f(x0) = 0 and lim
x→x0

g(x) = g(x0) = 0

Then if g′(x0) ̸= 0,

limx→ x0 =
f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

provided the limit on the right exists.

Proof. Note that

f(x) = f(x0)︸ ︷︷ ︸
0

+(x− x0)f
′(x0) + o(x− x0) as x→ x0

and similarly

g(x) = g(x0)︸ ︷︷ ︸
0

+(x− x0)g
′(x0) + o(x− x0) as x→ x0.
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Then

limx→ x0
f(x)

g(x)
=
f ′(x0) +

o(x−x0)
x−x0

g′(x0)︸ ︷︷ ︸
̸=0

+o(x−x0)
x−x0

=
f ′(x0)

f ′(x0)

= lim
x→x0

f ′(x)

g′(x)

Remark (Generalisation). The proof above also applies more generally, but is easier
to understand for the special case mentioned in L’Hôpital’s Rule. In particular

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′′(x)

g′′(x)

provided the limit on the right side exists.

Example. Consider

f(x) = 2 sinx− sin 3x

g(x) = 2x− sin 2x

Notice that we have f(0) = g(0) = 0 and we have

f ′(x) = 3 cosx− 3 cos 3x (= 0 at x = 0)

g′(x) = 2− 2 cos 2x (= 0 at x = 0)

Note that
f ′′(0) = g′′(0) = 0 at x = 0

However one can compute that

f ′′′(0) = 24 and g′′′(0) = 8

From this it follows that

lim
x→0

f(x)

g(x)
= limx→ 0

f ′′′(x)

g′′′(x)
=

24

8
= 3.

The following is a non-examinable sketch-proof of Taylor’s Theorem: Proof. Start from
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the Fundamental Theorem of Calculus (proved in the next section)∫ x

)
f ′(t)dt = f(x)− f(0)

=⇒ f(x) = f(0) =

∫ x

0
f ′(t)dt

= f(0) +

∫ x

0

d

dt
(t− x)f ′(t)dt

= f(0) +
[
(t− x)f ′(t)

]x
0
−
∫ x

0
(t− x)f ′′(t)dt

= f(0) + xf ′(0)− 1

2

∫ x

)

d

dt
(T − x)2f ′′(t)dt

= f(0) + xf ′(0)− 1

2

[
(t− x)2f ′′(t)

]x
0
+

1

2

∫ x

0
(t− x)2f ′′′(t)dt

...

= f(0) = xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) +

1

n!

∫ x

0
(x− t)nf (n+1)(t)dt

And we can note that the integral on the last line is En = o(hn).

2 Integration

2.1 Integrals as Riemann Sums

The aim of this section is to formalise “area under a curve”.
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Definition (Integral). The integral of a suitably well behaved function f(x) is the
limit of a sum:

∈b
a f(x)dx ≡ lim

∆x→0

N−1∑
n=0

f( xn︸︷︷︸
a+n∆x

) ∆x︸︷︷︸
b−a
N

x
a bx1, x2, . . . , xN−1

· · ·

f(x)

Riemann sum: Limit should not depend on exact choice of rectangles (e.g. ∆x does
not have to be uniform). Relation to “area under curve”?

Consider one rectangle for finite N :

x
xn xn+1

f(x)

One can see that the solid rectangle has area less than the area under the curve, and the
dashed one has greater area. One might ask whether we could pick a point to construct
the rectangle from such that the area of the rectangle and the area of the curve are the
same. The mean value theorem states that this is possible.
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Theorem (Mean-value theorem). For f(x) continuous, then if An is the area under
the curve between xn and xn+1, then we have

An = (xn+1 − xn)f(cn)

for some cn satisfying xn ≤ cn ≤ xn+1. (See Analysis I for proof). If f(x) is
differentiable then

f(cn) = f(xn) +O(cn − xn) as cn − xn → 0

= f(xn) +O(∆x) since cn ≤ xn +∆x

It follows that
An = ∆xf(xn) +O(∆x2) as ∆x→ 0

Total area between a and b:

A = lim
N→∞

N∑
n=0

An

= lim
N→∞

N∑
n=0

f(xn)∆x︸ ︷︷ ︸
Definition of integral

+ lim
N→∞

NO

((
b− a

N

)2
)

︸ ︷︷ ︸
limN→∞ O

(
(b−a)2

N

)
=

∫ b

a
f(x)dx+ 0

2.2 Fundamental Theorem of Calculus

Formalise “inverse of differentiation”

Theorem (FTC). Let F (x) be defined as

F (x) =

∫ x

a
f(Tt)dt

Then
dF

dx
= f(x).
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Proof.

dF

dx
= lim

h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

[∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

]
= lim

h→0

1

h

∫ x+h

x
f(t)dt

= lim
h→0

1

h

[
f(x)h+O(h2)

]
(using Mean Value Theorem)

= f(x) + lim
h→0

O(h)

= f(x)

Remark. F (x) is the solution of dF
dx = f(x) with F (a) = 0.

Corollaries:
d

dx

∫ b

a
f(t)dt = −f(x)

d

dx

∫ g(x)

a
f(t)dt = f(g(x))

dg

dx

Notation (Indefinite Integrals). We may write indefinite integrals as∫
f(x)dx or

∫ x

f(t)dt

(note that in the second case the lack of lower limit gives rise to integration constant.)

2.3 Methods of integration

Integration by subs

Useful when integrand is “function of a function”
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Example. Consider

I =

∫
1− 2x√
x− x2

dx

Let u = x− x2 =⇒ du
dx = 1− 2x

I =

∫
1√
u
= 2

√
u+ c = 2

√
x− x2 + c

Here are some useful trig / hyperbolic subs:

sin2 θ + cos2 θ = 1 cosh2 u sinh2 u = 1

tan2 θ + 1 = sec2 θ 1− tanh2 u = sech2u

Generally we use the subs sin θ or tanhu, tan θ or sinhu, sec θ or coshu for terms 1−x2,
1 + x2, x2 − 1 respectively.

Example.

I =

∫ √
2x− x2dx

Try x− 1 = sin θ =⇒ dx = cos θdθ. Then

I =

∫ √
1− sin2 θ cos θdθ

=

∫
cos2 θdθ

=
1

2

∫
1 + cos 2θdθ

=
1

2
(θ +

1

2
sin 2θ) + c

=
1

2
(θ + sin θ cos θ) + c

=
1

2
arcsin(x− 1) +

1

2
(x− 1)

√
1− (x− 1)2 + 1

2.4 Integration by parts

Recall the product rule: uv′ = (uv)′ − u′v.

Theorem (Integration by parts). For functions u and v∫
uv′dx = uv −

∫
u′vdx

15



Example.

I =

∫ ∞

0
xe−xdx

= [−xe−x]∞0 +

∫ ∞

0
e−xdx

= 1

Example.

I =

∫
lnxdx

= x lnx−
∫

1

x
xdx

= x lnx− x+ c

3 Partial Differentiation

3.1 Functions of Several Variables

Definition (Multivariate functions). A function is called multivariate if it depends
on more than one variable.

Some examples of multivariate functions include

• Height of terrain: h(latitude, longitude).

• Density of air: ρ(x, y, z, t).
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y

x

A∗

f(x, y)

The slope of f at A depends on direction.

3.2 Partial Derivatives

Definition (Partial derivative). Given some function of several variables, for ex-
ample f(x, y), the partial derivative of f with respect to x at fixed y is

∂f

∂x

∣∣∣∣
y

= lim
δx→0

[
f(x+ δx, y)− f(x, y)

δx

]

“Slope of f when moving in x direction.”

Note that ∂f
∂x

∣∣∣
x
is defined similarly.
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Example. Let f be defined as

f(x, y) = x2 + y2 + exy
2

Then we have that
∂f

∂x

∣∣∣∣
y

= 2x+ 0 + y2exy
2

∂f

∂x

∣∣∣∣
x

= 0 + 2y + 2xyexy
2

We can also compute second partial derivatives:

∂2f

∂x2

∣∣∣∣
y

= 2 + y2 · y2 · exy2

∂2f

∂x2

∣∣∣∣
x

= 2 + 2xexy
2
+ 2xy · 2xyexy2

and we can compute mixed derivatives

∂

∂x

(
∂f

∂y

∣∣∣∣
x

)∣∣∣∣
y

= 2yexy
2
+ 2xy · y2 · exy2

∂

∂y

(
∂f

∂x

∣∣∣∣
y

)∣∣∣∣∣
x

= 2yexy
2
+ y2 · 2xy · exy2

Notation. A useful convention that is often used is to omit the |y symbol if all
other variables are being held fixed. For example

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

∣∣∣∣
x

)∣∣∣∣
y

Note that if a function as continuous (mixed) second derivatives then

∂2f

∂x∂y
=

∂2f

∂y∂x

This is known as “Schwarz’s theorem”. (In other words, partial derivatives commute).

Alternative notation:

fx =
∂f

∂x
; fx,y =

∂2f

∂y∂x
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3.3 Multivariate Chain Rule

Given path x(t), y(t) and f(x, y), what is df
dt ?

Consider change in f under (x, y) → (x+ δx, y + δy):

δf = f(x+ δx, y + δx)− f(x, y)

= [f(x+ δx, y + δy)− f(x+ δx, y)] + [f(x+ δx, y)− f(x, y)]

Then Taylor expanding we get

f(x+ δx, y)− f(x, y) = fx(f, y)δx+ o(δx)

and
f(x+ δx, y + δy)− f(x+ δx, y) = fy(x+ δx, y)δy + o(δy)

We also Taylor expand fy(x+ δx, y) and find that

fy(x+ δx, y) = fy(x, y) + fy,x(x, y)δx+ o(δx)

And hence

δf = [fy(x, y) + fy,x(x, y)δx+ o(δx)]δy + o(δy) + fx(x, y)δx+ o(δx) (∗)

Take limit as δx, δy → 0 to get differential of f :

df = lim
δx→0
δy→0

δf

Theorem (Chain Rule for Partial Derivatives). Differential df of f(x, y) is related
to differentials of arguments dx and dy, as

df =
∂f

∂x
dx+

∂f

∂x
dy

This is because the remaining terms in (∗) approach 0 faster than dx or dy.

For the path x(t), y(t) we now have

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

If path parametrised as y(x), we have f(x, y(x)) and

df

dx
=
∂f

∂x

dx

df︸︷︷︸
=1

+
∂f

∂y

dy

dx
=
∂f

∂x
+
∂f

∂y
+

dy

dx
.
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Integral Form of the Chain Rule

∆f =

∫
df =

∫ (
∂f

∂x
dx =

∂f

∂y
dy

)
Note that ∆f denotes the change in f between endpoints. For a path x(t), y(t) connect-
ing the endpoints, have f(x(t), y(t))

∆f =

∫ (
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt

Note that the result doesn’t depend on path chosen between two given endpoints.

3.4 Applications of Multivariate Chain Rule

Change of Variables

Example. Cartesian coordinates (x, y) to plane-polar (r, θ).

x

y

(x, y)

r

θ

x = r cos θ

y = r sin θ

Original function f(x, y) can be thought of as a function of r, θ:

f(x, y) = f(x(r, θ), y(r, θ))

∂f

∂r

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y

∂x

∂r

∣∣∣∣
θ

+
f

y

∣∣∣∣
x

∂y

∂r

∣∣∣∣
y

∂f

∂θ

∣∣∣∣
r

=
∂f

∂x

∣∣∣∣
y

∂x

∂θ

∣∣∣∣
r

+
∂f

∂y

∣∣∣∣
x

∂y

∂θ

∣∣∣∣
r

Implicit Differentiation

Consider f(x, y, z) = z which is a surface in 3D space. Implicitly define

z = z(x, y), x = x(y, z), y = y(x, z)
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(Note that we may not be able to find these explicitly but can still determine partial
derivatives).

