% vim: tw=50 % 04/02/2022 10AM \begin{note*} As $R \to \infty$, we integrate over the whole of $x, y \ge 0$ quadrant. In cartesian coordinates, we have \begin{align*} \int_0^\infty \dd x \int_0^\infty \dd y e^{-(x^2 + y^2)/2} \\ &= \left( \int_0^\infty \dd x e^{-x^2/2} \right) \left( \int_0^\infty \dd y e^{-x^2/2} \right) \\ &= \left( \int_0^\infty \dd x e^{-x^2/2} \right)^2 \\ &= \frac{\pi}{2} \\ \implies \int_0^\infty \dd x e^{-x^2/2} &= \sqrt{\frac{\pi}{2}} \end{align*} \end{note*} \subsubsection*{Volume Integrals} We now generalise to integrals over a region $V \subset \RR^3$. We have \[ \int_V \phi(\bf{x}) \dd V = \lim_{\delta V \to 0} \sum_n \phi(\bf{x}_n) \delta V \] We again perform the integral one coordinate at a time. Again, the order doesn't matter. \begin{center} \includegraphics[width=0.6\linewidth] {images/4cf96d6e8a2411ec.png} \end{center} \[ \int_V \phi \dd V = \int_D \dd A \int_{z_1(x, y)}^{x_2(x, y)} \dd z \phi(x, y, z) \] or \begin{center} \includegraphics[width=0.6\linewidth] {images/8b0379608a2411ec.png} \end{center} \[ \int_V \phi \dd V = \int \dd z \int_{D(z)} \dd x \dd y \phi(x, y, z) \] Under an invertible, smooth change of coordinates \[ (x, y, z) \mapsto (u, v, w) \] we have \[ \dd V = |J| \dd u \dd v \dd w \] with \[ J = \pfrac{(x, y, z)}{(u, v, w)} = \left| \begin{matrix} \pfrac{x}{u} & \pfrac{x}{v} & \pfrac{x}{w} \\ \pfrac{y}{u} & \pfrac{y}{v} & \pfrac{y}{w} \\ \pfrac{z}{u} & \pfrac{z}{v} & \pfrac{z}{w} \end{matrix} \right| \] The proof is similar to before. For example, \emph{spherical polar coordinates} are \begin{align*} x &= r \sin\theta \cos\phi \\ y &= r \sin\theta \sin\phi \\ z &= r \cos\theta \end{align*} \begin{center} \includegraphics[width=0.6\linewidth] {images/00e800388a2511ec.png} \end{center} with $r \ge 0$, $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi)$. We find $J = r^2\sin\theta$ \[ \implies \dd V = r^2 \sin\theta \dd r \dd \theta \dd \phi \] \emph{Cylindrical polar coordinates} are \begin{align*} x &= \rho \cos\phi \\ y &= \rho \sin\phi \\ z &= z \end{align*} \begin{center} \includegraphics[width=0.6\linewidth] {images/55d550328a2511ec.png} \end{center} with $\rho \ge 0$ and $\phi \in [0, 2\pi)$. Now $J = \rho$ and \[ \dd V = \rho \dd \rho \dd \phi \dd z .\] \subsubsection*{Examples} \begin{enumerate}[(1)] \item A spherically symmetric function $f(r)$ integrated over a ball of radius $R$ \begin{align*} \int_V f \dd V &= \int_0^R \dd r \int_0^\pi \dd \theta \int_0^{2\pi} \dd \phi \ub{r^2 \sin \theta}_{J} f(r) \\ &= 2\pi [-\cos\theta]_0^\pi \int_0^R \dd r r^2 f(r) \\ &= 4\pi \int_0^R \dd r r^2 f(r) \end{align*} If $f = 1 \implies V = \frac{4\pi R^3}{3} = \text{volume of the ball}$. \item What is the volume of a ball of radius $R$ with cylinder of radius $s < R$ removed from the middle? .image In cylindrical polars, $V$ is $s \le \rho \le R$ and $-\sqrt{R^2 - \rho^2} \le z \le \sqrt{R^2 - \rho^2}$ and $0 \le \phi > 2\pi$. So \begin{align*} \text{Vol} &= \int_V \dd V \\ &= \int_0^{2\pi} \dd \phi \int_s^R \dd \rho \rho \int_{-\sqrt{R^2 - \rho^2}}^{+\sqrt{R^2 - \rho^2}} \dd z \\ &= 2\pi \int_s^R \dd \rho 2\rho \sqrt{R^2 - \rho^2} \\ &= \frac{4\pi}{3} (R^2 - s^2)^{3/2} \end{align*} \item A hemisphere $H$ of radius $R$ and $z \ge 0$ has charge density $f(z) = f_0 \frac{z}{r}$ with $f_0 = \text{constant}$. What is the total charge? \begin{center} \includegraphics[width=0.6\linewidth] {images/3c5c07768a2611ec.png} \end{center} Use spherical polars. \[ r \le R \] \[ 0 \le \phi \le 2\pi \] \[ 0 \le \theta \le \frac{\pi}{2} \] \begin{align*} \implies \int_H f \dd V &= \frac{f_0}{r} \int_0^{2\pi} \dd \phi \int_0^{\pi/2} \dd \theta \int_0^R \dd r \ub{r^2 \sin\theta}_{J} \ub{r \cos\theta}_{z} \\ &= \frac{2\pi f_0}{R} \left[ \frac{r^4}{4} \right]_0^R \left[ \half \sin^2 \theta \right]_0^{\pi/2} \\ &= \frac{1}{4} \pi R^3 f_0 \end{align*} \item To compute the centre of mass of an object, we need vector valued integrals. Let $\rho(\bf{x})$ be the density \[ \implies \text{mass } M = \int_V \rho(\bf{x}) \dd V \] and \emph{center of mass} is \[ \bf{X} = \frac{1}{M} \int_V \rho (\bf{x}) \bf{x} \dd V \] For example for the solid hemisphere of constant density $\rho$ \[ M = \int_H \rho \dd V = \frac{2\pi}{3} \rho R^3 \] and $\bf{X} = (X, Y, Z)$. \[ X = \frac{\rho}{M} \int_0^{2\pi} \dd \phi \int_0^R \dd r \int_0^{\pi/2} \dd \theta x \ub{r^2 \sin\theta}_{J} = 0 \] Similarly $Y = 0$. \[ Z = \frac{\rho}{M} \int_0^{2\pi} \dd \phi \int_0^R \dd r \int_0^{\pi/2} \dd \theta z r^2 \sin\theta = \frac{3R}{8} \] \end{enumerate}