% vim: tw=50 % 07/02/2022 10AM \subsection{Surface Integrals} We define surfaces in $\RR^3$ by \begin{itemize} \item A function $F(x, y, z) = 0$ \item A \emph{paramterised surface} is a map \[ \bf{x} : \RR^2 \mapsto \RR^3 \] \end{itemize} At each point on the surface, the \emph{normal vector} $\bf{n}$ points away in a perpendicular direction. \begin{claim*} For the surface $F(\bf{x}) = 0$, $\bf{n} \parallel \nabla F$. \end{claim*} \begin{proof} $\bf{m} \cdot \nabla F$ is the rate of change of $F$ in the direction $\bf{m}$. There are two linearly independent vectors $\bf{m}_1$ and $\bf{m}_2$ that lie tangent to the surface and obey $\bf{m}_i \cdot \nabla F = 0$, $i = 1, 2$. The normal vector $\bf{n}$ is perpendicular to $\bf{m}_1$ and $\bf{m}_2$ and so $\bf{n} \parallel \nabla F$. \end{proof} \myskip We usually define \[ \bf{n} = \pm \frac{1}{|\nabla F|} \nabla F \] For a parametrised surface $\bf{x}(u, v)$ the tangent vectors are \[ \pfrac{\bf{x}}{u} \qquad \text{and} \qquad \pfrac{\bf{x}}{v} \] The normal vector is $\bf{n} \parallel \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v}$. \begin{definition*} If $\bf{n} \neq 0$ at all points, the surface is \emph{regular}. \end{definition*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $F(\bf{x}) = x^2 + y^2 + x^2 - R^2 = 0$ is a sphere of radius $R$. The normal vector is $\parallel$ to $\nabla F$ and is \[ 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \] \item A hyperboloid is defined by \[ F(\bf{x}) = x^2 + y^2 - z^2 - R^2 = 0 \] \[ \nabla F = 2 \begin{pmatrix} x \\ y \\ -z \end{pmatrix} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/3118642a8a2811ec.png} \end{center} \begin{note*} When $R = 0$ the surface is no longer regular: \begin{center} \includegraphics[width=0.6\linewidth] {images/5bfe4ccc8a2811ec.png} \end{center} \end{note*} \end{enumerate} \noindent A surface $S$ can have a boundary. The boundary is a closed curve $C$, denoted as $C = \partial S$. \myskip \textbf{Deep Fact}: The boundary curve $C$ is closed, i.e. it has no end points. \myskip \textbf{Another Deep Fact}: We denote the boundary of something by $\partial$. The fact that the boundary of a boundary vanishes is written \[ \partial C = \partial^2 S = 0 \] \begin{definition*} A surface is \emph{bounded} / \emph{unbounded} if it doesn't / does stretch to infinity. A bounded surface with no boundary is \emph{closed}. \end{definition*} \begin{note*} There is no canonical way to fix the $\pm$ sign of $\bf{n}$. If there is a consistent choice over the surface $S$, then $S$ is \emph{orientable}. For example the sphere $S^2$ is orientable but the M\"obius $M$ with $\partial M = S^1$ (circle) is non-orientable. We will only work with orientable surfaces. \end{note*} \subsubsection*{Integrating Scalar Fields} Consider a parametrised surface \[ \bf{x}(u, v) \] sit at some point $(u, v)$ and move a small amount $\delta u$ or $\delta v$. \begin{center} \includegraphics[width=0.6\linewidth] {images/f5f96e008a2911ec.png} \end{center} The parallelogram defined by $\pfrac{\bf{x}}{u}$ and $\pfrac{\bf{x}}{v}$ has scalar area \[ \delta S = \left| \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \right| \delta u \delta v \] The integral of a scalar field $\phi(\bf{x})$ over a parametrised surface is \[ \int_S \phi(\bf{x}) \dd S = \int_D \dd u \dd v \left| \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \right| \phi(\bf{x}(u, v)) \] \begin{note*} This does not depend on the orientation of $S$. Also $\int_S \dd S$ is the area of the surface. Also, the integral does not depend on the choice of parametrisation. \end{note*}