Example. Consider
xy + y2z + z5 = 1 (∗)

Take derivative of (∗) with respect to x holding y fixed

y + y2
∂z

∂x

∣∣∣∣
y

+ 5z4
∂z

∂x

∣∣∣∣
y

= 0

=⇒ ∂z

∂x

∣∣∣∣
y

=
−y

y2 + 5z4
.

Generally given f(x, y, z) = c, MVC gives

0 = df =
∂f

∂x

∣∣∣∣
y,z

dx+
∂f

∂y

∣∣∣∣
x,z

dy +
∂f

∂z

∣∣∣∣
x,y

dz

Note that we can’t vary x, y, z independently and stay in the surface.
Find ∂z

∂x

∣∣
y
by

∂f

∂x

∣∣∣∣
y,z

∂x

∂x

∣∣∣∣
y

+
∂f

∂y

∣∣∣∣
x,z

∂y

∂x

∣∣∣∣
y

+
∂f

∂z

∣∣∣∣
x,y

∂z

∂x

∣∣∣∣
y

∂z

∂x

∣∣∣∣
y

=
−∂f/∂x

∣∣
y,z

∂f/∂x
∣∣
x,y

(†)

Similarly,

∂x

∂y

∣∣∣∣
z

=
−∂f/∂y

∣∣
x,z

∂f/∂y
∣∣
y,z

and
∂y

∂z

∣∣∣∣
x

=
−∂f/∂z

∣∣
x,z

∂f/∂y
∣∣
x,z

Follows that
∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1
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Theorem (Reciprocal Rule). Applies to partial derivatives provided some variables
held fixed:
Similarly to (†)

∂x

∂y

∣∣∣∣
z

=
−∂f/∂z

∣∣
x,z

∂f/∂x
∣∣
y,z

so that
∂z

∂x

∣∣∣∣
y

=
1

∂x/∂z
∣∣
y

.

Differentiation of an integral with respect to a parameter

Consider a family of functions f(x;α). Define the integral

I(α) =

∫ b(α)

a(α)
f(x;α)dx

What is dI/dα?

Theorem (Differentiation of integral with respect to a parameter).

dI

dα
=

∫ b(α)

a(α)

∂f

∂α
(x;α)dx+ f(b(α);α)

db

dα
− f(a(α);α)

da

dα

Proof.

dI

dα
= lim

δα→0

1

δα

[∫ b(α+δα)

a(α+δa)
f(α;α+ δα)dx−

∫ b(α)

a(α)
f(x;α)ddx

]

= lim
δx→0

1

δα

[∫ b(α)

a(α)
f(x;α+ δα)− f(x;α)dx

]

+ lim
δα→0

1

δα

∫ b(α+δα)

b(α)
f(α;α+ δα)dx− lim

δα→0

1

δα

∫ b(α+δα)

a(α)
f(x;α+ δα)dx

+ lim
δα→0

1

δα

∫ a(α+δα)

a(α)
f(α;α+ δα)dx

=

∫ b(α)

a(α)

∂f

∂α
(x;α)dx+ f(b(α);α)

db

dα
− f(a(α);α)

a

α
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Example.

I(λ) =

∫ λ

0
e−λx2

dx

dI

dx
=

∫ λ

0
−x2e−λx2

dx+
dλ

dλ
e−λ2

Example. Suppose we want to evaluate∫ ∞

0
xne−xdx (n an integer)

Let

I(λ) =

∫ ∞

0
e−λxdx =

1

λ

dn

dλn
I =

∫ ∞

0
(−x)ne−λndx = (−1)n

n!

λn+1

Now set λ = 1 to get ∫ ∞

0
xne−xdx = n!

23



TOPIC II
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1 First Order Linear Differential Equations

Definition (Exponential function). Exponential function is defined by the infinite
series

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
r=0

xr

n!

It can also be written as

exp(x) = lim
k→∞

(
1 +

x

k

)k
= lim

k→∞

(
1 + k

x

k
+
k(k − 1)

2!

(x
k

)2
+ · · ·

)

Differentiating the series gives

d

dx
exp(x) = 1 + 2

x

2!
+ 3

x2

3!
+ · · · = exp(x)

As exp(0) = 1, can think of exp(n) as the solution of ODE

df

dx
= f and f(0) = 1 =⇒

∫ exp(x)

1

dt

dt
= x.

Key Property: exp(x1) exp(x2) = exp(x1 + x2), which can be verified by expanding.
This allows us to write

exp(x) = ex

where

e = exp(1) = lim
k→∞

(
1 +

1

k

)k

= 2.718 . . .

We can also write the inverse function, ln such that

exp(lnx) = x

Notation. Sometimes ln is written as loge.

It follows that
ax = (aln a)x = ex ln a

d

dx
ax = ln aex ln a = (ln a)ax
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Definition (Eigenfunction). An eigenfunction of the derivative operator is a func-
tion that is unchanged up to a multiplicative scaling by the eigenvalue under the
action of the operator

df

dx
= λ︸︷︷︸

eigenvalue

f(x)︸︷︷︸
eigenfunction

Eigenfunctions of d
dx are αeλx.
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2 First-order Linear ODEs

• LINEAR: dependent variable (y, say) and its derivatives only appear linearly.

• FIRST ORDER: highest derivative of y that appears in dy
dx .

2.1 Homogeneous First-order Linear ODEs

• HOMOGENEOUS : an ODE in which all terms involve dependent variable or its
derivatives, which implies that y = 0 is always a solution.

• CONSTANT COEFFICIENTS : independent variable (x) does not appear explic-
itly.

Example.

5
dy

dx
− 3y = 0

Try y = Aeλx:
dy

dx
= λAeλx = λy

So ODE =⇒ (5λ− 3) = 0, so λ = 3
5 . Since linear, homogeneous equation, solution

holds for all A.

• Generally, for any linear, homogeneous ODE (doesn’t have to be 1st order), any
constant multiple of a solution is a solution.

• An n-th order linear ODE (highest derivative is dny
dxn has exactly n independent

solutions, so y = Ae3x/5 is the general solution.

• To specify unique solution requires giving suitable boundary conditions; e.g. y(0)
determines A.

Discrete Equations

Consider

5
dy

dx
− 3y = 0

with y(0) = y0. Then
y(x) = y0e

3x/5

Now approximate the equation by discrete form at {xn} where xn = nh.
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x

y

· · ·x0 x1 x2

y0

y1

y2

To do the approximation, we set

dy

dx

∣∣∣∣
xn

=
yn+1 − yn

h

so

5

(
yn+1 − yn

h

)
− 3yn = 0

=⇒ yn+! =

(
1 +

3h

5

)
yn

which is an example of a recurrence relation.

yn =

(
1 +

3h

5

)
yn−1 =

(
1 +

3h

5

)2

yn−2 =

(
1 +

3h

5

)n

y0

It follows that

yn = y0

(
1 +

3xn
5n

)n

If we take xn → x, i.e. take n steps from x0 to x, as n→ ∞ we get

lim
n→∞

yn = lim
n→∞

y0

(
1 +

3x

5n

)n

= y0 exp

(
3x

5

)
(note that this agrees with the continuous case)

Series Solution

y(x) =
∞∑
n=0

anx
n

where we determine an by substituting into the ODE.
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Example.

5
dy

dx
− 3y = 0

dy

dx
=

∞∑
n=0

annx
n−1

=
∞∑
n=1

annx
n−1

so

x
dy

dx
=

∞∑
n=1

annx
n

and

xy =
∞∑
n=0

anx
n+1

=

∞∑
n=1

an−1x
n

since 5xdy
dx − 3xy = 0, we have

∞∑
n=1

(5nan − 3an−1)x
n = 0

=⇒ an =
3

5n
an−1 (n ≥ 1)

It follows that

an =
3

5n
an−1

=

(
3

5

)2 1

n(n− 1)
an−2

= · · ·

=

(
3

5

)n a0
n!

and

y(x) = a0

∞∑
n=0

1

n!

(
3x

5

)n

= a0 exp

(
3x

5

)
.
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2.2 Forced (inhomogeneous) ODEs

Include terms involving only the independent variable so y = 0 no longer a (trivial)
solution.

Constant forcing

Example. 5
dy

dx
− 3y = 10

General method of solution:

(1) Find any solution of the forced equation → particular integral yp(x). In the example,
we could choose yp(x) = −10

3 , for example.

(2) Write general solution of ODE as

y(x) = yp(x) + yc(x)

where yc is a complementary function. Then y(x) satisfies the ODE if and only if yc
satisfies the homogeneous version (this only follows because the differential equation
is linear). So in the example, this means we need

5
dyc
dx

− 3yc = 0

=⇒ yc(x) = Ae3x/5

(3) Combine yc and yp to get full general solution.

y(x=Ae
3x/5 − 10

3

(A could be determined by a boundary condition if given). This method is general
for linear ODEs.

Eigenfunction Forcing

Forcing term is an eigenfunction of differential operator on LHS.
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Example (radioactive decay).

A

a(t)

B

b(t)

C

c(t)

kaa kbb

da

dy
= −kaa and

db

dt
= kaa− kbb

Have a(t) = a0e
−kat

db

dt
+ kbb = kaa0e

−kat (∗)

Try particular integral
bp(t) = Ce−kat

(∗) (ks − ka)Ce
−kat = kaa0e

−kat

=⇒ C =
kaa0
ks − ka

(ka ̸= ks)

General solution b(t) = bc(t) + bp(t) where

dbc
dt

+ ksbc = 0 =⇒ bc(t) = De−kst

Follows that

b(t) = De−kst +
ka

ks − ka
a0e

−kat

In the case that b(0) = 0:

b(t) =
baa0
ks − ka

(e−kat − ekst)

t

a0

a(t)

b(t)

If ka = ks, need a different particular integral.
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2.3 Non-constant coefficients

General linear first-order ODE

a(X)
dy

dx
+ b(x)y = c(x)

“Standard form”
dy

dx
+ p(x)y = f(x)

Solve using integrating factor µ(x); multiply ODE by µ(x):

µy′ + (µp)y)︸ ︷︷ ︸
d
dx

if µ′µp

= µf(x) (∗)

Requires ∫
1

µ

dµ

dx
dx︸ ︷︷ ︸

lnµ

=

∫
pdx

=⇒ µ(x) = exp

(∫ x

p(u)du

)
(µ unique up to an irrelevant constant factor)

(∗) =⇒ d

dx
(µy) = µf(x)

so

µy =

∫ x

µfdu
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Example.

x
dy

dx
+ (1− x)y = 1

Standard form:
dy

dx
+

(
1

x
− 1

)
y =

1

x

Integrating factor µ:

lnµ(x) =

∫ x(1

u
− 1

)
du

= lnx− x

= ln(xe−x)

=⇒ µ(X) = xe−x

Have
d

dx

(
xe−xy

)
=
x

x
e−x = e−x

Integrate to find
xe−xy(x) = −e−x + C

y(x) = −1

x
+
c

x
ex

(if for example we wanted y finite at x→ 0, then we would set C = 1.)

