% vim: tw=50 % 09/02/2022 10AM \noindent To see that this integral is parametrisation invariant, suppose that $\bf{x}(\tilde{u}, \tilde{v})$ describes the same surface. Then \[ \pfrac{\bf{x}}{u} = \pfrac{\bf{x}}{\tilde{u}} \pfrac{\tilde{u}}{u} + \pfrac{\bf{x}}{\tilde{v}} \pfrac{\tilde{v}}{u} \] \[ \pfrac{\bf{x}}{v} = \pfrac{\bf{x}}{\tilde{u}} \pfrac{\tilde{u}}{v} + \pfrac{\bf{x}}{\tilde{v}} \pfrac{\tilde{v}}{v} \] \[ \implies \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} = \pfrac{(\tilde{u}, \tilde{v})}{(u, v)} \pfrac{\bf{x}}{\tilde{u}} \times \pfrac{\bf{x}}{\tilde{v}} \] But from earlier, \[ \dd \tilde{u} \dd \tilde{v} = \pfrac{(\tilde{u}, \tilde{v})}{(u, v)} \dd u \dd v \] \[ \implies \dd S = \left| \pfrac{\bf{x}}{\tilde{u}} \times \pfrac{\bf{x}}{\tilde{v}} \right| \dd \tilde{u} \dd \tilde{v} \] and the integral takes the same form for $(u, v)$ and $(\tilde{u}, \tilde{v})$. \subsubsection*{An Example} Let $s$ be the surface of a sphere of radius $R$ subtended by angle $\alpha$. \begin{center} \includegraphics[width=0.6\linewidth] {images/603627608b7c11ec.png} \end{center} In spherical polars, \begin{align*} \bf{x}(\theta, \phi) &= R(\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta) \\ &:= R \bf{e}_r \end{align*} (with $\phi \in [0, 2\pi)$ and $\theta \in [0, \alpha]$). We also write $\bf{e}_r = \hat{\bf{r}}$. We have \begin{align*} \pfrac{\bf{x}}{\theta} &= R(\cos\theta \cos\phi, \cos\theta \sin\phi, -\sin\theta) \\ &:= R \bf{e}_\theta \\ \pfrac{\bf{x}}{\phi} &= R(-\sin\theta \sin\phi, \sin\theta \cos\phi, 0) \\ &:= R\sin\theta \bf{e}_\phi \\ \implies \pfrac{\bf{x}}{\theta} \times \pfrac{\bf{x}}{\phi} &= R^2 \sin\theta \bf{e}_r \\ \implies \dd S &= R^2 \sin\theta \dd \theta \dd \phi \end{align*} The area is now \begin{align*} A &= \int_0^{2\pi} \dd \phi \int_0^\alpha \dd \theta R^2 \sin\theta \\ &= 2\pi R^2 (1 - \cos\alpha) \end{align*} \subsubsection*{Integrating Vector Fields} It is often useful to integrate a vector field over a surface to yield a number. We do this by \[ \int_S \bf{F}(\bf{x}) \cdot \bf{n} \dd S = \int_D \dd u \dd v \left( \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \right) \cdot \bf{F}(\bf{x}(u, v)) \] ($\bf{n}$ is unit normal to the surface). This is the \emph{flux} of $\bf{F}$ through $S$. Again, it is reparametrisation invariant. \myskip We define the \emph{vector area element} \[ \bf{\dd S} = \bf{n} \dd S = \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \dd u \dd v \] Clearly $|\bf{\dd S}| = \dd S$. Then the flux can be written as \[ \int_S \bf{F} \cdot \bf{\dd S} \] The flux depends on the orientation of $S$, i.e. on the sign of $\bf{n}$. \myskip \textbf{An Application}: Consider a fluid with a velocity field $\bf{F}(\bf{x})$. \begin{center} \includegraphics[width=0.6\linewidth] {images/9be9aa748b7d11ec.png} \end{center} In a small $\delta t$, the amount of fluid that flows through $S$ is \begin{align*} \text{Fluid flow} &= \bf{F} \delta t \cdot \bf{n} \delta S \\ \text{Flow} &= \int \bf{F} \cdot \bf{\dd S} = \text{fluid crossing $S$ per unit time} \end{align*} \begin{example*} Let $\bf{F} = (-x, 0, z)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/f75adc528b7d11ec.png} \end{center} We'll integrate this over the spherical cap $r = R$, $0 \le \theta \le \alpha$ and $0 \le \phi < 2\pi$. We know that \[ \bf{\dd S} = \RR^2 \sin\theta \dd \theta \dd \phi \bf{e}_r \] \[ \bf{e}_r \equiv \hat{\bf{r}} = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta) \] \begin{align*} \bf{F} \cdot \bf{e}_r &= -x \sin\theta \cos\phi + z \cos\theta \\ &= R(-\sin^2\theta \cos^2 \phi + \cos^2 \theta) \end{align*} using $x, z$ polar coordinates. \begin{align*} \int \bf{F} \cdot \bf{\dd S} &= \int_0^\alpha \dd \theta \int_0^{2\pi} \dd \phi R^3 \sin\theta (-\sin^2 \cos^2\phi + \cos^2\theta) \\ &= \pi R^3 \cos\alpha \sin^2 \alpha \end{align*} \end{example*} \subsubsection*{The Gauss-Bonnet Theorem (non-examinable)} Consider a surface $S$ with a \emph{normal} $\bf{n}$ at some point. \begin{center} \includegraphics[width=0.6\linewidth] {images/b24831548b7e11ec.png} \end{center} Draw a plane containing $\bf{n}$. The intersection of the plane and $S$ gives a curve $C$, with curvature $\kappa$ at the point. \myskip Now we rotate the plane about $\bf{n} \implies$ the curve and $\kappa$ change. The \emph{Gaussian curvature} of $S$ at the point is \[ K = \kappa_{\min} \kappa_{\max} \] \begin{theorem*}[Gauss-Bonnet v1] For a closed surface $S$, \[ \int_S \kappa \dd S = 4\pi(1 - g) \] where $g = \text{genus} = \text{number of holes}$. For example, for a sphere $g = 0$, for a torus $g = 1$ and a double torus has $g = 2$. \end{theorem*}