% vim: tw=50 % 02/02/2022 10AM \begin{note*} For $\phi = 1$, $\int_D \dd A$ is the area of $D$. \end{note*} \noindent To evaluate the area integral, we split the region $D$ into strips. \begin{center} \includegraphics[width=0.6\linewidth] {images/dc7b6ece8a1f11ec.png} \end{center} Do $\int \dd x$ for some fixed $y$, and then do $\int \dd y$. \[ \int_D \phi \dd A = \int_a^b \dd y \int_{x_1(y)}^{x_2(y)} \dd x \phi(x, y) \] ($x_1(y)$ and $x_2(y)$ trace the outline of $D$). \begin{note*} This is written as $\int \dd x (\text{integrand})$ instead of $\int (\text{integrand}) \dd x$. You do $\int \dd x$ first, and then $\int \dd y$. \end{note*} \noindent Alternatively, we could divide $D$ as \begin{center} \includegraphics[width=0.6\linewidth] {images/8d8ba0948a2011ec.png} \end{center} \[ \int_D \phi \dd A = \int_c^d \dd x \int_{y_1(x)}^{y_2(x)} \dd y \phi(x, y) \] Now do $\int \dd y$ first and then $\int \dd x$. \myskip For suitably well behaved $\phi$ and $D$, any way of splitting up $\int \dd A$ gives the same result. (Fubri's theorem). \begin{example*} Let $\phi(x, y) = x^2y$ and $D$ be the triangle \begin{center} \includegraphics[width=0.6\linewidth] {images/0af583568a2111ec.png} \end{center} \begin{align*} \int_D \phi \dd A &= \int_0^1 \dd y \int_0^{2 - 2y} \dd x x^2y \\ &= \int_0^1 \dd y y \left[\frac{x^3}{3}\right]_0^{2 - 2y} \\ &= \frac{8}{3} \int_0^1 \dd y y(1 - y)^3 \\ &= \frac{2}{15} \end{align*} or \begin{align*} \int_D \phi \dd A &= \int_0^2 \dd x \int_0^{1 - x^2 / 2} \dd y x^2y \\ &= \int_0^2 \dd x x^2 \left[ \half y^2 \right]_0^{1 - x^2/2} \\ &= \half \int_0^2 \dd x x^2 \left( 1 - \half x \right)^2 \\ &= \frac{2}{15} \end{align*} \end{example*} \noindent It is often useful to evaluate integrals using something other than cartesian coordinates. Consider a change of variables \[ (x, y) \mapsto (u, v) .\] We assume that this map is smooth and invertible. We can then use $(u, v)$ as coordinates on $\RR^2$. \begin{center} \includegraphics[width=0.6\linewidth] {images/94eab3428a2111ec.png} \end{center} How do we do the integral in $(u, v)$ coordinates? \begin{claim*} The area integral can be written as \[ \int_D \phi \dd A = \int_{D'} \dd u \dd v |J(u, v)| \phi(u, v) \] \end{claim*} \noindent Here the \emph{Jacobian} is the modulus of the determinant \[ |J(u, v)| = \left| \begin{matrix} \pfrac{x}{u} & \pfrac{x}{v} \\ \pfrac{y}{u} & \pfrac{y}{v} \end{matrix} \right| \] We will also write the matrix \[ J(u, v) = \pfrac{(x, y)}{(u, v)} \] \begin{proof} We sum over the small parallelograms sandwiched between $u, v = \text{constant}$ lines. Let $x = x(u, v)$ and $y = y(u, v)$. \[ \implies \delta x = \pfrac{x}{u} \delta u + \pfrac{x}{v} \delta v \] and \[ \delta y = \pfrac{y}{u} \delta u + \pfrac{y}{v} \delta v \] \[ \implies \begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = \begin{pmatrix} \pfrac{x}{u} & \pfrac{x}{v} \\ \pfrac{y}{u} & \pfrac{y}{v} \end{pmatrix} \begin{pmatrix} \delta u \\ \delta v \end{pmatrix} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/61bf3e428a2211ec.png} \end{center} So \[ \bf{a} = \begin{pmatrix} \pfrac{x}{u} \\ \pfrac{y}{u} \end{pmatrix} \delta u \] \[ \bf{b} = \begin{pmatrix} \pfrac{x}{v} \\ \pfrac{y}{v} \end{pmatrix} \delta v \] The area of parallelogram is \[ \delta A = |\bf{a} \times \bf{b}| = \left| \pfrac{(x, y)}{(u, v)} \right| \delta u \delta v = |J| \delta u \delta v .\] \end{proof} \subsubsection*{An Example: 2D Polar Coordinates} Plane polar coordinates are defined by \[ x = \rho \cos \phi \qquad y = \rho \sin \phi \] with $\phi \in [0, \infty)$ and $\phi \in [0, 2\pi)$. Then \[ J = \pfrac{(x, y)}{(\rho, \phi)} = \left| \begin{matrix} \cos \phi & -\rho \sin \phi \\ \sin \phi & \rho \cos \phi \end{matrix} \right| = \rho \] The area element is \[ \delta A = \rho \delta \rho \delta \phi \] \begin{center} \includegraphics[width=0.6\linewidth] {images/e84a67de8a2211ec.png} \end{center} As an example, let $D$ be the region $x, y \ge 0$ and $x^2 + y^2 \le R^2$. \begin{center} \includegraphics[width=0.6\linewidth] {images/028a57d08a2311ec.png} \end{center} This is $0 \le \rho \le R$ and $0 \le \phi \le \frac{\pi}{2}$. We will integrate $f = e^{-(x^2 + y^2)/2} = e^{-\rho^2/2}$. \begin{align*} \int_D f \dd A &= \int_0^{\pi/2} \dd \phi \int_0^R \dd \rho \rho e^{-\rho^2/2} \\ &= \frac{\pi}{2} [-e^{-\rho^2/2}]_0^R \\ &= \frac{\pi}{2} (1 - e^{-R^2/2}) \end{align*}