Radioactivity example revisited

Recall
db

dt
+ kbb = kaa0e

−kat

Integrating factor µ:

lnµ =

∫ t

kbdt
′ = kbt

=⇒ µ = ekbt

Have
d

dt
(ekstb) = kaa0e

−katekbt

Consider ka = ks(= k) Have
d

dt
(ektb) = ka0

=⇒ ektb(t) = ka0t+D

=⇒ b(t) = De−kt + ka0te
−kt

Note: te−kt rather than e−kt.
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TOPIC III: NON-LINEAR, FIRST-ORDER

ODEs

General form

Q(x, y)
dy

dx
+ P (x, y) = 0 (∗)

[Could be non-linear in dy
dx but not considered here.]
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1 Separable Equations

Definition (Separable Equation). First-order ODE is separable if can be written
as

q(y)dy = p(x)dx

Solve by direct integration. ∫
q(y)dy =

∫
p(x)dx

Example.

(x2y − 3y)
dy

dx
− 2xy2 = 4x

Rearrange:

y(x3 − 3)
dy

dx
= 2x(2 + y2)

=⇒ y

2 + y2
dy =

2x

x2 − 3
dx

=⇒ 1

2
ln(2 + y2) = ln(x2 − 3) + C

=⇒ (y2 + 2)
1
2 = A(x2 − 3)

2 Exact Equations
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Definition (Exact Equation). ODE (∗) is exact if Q(x, y)dy+P (x, y)dy is an exact
differential i.e., ∃f(x, y) such that

df = P (x, y)dx+Q(x, y)dy

If (∗) is exact, then if df = 0, then f(x, y) = c is a solution.
If P (x, y)dx+Q(x, y)dy is exact, use multivariate chain rule

df =
∂f

∂x
dx+

∂f

∂y
dy

so ∃f(x, y) such that
∂f

∂x
= P and

∂f

∂y
= Q

Partial derivatives commute so

∂

∂y

(
∂f

∂x

)
=
∂P

∂y
and

∂

∂x

(
∂f

∂y

)
=
∂Q

∂x

are equal. Therefore we find the following necessary (but not sufficient) condition
for exactness:

ODE exact =⇒ ∂P

∂y
=
∂Q

∂x

Theorem. If ∂y
∂x = ∂Q

∂x throughout a simply-connected domain R, then Pdx+Qdy
is an exact differential of a single-valued function f in R.

Definition (Simply connected). A domain R is simply connected if it is path con-
nected (every pair of points can be connected by a path in R) and any closed curve
can be shrunk continuously to a point in R without leaving R.

R R

Simply connected Not simply connected

[see notes for example of f in non-simply connected case.]
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Example.

6y(y − x)
dy

dx
+ 2x− 3y2 = 0

Follows that
(2x− 3y2)︸ ︷︷ ︸

P

dx+ 6y(y − x)︸ ︷︷ ︸
Q

dy = 0

Have
∂P

∂y
= −6y,

∂Q

∂x
= −6y

hence exact in any simply connected domain. Must have

P =
∂f

∂x

∣∣∣∣
y

= 2x− 3y2

Q =
∂f

∂y

∣∣∣∣
x

= 6y2 − 6xy

∂f

∂x

∣∣∣∣
y

= 2x− 3y2 =⇒ x2 − 3xy2 + h(y) = f(x, y)

Follows that
∂f

∂y

∣∣∣∣
x

= −6xy +
dh

dy
= Q = 6y2 − 6xy

=⇒ dh

dy
= 6y2 =⇒ h(y) = 2y2 + c

Solution of ODE is
f(x, y) = x2 − 3y2x+ 2y2 = C.

3 Solution Curves and Isoclines

Graphical methods for “solving” of ODEs

3.1 Solution Curves

Consider
dy

dt
= f(t, y)

Each initial condition (e.g. y(0) = y0) generates a distinct solution curve (trajectory).
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x

y

Can we sketch these solution curves without solving ODE?
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Example.
dy

dt
= t(1− y2)

[separable, so can solve directly!] Separable:

1

1− y2
d = tdt

=⇒ 1

2

(
1

1 + y
+

1

1− y

)
dy = tdt

=⇒ 1

2
(ln(1 + y)− ln(1− y)) =

1

2
t2 + C

=⇒ 1

2
ln

∣∣∣∣1 + y

1− y

∣∣∣∣ = 1

2
t2 + C

y =
A− e−t2

A+ e−t2

A parametrises the solution curves.
Initial condition y(0) = y0 =⇒ A = 1+y0

1−y0

y0

A

1

1

−1

−1

3.2 Slope fields and Isoclines

dy

dt
= f(t, y) =⇒ gradient of solution curve through any point

Slope field represents gradient field by short “sticks”, one centre on each point.
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Example.
dy

dt
= t(1− y2)

For t > 0, ẏ > 0 for |y| < 1 and ẏ < 0 for |y| > 1.

Isoclines sometimes useful: curves along which ẏ = const.

Example.
dy

dt
= t(1− y2)

Isosclines:
t(1− y2 = D

y2 = 1− D

t

Slope field is tangent to solution curves. [If f(t, y) is single-valued, solution curves
cannot cross.]

4 Fixed (Equilibrium) Points and Stability

Definition (Fixed / equilibrium points). Fixed point of ODE dy
dt = f(t, y) is a

constant solution y = c, i.e.

dy

dt
= 0 ∀t at y = C.

Example.
dy

dt
= t(1− y2)

Fixed points at y = ±1.

Definition (Stability of fixed points). Fixed point y = C is stable (unstable) if
whenever y deviates slightly from C, y converges (diverges) to (from) y = C as
t→ ∞.

4.1 Perturbation analysis and stability

Suppose y = C is a fixed point of

dy

dt
= f(t, y)
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[so f(t, c) = 0 ∀t]
Consider some small perturbation from y = C:

y(t) = C + ϵ(t)

so

ODE =⇒ dϵ

dt
= f(t, C + ϵ)

= f(t, C) + ϵ
∂f

∂y

∣∣∣∣
t

(t, C) +O(ϵ2)

Linear for small ϵ:
dϵ

dt
≈ ϵ

∂f

∂y
(t, C)

(note that this is a linear ODE so should be easier to solve!) [If ∂f
∂y = 0 at the fixed

point, then we need higher-order terms in Taylor expansion to determine stability.]

Example.
dy

dt
= t(1− y2)

Fixed points at y = ±1

∂f

∂y
= −2ty =

{
−2t at y = +1

2t at y = −1

Near y = +1,
dϵ

dt
= −2tϵ

=⇒ ϵ(t) = ϵ0e
−t2

As t→ ∞, ϵ→ 0 =⇒ stable fixed point.
Near y = −1,

dϵ

dt
= 2tϵ =⇒ ϵ = ϵ0e

t2

Now |ϵ(t)| → ∞ as t → ∞ so trajectories diverge from y = −1 =⇒ unstable fixed
point.

4.2 Autonomous systems and phase portraits

Special case:
dy

dt
= f(y)

(so no explicit t dependence) then near a fixed point y = C (f(C) = 0) we have

dϵ

dt
= ϵ

df

dy
(C) = kϵ
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=⇒ ϵ(t) = ϵ0e
kt

For autonomous ODE:
f ′(c) < 0 =⇒ stable fixed point

f ′(c) > 0 =⇒ unstable fixed point

Example (Chemical kinetics).

A+B → C +D

a(t) = a0 − c(t) b(t) = b0 − c(t)

Assume rate of reaction α a b (e.g. dilute gas)

dc

dt
= λa(t)b(t)

= λ[a0 − c(t)][b0 − c(t)]︸ ︷︷ ︸
f(c)

Fixed points are C = a0 and C = b0. Assume a0 < b0: c = b0 is unphysical.
Perturbation analysis:

df

dc
= λ(2c− a0 − b0)

=

{
λ(a0 − b0) at c = a0

λ(b0 − a0) at c = b0

For a0 < b0, C = a0 is a stable fixed point (and C = b0 is unstable)
Phase portrait:

a0 b0
c(t)

Since there is no time dependence, we can shift any solution in time and it will remain
a solution. This is because:

dy

dt
= f(y) =⇒

∫ y du

f(u)
= t+ t0

so if y(T ) is a solution, so is y(t− t0) ∀t0.
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Example (Population dynamics). “Logistic eq”
Population size y(t)
Birth rate αy(t) with α > 0.
Death rate βy + γy2

dy

dt
= (α− β)y − γy2

= λy(1− y/γ) = f(y)

Autonomous ODE fixed points: y = 0 or y = γ.

df

dy
= λ(1− 2y/γ) =

{
λ at y = 0

−λ at y = γ

For λ > 0, y = 0 is unstable fixed point; y = γ is stable.

y

f(y)

0 γ

unstable stable

0 γ
y(t)
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4.3 Fixed points in discrete equations

Consider first order (links xn+1 only to xn) discrete equation

xn+1 = f(xn)

Definition (Fixed point of discrete equation). A fixed point of a first-order discrete
equation is a value of xn such that xn+1 = xn, i.e.,

f(xn) = xn

Stability now perturbation analysis.

Let xf be a fixed point, write
xn = xf + ϵn

xf + ϵn+1 = f(xf + ϵn)

= f(xf ) + ϵn
df

dx
(xf ) +O(ϵ2n)

ϵn=1 ≈ ϵn
df

dx
(xf )

Follows that

|f ′(xf )| < 1 =⇒ stable F.P.

|f ′(xf )| > 1 =⇒ unstable F.P.
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Example (Logistic map).
xn+1 = rxn(1− xn)︸ ︷︷ ︸

f(xn)

“Discrete logistic equation” or “logistic map”
Complimentary function:

dx

dt
= λx

(
1− x

X

)
Interested in xn ≥ 0. If r < 5, {xn} stay in range 0 ≤ xn ≤ 1:

xn

f(xn)

10

r
4

Fixed points: xn = rxn(1− xn)

=⇒ xn = 0 ∧ xn = 1− 1

r

(note that the second solution only works for xn > 0 if r > 1)
Stability?

f ′(x) = r(1− 2α) =

{
r at x = 0

2− r at x = 1− 1
r

Fixed point at x = 0: stable for 0 < r < 1; unstable for r > 1.
Fixed point at x = 1− 1

r : stable for 1 < r < 3; unstable for r > 3.

Illustrate with “cobweb diagrams” (Details are non-examinable)
0 < r < 1:
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Converge to xn = 0 for any starting points 0 ≤ x1 ≤ 1.
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TOPIC IV: HIGHER-ORDER LINEAR ODEs
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1 Second order ODEs

General form

a
d2y

dx2
+ b

dy

dx
+ cy︸ ︷︷ ︸

Dy

= f(x) (∗)

where D is a differential operator defined by

D ≡ a
d2

dx2
+ b

d

dx
+ c

Note that this is linear.

Definition (Linear operator). D is linear if for any y1(x) and y2(x), and constants
α and β,

D(αy1 + βy2) = αDy1 + βDy2

Exploit linearity to solve ODE in 2 steps:

(1) Find complimentary functions that satisfy homogeneous equation

a
d2yc
dx2

+ b
dyc
dx

+ cyc = 0

(2) Find any particular integral that satisfies the full equation.

Then the solution to full equation from yc + yp:

D(yc + yp) = D(yc) +D(yp) = 0 + f(x)

If yc1 and yc2 are linearly independent complimentary functions, then yc1+yp and yc2+yp
are linearly independent solutions of the full equation.

Definition (Linear independence of functions). Set ofN functions {fi(x)} is linearly
dependent if

N∑
i=1

cifi(x) = 0

for N constants ci, not all of which are zero. Otherwise the functions are linearly
independent. [Equivalently, if any function can be written as a linear combination
of the others they are linearly dependent.]
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1.1 Complementary functions

Recall
d

dx
eλx = λeλx

(λ is an eigenvalue and eλx is a eigenfunction) Also eλxis an eigenfunction of D:

D(eλx) = a
d2

dx2
eλx + b

d

dx
eλx + ceλx = (aλ2 + bλc)︸ ︷︷ ︸

eigenvalue

eλx

Complimentary functions of (∗) satisfy Dyc = 0: eigenfunctions of D with eigenvalue
zero:

yc = Aeλx

provided aλ2 + bλ+ c = 0. (Characteristic equation of ay′′ + by′ + cy = 0)
Two roots λ1 and λ2.

• If λ1 ̸= λ2 then we have two linearly independent complimentary functions

yc1 ∝ eλ1x and yc2 ∝ eλ2x

Most general complimentary function is a linear combination of yc1 and yc2 :

yc = c1yc1(x) + c2yc2(x)

(so yc1 and yc2 form a basis for the solution subspace of the homogeneous ODE)

Note. Roots may be complex → oscillations.

• λ1 = λ2: (degenerate case). Only generates one linearly independent complimen-
tary function of form eλ1x. How to find second complimentary function? See
example below.

Example (non-degenerate, real roots).

d2y

dx2
− 5

dy

dx
+ 6y = 0

Characteristic equation:
λ2 − 5λ+ 6 = 0

=⇒ (λ− 2)(λ− 3) = 0

Complimentary function:
yc(x) = Ae2x +Be3x
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Example (complex roots).
d2y

dx2
+ 4y = 0

Characteristic equation:
λ2 + 4 = 0 =⇒ λ = ±2i

General complimentary function:

yc = A e2ix︸︷︷︸
cos 2x+i sin 2x

+Be−2ix

= (A+B)︸ ︷︷ ︸
α

cos 2x+ i(A−B)︸ ︷︷ ︸
β

sin 2x
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Example (degeneracy and detuning).

d2y

dx2
− 4

dy

dx
+ 4y = 0

Characteristic equation:
λ2 − 4λ+ 4 = 0

=⇒ (λ− 2)2 = 0

Degenerate: λ = 2, 2 so only one linearly independent solution of the form eλx. Now
detuning is removing degeneracy by considering “detuned” (modified) equation:

d2y

dx2
− 4

dy

dx
+ (4− ϵ2)y = 0 (ϵ≪ 1)

in limϵ→0, detuned equation → one we really want to solve. Try y = eλx:

λ2 − 4λ+ (4− ϵ2) = 0

=⇒ λ = 2± ϵ

General solution of detuned equation is

y = Ae(2+ϵ)x +Be(2−ϵ)x

= e2x[Aeϵx +Be−ϵx]

= e2x[(A+B) + ϵ(A−B) + (Aϵ2) +O(Bϵ2)]

Consider applying initial conditions

y(0) = C and y′(0) = D

(to original detuned equation) Have

A+B = C and 2(A+B) + ϵ(A−B) = D

so
y → e2x[C + (D − 2C)x+O(Aϵ2) +O(Bϵ2)]

We have

A =
1

2

(
C +

D − 2C

ϵ

)
=⇒ Aϵ2 =

1

2

(
Cϵ2 + (D − 2C)ϵ

)
=⇒ O(Aϵ2) = O(ϵ)

It follows that the general solution of original equation is

y = e2x[α+ βx]

for arbitrary constants α and β. 51



General rule: if yc1(x) is a degenerate complimentary function of a linear ODE with
constant coefficients, then

yc2(x) = xyc1(x)

is a second, linearly independent complimentary function.
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2 Homogeneous 2nd-order ODEs with non-constant
coefficients

General form
y′′ + p(x)y′ + q(x)y = 0 (∗)

2.1 Second CF — reduction of order

Aim: given one solution of (∗), y2(x), find another, y2(x).
Look for a solution

y2 = v(x)y1(x)

So we have

y2 = v′y2 + vy′1

y′′2 = v′′y1 + 2v′y′1 + vy′′1

If y2 satisfies (∗) then

v′′y1 + v′(2y1 + py1) + v(y′′1 + py′1 + qy1︸ ︷︷ ︸
= 0 by y1 in (∗)

) = 0

Follows that
v′′y1 + v′(2y′1 + py1) = 0

u′y1 + u(2y′1 + py1) = 0 for u = v′

(note that this is a first order ODE in u!) Separable:

u′

u
= −y

′
1

y1
− p(x)

=⇒ lnu = −2 ln y1 −
∫ x

0
p(w)dw + lnA

=⇒ u(x) =
A

[y1(x)]2
exp

[
−
∫ x

0
p(w)dw

]
Integrate again to find v(x).

Example.
y′′ −4︸︷︷︸

p(x)

y′ +4︸︷︷︸
q(x)

y = 0

Have a degenerate solution y1 = e2x. Reduction of order:

u′

u
= −2× 2 + 4 = 0

=⇒ v′ = const =⇒ v = Ax+B.

Have y2(x) = (Ax+B)e2x. So xe2x is a second linearly independent solution.
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2.2 Phase space

For n-th order linear ODE

p(x)y(n) + q(x)y(n−1) + · · ·+ r(x)y = f(x)

From this equation, y(n)(x) is determined by y(x), y′(x), . . . , y(n−1)(x). By differentiat-
ing the equation, we can also find that higher derivatives are determined. Hence we can
compute all the derivatives at a point, and therefore construct the Taylor series about
x0 if y(x0), y

′(x0, . . . , y
(n−1)(x) are specified. So solution is determined by these initial

conditions.
State of system fully specified (can predict subsequence evalutation) at any x by solution
vector

Y(x) =


y(x)
y′(x)
...

y(n−1)(X)


At any x, Y(x) defines a point in nD phase space.

Example.
y′′ = 4y = 0 (SHM)

y1 = cos 2x; y2 = sin 2x

Y1(x) =

(
y1
y′1

)
=

(
cos 2x

−2 sin 2x

)
Y2(x) =

(
y2
y′2

)
=

(
sin 2x
2 cos 2x

)
Phase space

y

y′

Y2(x)

Y1(x)

Note. Y1 and Y2 are linearly independent vectors ∀x (in linear algebra sense).

Can use Y1 and Y2 at any x as a basis for phase space.
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2.3 Wronskian and linear dependence

Recall, yi(x) (i = 1, . . . , n) are linearly depdendent if

n∑
i=1

ciyi(x) = 0 ∀x

must hold for all x hence differentiable n− 1 times:

n∑
i=1

ciYi(x) = 0

See that
{yi(x)} linearly dependent =⇒ {Yi} linearly depdendent ∀x

Fundamental matrix : (Y1,Y2, . . . ,Yn) has zero determinant if the {yi} are linearly
dependent.

Definition (Wronskian). Wronskian W (x) of n functions yi(x) (i = 1, . . . , n) is

W (x) = |Y1,Y2,Y3, . . . ,Yn| =


y1 y2 · · · yn
y′1 y2 · · · y′n
...

...
. . .

y
(n−1)
1 y

(n−1)
2 y

(n−1)
n



We have
{yi(x)} linearly dependent =⇒ W (x) = 0 ∀x

(test for linear dependence of n functions)

Remark. W (x) = 0 does not necessarily imply linear dependence of the yi(x).

Example.
y′′ + 4y = 0 =⇒ y1 = cos 2x, y2 = sin 2x

W (x) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = ∣∣∣∣ cos 2x sin 2x
−2 sin 2x 2 cos 2x

∣∣∣∣ = 2

W ̸= 0 =⇒ y1 and y2 are linearly independent.

2.4 Abel’s Theorem
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Theorem (Abel’s Theorem). Given any two solutions of

y′′ + p(x)y + q(x)y = 0

If p(x) and q(x) are continuous on an interval I, then either W (x) = 0 ∀x ∈ I or
W (x) ̸= 0 ∀x ∈ I.

Proof (sketch).

W = y1y
′
2 − y2y

′
1

=⇒ W ′ = y1y
′′
2 − y2y

′′
1

= y2(py
′
1 + qy1)− y1(py

′
2 + qy2)

= y1py
′
1 − y1py

′
2

= −p(x)W

Separable ODE for W :

W (x) =W (x0) exp

(
−
∫ x

x0

p(u)du

)
︸ ︷︷ ︸

never zero

(This is known as “Abel’s identity”) If W (x) vanished at some point x0, it is zero ∀x;
else is is never zero.

Note. If p(x) = 0 (no y′ term in ODE), then the Wronskian is constant.

Example (Bessel’s Equation).

x2y′′ + xy′ + (x2 − n2)y = 0

generally no closed form solutions (but for example for some half integer values there
exists a closed form solution)

y′′ +
1

x
y′ +

(
1− n2

x2

)
y = 0

Abel:

W (x) =W (x0) exp

(
−
∫ x

x0

du

u

)
=W (x0)

x0
x

Note: Abel’s identity determines form of W without having to solve ODE.
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Geometric interpretation: (phase space)

y

y′

Y1

Y2

Solution vectors always collinear or never collinear as x varies. [Basis at some x→ basis
∀x.]

Applications of Abel’s Theorem

y1y
′
2 − y2y

′
1 =W (x0) exp

(
−
∫ x

x0

p(w)dw

)
If y1 known, can solve this ODE to find y2:

d

dx

(
y2
y1

)
=
W (x0)

y21(x)
exp

(
−
∫ x

x0

p(u)du

)
Exactly as for “reduction of order”.

Generalisation

Abel’s Theorem also holds for solutions of nth-order linear, homogeneous ODEs.
Such an equation can always be written as a system of first-order equations:

Y′ +AY = 0

Example.
y′′′ + p(x)y′′ + q(x)y′ + r(x)y = 0 y
y′

y′′

+

0 −1 0
0 0 −1
r q p


︸ ︷︷ ︸

A

 y
y′

y′′

 = 0
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Can be shown (Q7, Ex 3) that

W ′ +Tr(A)W = 0

=⇒ W (x) =W (x0) exp

(
−
∫ x

x0

Tr[A(u)]du

)
so Abel’s theorem holds.

2.5 Linear equidimensional ODEs

Definition (Equidimensional ODE). A linear, second-order ODE is equidimen-
sional if it has the following form

ax2y′′ + bxy′ + cy = f(x) (∗)

(where a, b and c are constants)

Why call this equidimensional?
Let y(x) be a complimentary function of (∗). Consider

ϕ(x) = y(λx)

for some arbitrary real λ. Then

x
dϕ

dx
= xλy′(λx)

x2
d2ϕ

dx2
= x2λ2y′′(λx)

=⇒ ax2
d2ϕ

dx2
+ bx

dϕ

dx
+ cϕ = LHS of (∗) evaluated at λx = 0

Solving by Eigenfunctions

y = xk is an eigenfunction of x d
dx , with eigenvalue k:

x
d

dx
xk = kxk

Look for complimentary functions of (∗): yc = xk

ak(k − 1) + bk + c = 0

=⇒ ak2 + (b− a)k + c = 0

Solve quadratic equation to determine k1 and k2. If k1 ̸= k2 (non-degenerate) general
complimentary function:

yc = Axk1 +Bxk2
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Solving by substitution

Switch independent variable from x to

z ≡ lnx

For y(x) = y(ez)
dy

dz
= ezy′(ez)︸ ︷︷ ︸

xy′(x)

d2y

dz2
= ezy′(ez)︸ ︷︷ ︸

x′(x)

+ e2zy′′(ez)︸ ︷︷ ︸
x2y′′(x)

Follows that (∗) becomes

a
d2y

dz2
+ (b− a)

dy

dz
+ cy︸ ︷︷ ︸

constant coefficients

= f(ez)

Complimentary function yc ∝ eλz

aλ2 + (b− a)λ+ c = 0

(Some characteristic equation as for k1 and k2) General complimentary function (k1 ̸=
k2):

yc = Aek1z +Bek2z = Axk1 +Bxk2

Degenerate case (k1 = k2 = k)

yc = Aekz +Bxekz = Axk +B ln(x)xk
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3 Inhomogeneous (Forced) 2nd-order ODEs

3.1 Particular Integrals of equations with constant coefficients

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

f(x) yp(x)

emx Aemx

sin kx or cos kx A sin kx+B cos kx
Polynomial pn(x) (n-th degree) Polynomial qn(x) (anx

n + · · ·+ a1x+ a0)

Example.
y′′ − 5y′ + 6y = 2x+ e4x︸ ︷︷ ︸

f(x)

Try

yp =

for 2x︷ ︸︸ ︷
(Ax+B)+

for e4x︷︸︸︷
ce4x

y′p = A+ 4ce4x

y′′p = 16ce4x

(16C − 20C + 6C)︸ ︷︷ ︸
→1

e4x + (6A)︸︷︷︸
→2

x+ (−5A+ 6B)︸ ︷︷ ︸
→0

= 2x+ e4x

C =
1

2
, A =

1

3
, B =

5

18

Complementary function: αe3x + βe2x. General solution:

αe3x + βe2x +
1

2
e4x +

1

3
x+

5

18

Resonance

What if forcing term involves a complimentary function? → Detuning.
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Example.
ÿ + ω2

0y = sinω0t (∗)

Complimentary function:

yc(t) = A cosω0t+B sinω0t (SHM)

Oscillator driven “resonantly”.
“Detuned equation”:

ÿ + ω2
0y = sinωt (ω ̸= ω0) (†)

Try particular integral:
yp(t) = C sinωt

Substitute into (†):

C(ω2
0 − ω2) = 1

=⇒ C =
1

ω2
0 − ω2

Limit as ω → ω0 does not exist. Add in a complimentary function to regularise the
limit ω → ω0:

yp(t) =
1

ω2
0 − ω2

sinωt− sinω0t︸ ︷︷ ︸
CF


Evaluate indeterminate limit with L’Hôpital’s rule:

lim
ω→ω0

yp(t) = lim
ω→ω0

(
t cosωt

−2ω

)
= − t cosω0t

2ω0

Particular integral of original equation (∗) is

yp(t) = − t

2ω0
cosω0t

General rule: if forcing is a linear combination of complimentary functions, particular
integral is of the form

yp(t) = t× (non-resonant PI)︸ ︷︷ ︸
cosω0t above

Resonance in Equidimensional ODEs

Complimentary function for equidimensional ODE (non-degenerate):

yc = Axk1 +Bxk2
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If forcing f(x) ∝ xk1 (or xk2), particular integral is

yp(x) ∝ lnx× xk1

Follows from transforming to z = lnx:

yp(z) ∝ zek1z = lnx xk1

3.2 Variation of Parameters

Systematic way of finding a particular integral given two linearly independent compli-
mentary functions (y1 and y2).

Consider
y′′ + p(x)y′ + q(x)y = f(x) (∗)

with linearly independent complimentary functions y1 and y2. Solution vectors Y1(x)
and Y2(x). We will use these as a basis in phase space at any argument x to write the
solution vector of the particular integral as

Yp(x) = u(x)Y1(x) + v(x)Y2(x)

In components:
yp = u(x)y1 = v(x)y2 (†)

y′p = u(x)y′1 + v(x)y′2 (‡)

d

dx
y′p = y′′p =︸︷︷︸

(‡)

uy′′1 + u′y′1 + vy′′2 = v′y′2

Follows that

f(x) = uy′′1 + u′y′1 + vy′′2 + v′y′2 + p(x)[uy′1 + vy′2] + q(x)[uy1 + vy2]

Now using the fact that y1 and y2 are complimentary functions, we get that

f(x) = u′y′1 + v′y′2

However (‡) has to be consistent with d
dx (†), so

d

dx
yp = u′y1 + uy′1 + v′y2 + vy′2

Compare to (‡):
u′y1 + v′y2 = 0

Combining with u′y′1 + v′y′2 = f(x), we have(
y1 y2
y′1 y′2

)(
u′

v′

)
=

(
0
f

)
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=⇒
(
u′

v′

)
=

1

W︸︷︷︸
y1y′2−y2y′1

(
y′2 −y2
−y′1 y1

)(
0
f

)

Hence
u′ = − y2

W
f ; v′ =

y1
W
f

Integrate to find

yp(x) = y2(x)

∫ x 1

W (t)
fy1(t)f(t)dt− y1(x)

∫ x 1

W (t)
y2(t)f(t)dt

(changing the lower limit in these integrals just adds a multiple of a complimentary
function).

Example.
y′′ + 4y = sin 2x︸ ︷︷ ︸

f(x)

Complimentary functions y1 = sin 2x, y2 = cos 2x. (Note that forcing term is
resonant).

W (x) = −2

so

yp(x) = cos 2x

∫ x

−1

2
sin 2t sin 2t︸ ︷︷ ︸
1
2
(1−cos 4t)

dt− sin 2x

∫ x

−1

2
cos 2t sin 2t︸ ︷︷ ︸

1
2
sin 4t

dt

yp(x) = −1

4
cos 2x

[
x− 1

4
sin 4x

]
+

1

4
sin 2x

[
−1

4
cos 4x

]
=

1

16
sin 2x− 1

4
x cos 2x
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4 Forced Oscillating Systems: Transients and Damping

Newton II:

mÿ =
∑

forces

= −ky − bẏ + F (t)

mÿ + bẏ + ky = F (t)

(b, k positive constants). For b = 0 and F (T ) = 0, simple harmonic motion at

ω0 =

√
k

m

Dimensionless t coordinate:

τ = ω0t

(
d

dτ
= 1

)
Divide ODE by k:

y′′ + 2κy′︸︷︷︸
b

mω0

+y = f(τ)︸︷︷︸
F (t)
k

Unforced system described by one dimensionless parameter κ.

4.1 Free (unforced or natural) response

f = 0:
y′′ + 2κy′ + y = 0

Look for solutions y ∝ eλx:
λ2 + κλ+ 1 = 0

(characteristic equation).

λ1, λ2 = −κ±
√
κ2 − 1
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Light damping (underdamping): κ < 1

λ1 and λ2 complex:

λ1, λ2 = −κ± i
√
1− κ2

General solution:

y(τ) = e−κτ [A sin(
√

1− κ2τ)] +B cos(
√

1− κ2τ)

(A and B constants)

Critical damping: κ = 1

Degenerate case:
λ1 = λ2 = −κ

General solution:
y(τ) = e−κτ (A+Bτ)

(A and B constants)
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Heavy damping (overdamping): κ > 1

λ1 and λ2 are real: take |λ2| > |λ1| without loss of generality.

λ1 = −κ+
√
κ2 − 1︸ ︷︷ ︸

negative

λ2 = −κ−
√
κ2 − 1︸ ︷︷ ︸

positive

General solution:
y(τ) = Ae−|λ1|τ +Be−|λ2|τ

(first term dominates long-term motion if present)

Note: unforced response decays eventually in all cases.

4.2 Forced response

Initial “transient” response from PI + CF, but CF decays leaving “steady-state” response
(PI).
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Example.

ÿ + µẏ + ω2
0y =

F0

m
sinωt (∗)

Assuming light damping (µ < 2ω0). Complimentary function:

yc(t) = e−
µt
2 [A sinωfreet+B cosωfreet]

(κ = µ
2ω0

) where

ωfree =

√
ω2
0 −

µ2

4

For PI: try

yp(t) =
F0

m
(C sinωt+D cosωt)

Substitute into (∗):

sinωt : −ω2C − µωD + ω2
0C = 1

cosωt : ω2D + µωC + ω2
0D = 0

Gives

yp(t) =
F0/m

(ω2
0 − ω2)2 + (µω)2

[(ω2
0 − ω2) sinωt− µω cosωt]

Amplitude of yp:
F0/m√

(ω2
0 − ω2)2 + (µω)2

(F0
m

√
c2 + p2)
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5 Impulses and Point Forces

Consider sudden force F (t) applied between t = T − ϵ and T + ϵ.

TT − ϵ T + ϵ
t

F (t)

For example strike on oscillator.
As ϵ→ 0, only the impulse

I =

∫ T+ϵ

T−ϵ
F (t)dt

matters for subsequent motion → (mathematically) convenient to consider limit of a
sudden impulse.

Forced, damped oscillator
mÿ + bẎ + ky = F (t)

Integrate ODE from T − ϵ to T + ϵ

lim
ϵ→0

m[ẏ]T+ϵ
T−ϵ + b[y]T+ϵ

T−ϵ︸ ︷︷ ︸
0 if y continuous

+ k

∫ T+ϵ

T−ϵ
ydt︸ ︷︷ ︸

0 if y remains finite

 = I

here I denotes impulse. Follows that

lim
ϵ→0

m[ŷ]T+ϵ
T−ϵ = I

velocity is discontinuous.
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t

y(t)

T

5.1 Dirac delta function

Consider a family of functions D(t; ϵ) with

1. limϵ→0D(t; ϵ) = 0 ∀t ̸= 0.

2.
∫∞
−∞D(t, ϵ)dt.

Impulse force considered scalar F (t) = ID(t− T, ϵ).
Example family:

D(t; ϵ) =
e−t2/ϵ2

ϵ
√
π

(Q14 on example sheet 1)

t

D(t; ϵ)

Family not unique, but for any such family limit ϵ→ 0 yields Dirac delta function.
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Definition (Dirac delta function). The Dirac delta function is defined by

δ(t) ≡ lim
ϵ→0

D(t; ϵ).

Should only use inside integrals.
Key properties:

1. δ(x) = 0 ∀x ̸= 0.

2.
∫∞
−∞ δ(x)dx = 1.

3. For all g(x) continuous at x = 0∫ ∞

−∞
g(x)δ(x)dx

= lim
ϵ→0

∫ ∞

−∞
g(x)D(x; ϵ)dx

= g(0)

Generalises to (b > a)∫ b

a
g(x)δ(x− x0)dx =

{
g(x0) if a < x0 < b

0 otherwise

5.2 Delta-function forming

Consider
y′′ + p(x)y′ + q(x)y = δ(x)

For x < 0 or x > 0 we have
y′′ + p(x)y′ + q(x)y = 0

However, discontinuity in y′ at x = 0: integrate ODE from −ϵ to +ϵ

lim
ϵ→0

[y′]ϵ−ϵ + p(0) lim
ϵ→0

[y]ϵ−ϵ︸ ︷︷ ︸
0 if y continuous

+ lim
ϵ→0

∫ ϵ

−ϵ
q(x)ydx︸ ︷︷ ︸

0 if y is finite

= 1

=⇒ lim
ϵ→0

[y′]ϵ−ϵ = 1

“Jump condition”

Note. Continuity of y at x = 0 is required to avoid y′ ∼ δ(x) around x = 0 and y′′

even worse behaved.

General rule: highest-order derivative term in the ODE addresses the delta-function
forcing.
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Example.

y′′ − y = 3δ
(
x− π

2

)
boundary conditions t = 0 at x = 0 and y = 0 at x = π.
For 0 ≤ x < π

2 : y
′′ − y = 0

y = A sinh(x) [y(0) = 0]

For π
2 < x ≤ π: y′′ − y = 0

y = C sinh(π − x) [y(π) = 0]

Join up at x = π
2 with

We have y continuous =⇒ A = C.

1.2. Now “Jump condition”:

lim
ϵ→0

[y′]
π
2
+ϵ

π
2
−ϵ = 3

=⇒ −C cosh
(π
2

)
−A cosh

(π
2

)
= 3

hence

A = C = − 3

2 cosh
(
π
2

)

x

y

π
2 π

(discontinuity in y′ at the “spike”)

5.3 Heaviside Step Function
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Definition (Heaviside function). The Heaviside step function is

H(x) =

∫ x

−∞
δ(t)dt

Follows that

t(x) =


0 for x < 0

1 for x > 0

undefined for x = 0

x

H(x)

Fundamental theorem of calculus implies

dH

dx
= δ(x)

Forcing with H(x)

Consider
y′′ + p(x)y′ + q(x)y = H(x)

Have

y′′ + p(x)y′ + q(x)y =

{
0 for x < 0

1 for x > 0

Follows that
lim
ϵ→0

[y′′]ϵ−ϵ + p(0) lim
ϵ→0

[y′]ϵ−ϵ + q(0)[y]ϵ−ϵ = 1 (∗)

If y′′ ∼ H(x) around x = 0, y′ and y are continuous and (∗) is satisfied.

lim
ϵ→0

[y′]ϵ−ϵ = 0 and lim
ϵ→0

[y]ϵ−ϵ = 0

“Jump” conditions for Heaviside forcing.
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6 Higher Order Discrete Equations

Consider a linear, discrete second-order equation

ayn+2 + byn+1 + cyn = fn

where a, b and c are constants and fn is a forcing sequence.

Note. Might arise from discretising a second order ODE with constant coefficients.

d2y

dx2

∣∣∣∣
xn

≃

yn+1︷ ︸︸ ︷
y(xn + h)+

yn−1︷ ︸︸ ︷
y(xn − h)−

yn︷ ︸︸ ︷
2y(xn)

h2

Solve with similar methods to ODEs:

yn = y(c)n + y(p)n

Complementary function satisfies

ay
(c)
n+2 + by

(c)
n+1 + cy(c)n = 0 (∗)

For ODE with constant coefficients, y or eλx → eλnkøkn.

Try y
(c)
n ∝ kn in (∗):

akn+2 + bkn+1 + ckn = 0

=⇒ ak2 + bk + c = 0 k ̸= 0

“Characteristic equation”.
Two roots of characteristic equation in general, k = k1 and k = k2. So general compli-
mentary function:

y(c)n =

{
Akn1 +Bkn2 if k1 ̸= k2

(A+Bn)kn1 if k1 = k2

(Note that this is similar to differential equations, where we get A+Bx).

Now we will look at common forcing functions, and suitable particular integrals to try
in these cases.

fn y
(c)
n

kn Aknif k ̸∈ {k1, k2}
kn1 Ankn1

np(p a non-negative integer) Anp +Bnp−1 + · · ·+ Cn+D
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Example (Fibonacci sequence).

yn = yn−1 + yn−2

with initial conditions y0 = 1 and y1 = 1. So the first few terms are 1, 1, 2, 3, 5, 8.
We have

yn+2 − yn+1 − yn = 0 (∗)

Try yn = kn:
=⇒ k2 − k − 1 = 0

=⇒ k =
1±

√
5

2

“Golden ratio” ϕ1 =
1+

√
5

2 and −1
ϕ1

= 1−
√
5

2 . General solution of (∗) is

yn = Aϕn1 +Bϕn2

for some constants A and B, which are determined by the initial conditions:

y0 = 1 =⇒ A+B = 1

y1 = 1 =⇒ Aϕ1 +Bϕ2 = 1

=⇒ A =
ϕ1√
5
, B =

−ϕ2√
5

=
1√
5ϕ1

Follows that

yn =
ϕn+1
1 − ϕn+1

2√
5

=
ϕn+1
1 − (−1/ϕ1)

n+1

√
5

Note that yn is a sequence of integers, but ϕ1 is irrational, so it’s almost magical
that the formula always gives an integer.
Since ϕ1 > 1, yn → ϕn+1

1 /
√
5 as n→ ∞, so

lim
n→∞

yn+1

yn
= ϕ1.
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7 Series Solutions

Series solutions for linear, homogeneous, second-order ODEs.

p(x)y′′ + q(x)y′ + r(x)y = 0 (∗)

Seek a series solution around x0. Feasibility depends on nature of p(x), q(x) and r(x)
around x0.

7.1 Classification of Singular Points

Definition (Ordinary and Singular Points). Point x0 is an ordinary point if both
q(x)/p(x) and r(x)/p(x) have Taylor series around x0. (“analytic” there). Other-
wise, x0 is a singular point.

Types of singular point: if x0 is a singular point of (∗), but (∗) can be rewritten as

P (x)(x− x0)
2︸ ︷︷ ︸

p(x)

y′′ +Q(x)(x− x0)︸ ︷︷ ︸
q(x)

y′ +R(x)︸ ︷︷ ︸
r(x)

y = 0.

with Q(x)
P (x) and R(x)

P (x) analytic at x0, then x0 is a regular singular point. Otherwise x0 is
an irregular singular point.
Equivalently: if

(x− x0)
q(x)

p(x)

[
=
Q

P

]
and

(x− x0)
2 r(x)

p(x)

[
=
R

P

]
are analytic at x0, then x0 is a regular singular point.
“No non-singular and equidimensional equation.”

Example.
(1− x2)︸ ︷︷ ︸

p

y′′ − 2x︸︷︷︸
q

y′ + 2︸︷︷︸
r

y = 0

q(x)

p(x)
=

−2x

1− x2
=

2x

(x− 1)(x+ 1)

r(x)

p(x)
=

2

1− x2
= − 2

(x− 1)(x+ 1)

x = ±1 are singular points. They are regular since, for example

(x− 1)
q(x)

p(x)
=

2x

x+ 1

analytic at x = 0.
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Example.
sinx︸︷︷︸

p

y′′ + cosx︸ ︷︷ ︸
q

y′ + 2︸︷︷︸
r

y = 0

We have
q

p
=

cosx

sinx

r

p
=

2

sinx

x = nπ are singular points (n integer). However

(x− nπ)︸ ︷︷ ︸
ε

q

p
= ε

ωs(nπ + ε)

sin(nπ + ε)

= ε
cos ε

sin ε

(Has a Taylor series about ε = 0). Also

(x− nπ)2
r

p
=

2ε2

(−1)n sin ε

which has a Taylor series about ε = 0. Hence x = nπ are regular singular points.

Example.
(1 +

√
x)︸ ︷︷ ︸

p

y′′ −2︸︷︷︸
q

y′ + 2︸︷︷︸
r

y = 0

x
q

p
= − 2x2

1 +
√
x

does not have a Taylor series about x = 0, so x = 0 is an irregular singular point.

7.2 Method of Frobenius

p(x)y′′ + q(x)y′ + r(x)y = 0 (∗)
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Theorem (Fuch’s Theorem).

1. If x = x0 is an ordinary point of (∗), there are two linearly independent solutions
of the form

y =

∞∑
n=0

an(x− x0)
n

(Taylor series convergent in some neighbourhood of x0).

2. If x0 is a regular singular point of (∗) there is at least one solution of the form

y =
∞∑
n=0

an(x− x0)
n+σ

= (x− x0)
σ

∞∑
n=0

an(x− x0)
n

for some real σ with a0 ̸= 0 (this is known as a “Frobenius series”). No guarantee
that we obtain two linearly independent solutions in this case.

Method may fail completely for irregular singular points.

Example of ordinary point

(1− x2)y′′ − 2xy′ + 2y = 0

Expand around x = 0 (ordinary point). [x = ±1 are regular singular points]. Try

y =
∞∑
n=0

anx
n

y′ =

∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1)anx
n−2

Convenient to multiply (∗) by x2:

(1− x2)(x2y′′)− 2x2(xy′) + 2x2(y) = 0

Substituting:

∞∑
n=2

an[(1− x)2n(n− 1)]xn − 2
∞∑
n=1

anx
2nxn + 2

∞∑
n=0

anx
n+2 = 0
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which can be rewritten as

∞∑
n=2

an[(1− x2)n(n− 1)]xn − 2

∞∑
n=2

an−2(n− 2)xn + 2

∞∑
n=0

anx
n+2 = 0

Equate coefficients of xn for n ≥ 2:

ann(n− 1)− an−2(n− 2)(n− 3)− 2an−2(n− 2) + 2an−2 = 0 (n ≥ 2)

=⇒ n(n− 1)an = n(n− 3)an−2

=⇒ an =
n− 3

n− 1
an−2

(recursive relation). a0 and a1 are not fixed (arbitrary constants). Since a3 = 0 =⇒
a5 = 0 =⇒ a7 = 0 etc, there is one odd solution:

y = a1x

other, even solution, for n even:

an =
n− 3

n− 1
an−2

=

(
n− 3

n− 1

)(
n− 5

n− 3

)
an−4

= · · ·

= − 1

n− 1
a0

=⇒ y = a0

[
1− x2 − x4

3
− x4

5
− · · ·

]
Note:

ln(1± x) = ±x− x2

2
± x3

3
− · · ·

so

y = a0

[
1− x

2
ln

(
1 + x

1− x

)]
Closed-form solution - note behaviour near x = ±1 (regular singular points); see below.

Example of Regular Singular Point

4xy′′ + (1− x2)y′ − xy = 0 (∗)

x = 0: regular singular point
Try

y(x) =
∞∑
n=0

anx
n+σ (a0 ̸= 0)
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Multiply (∗) by x:
4(x2y′′) + 2(1− x2)(xy′) + x2y = 0

Hence,
∞∑
n=0

anx
n+σ(4(n+ σ)(n+ σ − 1) + 2(1− x2)(n+ σ)− x2) = 0

σ determined by lowest power of x.
xσ: a0(4σ(σ−1)+2σ) = 0 (note a0 ̸= 0 by assumption). Hence 2σ(2σ−1) = 0 so σ = 0
or σ = 1

2 .
Next lowest power of x:
xσ+1: a1(4(σ + 1)σ + 2(1 + σ)) = 0 hence a1(σ + 1)(2σ + 1) = 0. Since we know that
σ = 0 or 1

2 , we must have a1 = 0.
xn+σ (n ≥ 2): an(4(n+ σ)(n+ σ − 1) + 2(1 + σ))− 2an−2(n+ σ − 2)− an−2 = 0 so

2(n+ σ)(2n+ 2σ − 1)an = (2n+ 2σ − 3)an−2 (†)

Consider roots separately:
σ = 0: (†) gives 2n(2n− 1)an = (2n− 3)an−2

=⇒ an =
2n− 3

2n(2n− 1)
an−2

a2 =
1

4× 3
a0; a4 =

5

8× 7
a2 =

5× 1

8× 7× 4× 3
a0

(a1 = 0, so a3 = 0 etc)
Solution:

y = a0

(
1 +

x2

4× 3
+

5x4

8× 7× 4× 3
+ · · ·

)
(Note that this is a Taylor series since the root σ was an integer)
σ = 1

2 (†) gives (2n+ 1)2na0 = (2n− 2)an−2 for n ≥ 2, hence

an =
n− 1

n(2n+ 1)
an−2

a2 =
1

2× 5
; a4 =

3× 1

4× 9× 2× 5

Solution:

y = b0x
1
2

(
1 +

x2

2× 5
+

3x4

4× 9× 2× 5
+ · · ·

)
(Frobenius series).
Note that we have determined 2 linearly independent solutions, but this is not generally
the case.
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7.3 Second solutions

Expansion around a regular singular point guarantees one Frobenius solution. Whether
we get a second depends on roots σ1 and σ” of indicial equation.

1. σ1 − σ2 not an integer, then we get two linearly independent solutions:

y1 = (x− x0)
σ1

∞∑
n=0

an(x− x0)
n

y2 = (x− x0)
σ2

∞∑
n=0

bn(x− x0)
n

Note: as x→ x0, general solution ∼ a0(x− x0)
σ1 if σ1 < σ2.

2. σ1 − σ2 is a non-zero integer. One series solution involving larger root (say, σ2).

y1 = (x− x)6)σ2

∞∑
n=0

an(x− x0)
n

Second solution of ODE is generally of the form

y2 = (x− x0)
σ1

∞∑
n=0

bn(x− x0)
n + cy1(x) ln(x− x0)

(c may or may not be zero)
Constant c is determined by a1 (in y1) and b0 → general solution depends on two
arbitrary constants as required.

3. σ1 = σ2 = σ log term is always required, c ̸= 0.

y1 = (x− x0)
σ

∞∑
n=0

an(x− x0)
n

y2 = (x− x0)
σ

∞∑
n=0

bn(x− x0)
n + cy1(x) ln(x− x0)
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Example (case 2).
x2y′′ − xy = 0 (∗)

x = 0 is a regular singular point.
Look for

y =
∞∑
n=0

anx
n+σ (a0 ̸= 0)

(∗) implies
∞∑
n=0

(an(n+ σ)(n+ σ − 1)xn+σ − anx
n+σ+1) = 0

Lowest power is xσ: a0σ(σ − 1) = 0 hence σ1 = 0 and σ2 = 1 (since a0 ̸= 0).
Since σ1 − σ2 is a non-zero integer, this is case 2.
For n ≥ 1.

an(n+ σ)(n+ σ − 1) = an−1

σ = 1 (larger root):

an =
an−1

n(n+ 1)
=⇒ an =

a0
n!(n+ 1)!

Solution

y1 = a0x

(
1 +

x

2
+
x2

12
+ · · ·

)
σ = 0 (smaller root):

n(n− 1)an = an−1

but n = 1 gives a0 = 0, which contradicts initial assumption. So we need a log term:

y2(x) =
∞∑
n=0

bnx
n

︸ ︷︷ ︸
σ1 = 0 series

+cy1(x) lnx

Determine {bn} and c by direct substitution in ODE or by method of reduction or
order. (See non-examinable section of lecture notes)
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TOPIC V: MULTIVARIATE FUNCTIONS -

APPLICATIONS

• Directional derivatives

• Extrema

• Coupled systems of first-order ODEs

• Partial differential equations
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1 Directional Derivative

Consider function f(x, y) and vector displacement ds = (dx,dy). Infinitesimal change
in f :

df =
∂f

∂x
dx+

∂f

∂y
dy

= (dx,dy) ·
(
∂f

∂x
,
∂f

∂y

)
= ds · ∇f

∇f denotes the “gradient of f”.

Definition (Gradient of f).

∇f =

(
∂f

∂x
,
∂f

∂y

)
(∗)

Remark. This is vector valued, and sometimes instead denoted grad f .

If we write
ds = dsŝ

where ds is distance displacement and ŝ is a unit vector (|ŝ| = 1).

Definition (Directional derivative). The directional derivative of f in direction ŝ
is

df

ds
= ŝ · (∇f)

Rate of change of f with distance s along direction ŝ.

Can then define gradient vector ∇f geometrically as that vector such that

df

ds
= ŝ · (∇t)

Properties of gradient vector
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ŝ

∇f

θ

df

ds
= ŝ · ∇f = cos θ|∇f |

1. Direction ∇f is that in which f increases most rapidly.

2. Magnitude of ∇f is maximum rate of change of f :

|∇f | = max

(
df

ds

)
3. If ŝ is parallel to contours of f , then

0 =
df

ds
= ŝ · (∇f)

Hence, ∇f is ⊥ contours of f(x, y).
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2 Stationary Points

Always at least one direction for which df
ds = 0 (parallel to contours of f).

Stationary points
df

ds
= 0∀ŝ

Since
df

ds
= ŝ · (∇f)

we must have ∇f at stationary points.

Types of stationary points
Local maxima:

Contours of f are locally elliptical.
Local minima:

Contours are locally elliptical.
Saddle points:
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Contours locally hyperbolic. Contours cross at and only at saddle points.

86



3 Classification of Stationary Points

Consider how f(x, y) varies along line

x(s) = x0 + sŝ

Can think of f(x(s), y(s)) as a function of s so usual single-variable Taylor series holds:

f(x0 + sŝ) = f(x0) + s
df

ds

∣∣∣∣
x0

+
1

2
s2

d2f

ds2

∣∣∣∣
x0

+ · · ·

= f(x0) + sŝ · ∇f |x0︸ ︷︷ ︸
1

+
1

2
s2(ŝ · ∇)(ŝ · ∇f)︸ ︷︷ ︸

2

+ · · ·

Define vector displacement
δx = sŝ

components
δx = x(s)− x0, δy = y(s)− y0

Now we focus on terms 1 and 2:

1. sŝ · (∇f) = δx · ∇ = δx
df

dx
+ δy

df

dy

2.
s2(ŝ · v)(ŝ · ∇f) = (δx · ∇f)

=

(
δx

∂

∂x
+ δy

∂

∂y

)(
δx
∂f

∂x
+ δy

∂f

∂y

)
= (δx)2

∂2f

∂x2
+ δxδy

∂2f

∂x∂y
+ δyδx

∂2f

∂x∂y
+ (δy)2

∂2f

∂y2

= (δx, δy)

(
fxx fxy
fyx fyy

)(
δx
δy

)

87



Definition (Hessian matrix). The Hessian matrix is

H =

(
fxx fxy
fyx fyy

)
= ∇∇f

Symmetric since fxy = fyx.

Multivariate Taylor series

f(x0 + δx, y0 + δy) = f(x0, y0) +

(
δx
∂f

∂x
+ δy

∂f

∂y

)∣∣∣∣
x0,y0

+
1

2

(
(δx)2

∂2f

∂x2
+ 2δxδy

∂2

∂x∂y
+ (δy)2

∂2f

∂y2

)∣∣∣∣
x0,y0

+ · · ·

Coordinate free form:

f(x0 + δx) + f(x0) + δx · ∇f |x0 +
1

2
δx(∇∇f)|x0δx

2 + · · ·

3.1 Nature of stationary points and the Hessian

Let x0 be a stationary point (∇f |x0= 0). Around x0:

f(x) ≈ f(x0) +
1

2
δx︸︷︷︸

x−x0

H(x0)︸ ︷︷ ︸
Hessian

δx⊤

Nature of stationary point depends on properties of H(x0).

Definition (Positive-definite and negative definite matrices). A (real) symmetric
matrix H is positive definite if

xHx⊤ > 0

for all real x (x ̸= 0). It is negative definite if

xHx⊤ < 0

for all real x (x ̸= 0). Otherwise, indefinite.

If H(x0) is positive definite, then δxHδx⊤ > 0 for all δx so f(x) > f(x0) in vicinity
of x0:

H positive definite =⇒ local minimum

Similarly,

H negative definite =⇒ local maximum

If indefinite, may be a maximum, minimum or a saddle.
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Definiteness and eigenvalues

H is real symmetric → diagonalise H with an orthogonal transformation. In nD, use
coordinates along principal axes.

δxHδx⊤ = (δx1, δx2, . . . , δxn)


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn



δx1
δx2
...
δxn


Follows that

H positive definite ⇐⇒ all λi > 0

H negative definite ⇐⇒ all λi < 0

If all λi are non-zero, but of mixed sign, have a saddle point.
If ant eigenvalues are 0, need higher terms in Taylor expansion.

Example.
f(x, y) = x2 + y4

Global minimum at (0, 0)

H =

(
2 0
0 12y2

)
=

(
2 0
0 0

)
at (0, 0)

=⇒ λ1 = 2, λ2 = 0

Definiteness and signature of H

Alternative to establish if positive or negative definite.

Definition (Signature of H). The signature of H is pattern of signs of the ordered
determinants of the leading principal minors of H: for example for f(x1, x2, . . . , xn)

|fx1x1 |︸ ︷︷ ︸
|H1|

,

∣∣∣∣fx1x1 fx1x2

fx2x1 fx2x2

∣∣∣∣︸ ︷︷ ︸
|H2|

, · · · ,

∣∣∣∣∣∣∣
fx1x1 · · · fx1xn

...
. . .

...
fxnx1 · · · fxnxn

∣∣∣∣∣∣∣︸ ︷︷ ︸
|H|=|Hn|

Sylvestor’s criterion

H is positive definite ⇐⇒ signature is +,+, · · · ,+
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H is negative definite ⇐⇒ signature is −,+,−, · · · , (−)n

[xHx⊤ with x = (x1, x2, 0, 0, . . . , 0)]

3.2 Contours near stationary points

Let f(x, y) have a stationary point at (x0, y0). Adopt coordinates along principal axes
of H at x0:

H =

(
λ1 0
0 λ2

)
Write

x = x0 + (ξ, ζ)

then around x0

f(x) ≈ f(x0) +
1

2
(λ1ξ

2 + λ2ζ
2)

Contours of f close to x0 satisfy

λ1ξ
2 + λ2ζ

2 = constant

Maximum or minimum: λ1 and λ2 same sign → elliptical contours
Saddle point: λ1 and λ2 opposite sign → hyperbolic contours.
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Example.
f(x, y) = 4x3 − 12xy + y2 + 10y − 6

fx = 12x2 − 12y

fy = −12x+ 2y + 10

Stationary points:
fx = 0 =⇒ x2 = y

fy = 0 =⇒ x2 − 6x+ 5 = 0 =⇒ x = 1, 5

Stationary points (1, 1) and (5, 25).

fxx = 24x; fxy = 12; fyy = 2

(1, 1):

H =

(
24 −12
−12 2

)
|H1| = 24, |H2| = −96

Signature is +,− so neither positive definite nor negative definite. |H| < 0 =⇒ λ1
and λ2 are non-zero and opposite signs → saddle point.
(5, 25):

H =

(
120 −12
−12 2

)
|H1| = 120, |H2| = 96 =⇒ signature is +,+ so a minimum. Near saddle point,
(x, y) = (1, 1) + (δx, δy). Contours locally have

fxx(δx)
2 + 2fxy(δx)(δy) + fyy(δy)

2 = constant

=⇒ 12(δx)2 − 12δxδy + (δy)2 = constant

Intersecting contours through (1, 1) are asymptotes of hyperbola:

12(δx)2 − 12δxδy + (δy)2 = 0

=⇒ δy = (6± 2
√
6)δx.
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4 Systems of Linear Equations

Consider two functions y1(t) and y2(t) with

ẏ1 = ay1 + by2 + f1(t)

ẏ2 = cy1 + dy2 + f2(t)

(a, b, c, d constants). Vector form:

Ẏ = M︸︷︷︸
M=

a b
c d


Y︸︷︷︸

Y=

y1
y2


+ F︸︷︷︸f1

f2


Two ways to solve.

(1) Convert to higher-order ODE in one variable

ÿ1 = aẏ1 + bẏ2 + ḟ1

= aẏ1 + b(cy1 + dy2 + f2) + ḟ1

= aẏ1 + bcy1 + d(ẏ1 − ay2 − f1) + bf2 + ḟ1

=⇒ ÿ1 − (a+ d)ẏ1 + (ad− bc)y1 = bf2 − df1 + ḟ1

(Linear, second-order ODE with constant coefficients)

(2) Solve first-order ODEs directly with matrix methods.
Sometimes convenient to deal with higher order ODEs as systems of first-order
ODEs. For example

ÿ + αẏ + βy = f

Define:
y1 ≡ y and y2 ≡ ẏ

so ẏ1 = y2 and ẏ2 = ÿ = −αy2 − βy1 + f

Ẏ =

(
0 1
−β −α

)
Y︸︷︷︸y1
y2


+

(
0
f

)

4.1 Matrix methods

To solve
Ẏ = MY + F(t)

(1) Write
Y = Yc +Yp

Ẏc = MYc
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(2) Look for Yc in the form
Yc = veλt

Have
Ẏc = λYc = MYc

=⇒ Mv = λv

(v must be an eigenvector of M and λ is the eigenvalue) For systems of n equations
with n distinct eigenvalues λ, n such complementary solutions which we can add to
get general Yc.

(3) Find a particular solution Yp that satisfies the full system of ODEs.
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Example.

Ẏ =

(
−4 24
1 −2

)
︸ ︷︷ ︸

M

Y +

(
4
1

)
et

Complementary solutions:
Yc = veλt

=⇒ Mv = λv =⇒ |M− λI| = 0

λ1 = 2 or λ2 = −8

v1 =

(
4
1

)
v2 =

(
−6
1

)
General complementary solution:

Yc = A

(
4
1

)
e2t +B

(
−6
1

)
e−8t

For particular solution, try
Yp = uet

Requires

u = Mu+

(
4
1

)
=⇒ u = −(M− I)−1

(
4
1

)
(inverse exists since 1 is not an eigenvalue of M)

u = −
(
4
1

)
General solution

Y = A

(
4
1

)
e2t +B

(
−6
1

)
e−8t −

(
4
1

)
et

(Note: if forcing ∝ eλt with λ an eigenvalue of M, try Yp = uteλt.)

4.2 Non-degenerate phase portraits

n first-order ODEs has phase space with points

Y = (y1, y2, . . . , yn)
⊤

Phase portrait: solution trajectories in phase space.
Consider

Ẏ = MY
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(homogeneous). Fixed point Y = 0. For n = 2, and λ1 ̸= λ2 (non-degenerate), general
solution:

Y(t) = v1e
λ1t + v2e

λ2t

(λ1, λ2 eigenvalues and v1,v2 eigenvectors). Consider phase portraits for λ1 ̸= 0, λ2 ̸= 0
(and λ1 ̸= λ2).

Case 1: λ1 and λ2 real and opposite signs. WLOG λ2 < 0 < λ1. v1 and v2 can be
chosen to be real.

Case 2: λ1 and λ2 real and same sign. WLOG |λ1| > |λ2| and v1 and v2 real.

For λ1, λ2 < 0 - sable node (all arrows reversed).

Case 3: λ1 and λ2 complex conjugate pairs, λ1 = λ2, v1 = v2

Y(t) = cv1e
λ1t + c · c0

= cv1e
Re(λ1)teiIm(λ1)t + c · c0

Re(λ1) < 0 =⇒ stable spiral.
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Re(λ1) > 0 =⇒ unstable spiral.

R⌉(λ1) = 0 → centre
Y(t) is periodic → closed elliptical trajectories in phase space
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Sense of rotation?
Determine Ẏ at one point:
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5 Non-linear Dynamical Systems

Consider an autonomous system of two, non-linear, first-order ODEs:{
ẋ = f(x, y)

ẏ = g(x, y)
(∗)

(f, g general non-linear functions of x, y which are independent of t).

5.1 Equilibrium points

Definition (Equilibrium point). An equilibrium point (fixed point) of system (∗) is
a point at which ẋ = 0 and ẏ = 0.

If (x0, y0) is a fixed point of (∗):

f(x0, y0) = 0 = g(x0, y0)

Solve these to locate the fixed points. Stability via perturbation analysis:

x(T ) = x0 + ξ(t); y(t) = y0 + ζ(t)

(ξ, ζ small perturbations about (x0, y0))

ẋ = f(x, y) =⇒ ξ̇ = f(x0 + ξ, y0 + ζ)

=⇒ ξ̇ ≈ f(x0, y0)︸ ︷︷ ︸
=0 since fixed point

+ξ
∂f

∂x
(x0, y0) + ζ

∂f

∂y
(x0, y0)

Similarly,

ζ̇ = ξ
∂g

∂x
(x0, y0) + ζ

∂g

∂y
(x0, y0)

=⇒
(
ξ̇

ζ̇

)
=

(
fx fy
gx gy

)
︸ ︷︷ ︸

M

(
ξ
ζ

)

Linear system of homogeneous, first-order ODEs → eigenvalues of M determine stability
of equilibrium points.

Example (predator-prey system).
x(t): Number of prey at time t
y(t): Number of predators at time t.
Dynamics of prey:

ẋ = αx− βx2 − γxy
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Where αx represents the excess births over natural deaths, βx2 represents competition
over scarce resource and γxy represents prey being killed - predators consume all prey
they encounter.
Dynamics of predators:

ẏ = εxy − δy

where εxy represents birth of predators and δy represents natural death rate.
Note α, β, γ, ε, δ are all positive constants.
Specific case:

ẋ = 8x− 2x2 − 2xy︸ ︷︷ ︸
f(x,y)

ẏ = xy − y︸ ︷︷ ︸
g(x,y)

Equilibrium points:
2x(4− x− y) = 0

y(x− 1) = 0

First of these requires: x = 0 or x = 4− y.
Second requires: y = 0 or y(3− y) = 0
Have equilibrium points:

(0, 0), (1, 3), (4, 0)(
fx fy
gx gy

)
=

(
8− 4x− 2y −2x

y x− 1

)
(0, 0) (

ξ̇

ζ̇

)
=

(
8 0
0 −1

)(
ξ
ζ

)
Eigenvalues / eigenvectors:

8,

(
1
0

)
− 1,

(
0
1

)
Saddle node
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(4, 0) (
ξ̇

ζ̇

)
=

(
−8 −8
0 3

)(
ξ
ζ

)
Eigenvalues / eigenvectors:

−8,

(
1
0

)
3,

(
8

−11

)
Saddle node

(1, 3) (
ξ̇

ζ̇

)
=

(
−2 −2
3 0

)(
ξ
ζ

)
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Eigenvalues: −1± i
√
5 (note Re(λ) < 0).

Stable spiral

At

(
1
0

)
, (

ξ̇

ζ̇

)
=

(
−2 −3
3 0

)(
1
0

)
=

(
−2
3

)
Note that the 3 in the last vector shows that ζ̇ > 0 so the spiral must be anticlockwise.
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6 Partial Differential Equations

PDEs - differential equations with multiple independent variables.

6.1 First-order wave equation

Consider ψ(x, t) satisfying
∂ψ

∂t
− c

∂ψ

∂x
= 0 (∗)

(c is a constant with dimensions of speed, x is a 1 dimensional position and t is a time)
Solve with method of characteristics. How does ψ vary along path x(t), so ψ(x(t), t)?

dψ

dt
=
∂ψ

∂t
+

dx

dt

∂ψ

∂x

=
∂ψ

∂x

(
c+

dx

dt

)
using (∗)

If choose x(t) such that
dx

dt
= −c

=⇒ x = x0 − ct

where x0 is a constant along the path (label paths). Then

dψ

dx
= 0 =⇒ ψ = constant along the path

Paths x = x0 − ct are the characteristics of (∗).

x

t

x(t) = x0 − ct

x0

As ψ is constant along characteristics, general solution of (∗) is

ψ(x, t) = f(x0) = f(x+ ct)

Simply translates the x-dependence of ψ at t = 0 to left by ct at time t.
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Left-moving wavelike solution.

Example (unforced wave equation).

∂ψ

∂t
− c

∂ψ

∂x
= 0

with ψ(x, 0) = x2 − 3. General solution: ψ = f(x+ ct). At t = 0, ψ(x, 0) = f(x) =
x2 − 3 so

ψ(x, t) = (x+ ct)2 − 3.
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Example (forced wave equation).

∂ψ

∂t
+ 5

∂ψ

∂x
= e−t

with ψ(x, 0) = e−x2
. Characteristics have

dx

dt
= 5 =⇒ x = x0 + 5t

Along these
dψ

dt
= e−t

=⇒ ψ = f(x0)− e−t

where f is an arbitrary function that is constant on each characteristic. General
solution:

ψ(x, t) = f(x− 5t)

Initial conditions:
ψ(x, 0) = f(x)− e−0︸︷︷︸

1

= e−x2

=⇒ f(x) = 1 + e−x2

Final solution:
ψ(x, t) = 1 + e−(x−5t)2 − e−t

6.2 Second-order wave equation

Allow propagation in both directions.

∂2ψ

∂t2
− c2

∂2ψ

∂x2
= 0

Can be factored as (
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
ψ = 0 (†)

(works because partial derivatives commute). The two first order operators commute so
both

f(x+ ct)︸ ︷︷ ︸
nulled by
∂
∂t

−c ∂
∂x

and g(x− ct)︸ ︷︷ ︸
nulled by
∂
∂t

+c ∂
∂x

are solutions. General solution:

ψ = f(x+ ct) + g(x− ct)
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for some arbitrary functions f and g.
Most general solution? Yes!
Let ζ = x+ ct and η = x− ct.

∂

∂x
=

∂ζ

∂x

∣∣∣∣
t︸ ︷︷ ︸

1

+
∂

∂η

∂

∂t
= c

∂

∂ζ
− c

∂

∂η

=⇒ ∂

∂t
− c

∂

∂x
= −2c

∂

∂η

and
∂

∂t
+ c

∂

∂x
= 2x

∂

∂ζ

Wave equation (†) reduces to

−4c2
∂2ψ

∂η∂ζ
= 0

=⇒ ψ = f(ζ) + g(η)

(Integrate twice)
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Example.
∂2ψ

∂t2
− c2

∂2ψ

∂x2
= 0

with

ψ(x, 0) =
1

1 + x2
and

∂ψ

∂t
(x, 0) = 0

General solution:
ψ = f(x+ ct) + g(x− ct)

At t = 0:

ψ(x, 0) = f(x) + g(x) =
1

1 + x2
(∗∗)

∂ψ

∂t
(x, 0) = cf ′(x)− cg′(x) = 0

=⇒ f(x) = g(x) +A

Combine with (∗∗):
f(x) =

1

2(1 + x2)
+
A

2

g(x) =
1

2(1 + x2)
− A

2

Hence

ψ(x, t) =
1

2

[
1

1 + (x+ ct)2
+

1

1 + (x− ct)2

]

x

ψ

t = 0

t > 0

→←
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